Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
J Biol Chem ; 293(28): 10963-10974, 2018 07 13.
Article in English | MEDLINE | ID: mdl-29789425

ABSTRACT

Bone morphogenetic protein 9 (BMP9) and BMP10 are the two high-affinity ligands for the endothelial receptor activin receptor-like kinase 1 (ALK1) and are key regulators of vascular remodeling. They are both present in the blood, but their respective biological activities are still a matter of debate. The aim of the present work was to characterize their circulating forms to better understand how their activities are regulated in vivo First, by cotransfecting BMP9 and BMP10, we found that both can form a disulfide-bonded heterodimer in vitro and that this heterodimer is functional on endothelial cells via ALK1. Next, we developed an ELISA that could specifically recognize the BMP9-BMP10 heterodimer and which indicated its presence in both human and mouse plasma. In addition to using available Bmp9-KO mice, we generated a conditional Bmp10-KO mouse strain. The plasma from Bmp10-KO mice, similarly to that of Bmp9-KO mice, completely lacked the ability to activate ALK1-transfected 3T3 cells or phospho-Smad1-5 on endothelial cells, indicating that the circulating BMP activity is mostly due to the BMP9-BMP10 heterodimeric form. This result was confirmed in human plasma that had undergone affinity chromatography to remove BMP9 homodimer. Finally, we provide evidence that hepatic stellate cells in the liver could be the source of the BMP9-BMP10 heterodimer. Together, our findings demonstrate that BMP9 and BMP10 can heterodimerize and that this heterodimer is responsible for most of the biological BMP activity found in plasma.


Subject(s)
Bone Morphogenetic Proteins/metabolism , Endothelium, Vascular/metabolism , Growth Differentiation Factor 2/metabolism , Growth Differentiation Factors/metabolism , Protein Multimerization , 3T3 Cells , Animals , Bone Morphogenetic Proteins/blood , Bone Morphogenetic Proteins/chemistry , Endothelium, Vascular/cytology , Growth Differentiation Factor 2/blood , Growth Differentiation Factor 2/chemistry , Growth Differentiation Factors/blood , Growth Differentiation Factors/chemistry , Humans , Mice , Mice, Knockout , Signal Transduction
2.
Oncogene ; 40(19): 3460-3469, 2021 05.
Article in English | MEDLINE | ID: mdl-33767435

ABSTRACT

In solid cancers, high expression of the cellular prion protein (PrPC) is associated with stemness, invasiveness, and resistance to chemotherapy, but the role of PrPC in tumor response to radiotherapy is unknown. Here, we show that, in neuroblastoma, breast, and colorectal cancer cell lines, PrPC expression is increased after ionizing radiation (IR) and that PrPC deficiency increases radiation sensitivity and decreases radiation-induced radioresistance in tumor cells. In neuroblastoma cells, IR activates ATM that triggers TAK1-dependent phosphorylation of JNK and subsequent activation of the AP-1 transcription factor that ultimately increases PRNP promoter transcriptional activity through an AP-1 binding site in the PRNP promoter. Importantly, we show that this ATM-TAK1-PrPC pathway mediated radioresistance is activated in all tumor cell lines studied and that pharmacological inhibition of TAK1 activity recapitulates the effects of PrPC deficiency. Altogether, these results unveil how tumor cells activate PRNP to acquire resistance to radiotherapy and might have implications for therapeutic targeting of solid tumors radioresistance.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/metabolism , MAP Kinase Kinase Kinases/metabolism , Neoplasms/metabolism , Neoplasms/radiotherapy , PrPC Proteins/biosynthesis , Cell Line, Tumor , Humans , Neoplasms/genetics , PrPC Proteins/metabolism , Radiation Tolerance
SELECTION OF CITATIONS
SEARCH DETAIL