Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
1.
Exp Mol Pathol ; 102(1): 50-58, 2017 02.
Article in English | MEDLINE | ID: mdl-27986442

ABSTRACT

Exposure to World Trade Center (WTC) dust has been linked to respiratory disease in humans. In the present studies we developed a rodent model of WTC dust exposure to analyze lung oxidative stress and inflammation, with the goal of elucidating potential epigenetic mechanisms underlying these responses. Exposure of mice to WTC dust (20µg, i.t.) was associated with upregulation of heme oxygenase-1 and cyclooxygenase-2 within 3days, a response which persisted for at least 21days. Whereas matrix metalloproteinase was upregulated 7days post-WTC dust exposure, IL-6RA1 was increased at 21days; conversely, expression of mannose receptor, a scavenger receptor important in particle clearance, decreased. After WTC dust exposure, increases in methylation of histone H3 lysine K4 at 3days, lysine K27 at 7days and lysine K36, were observed in the lung, along with hypermethylation of Line-1 element at 21days. Alterations in pulmonary mechanics were also observed following WTC dust exposure. Thus, 3days post-exposure, lung resistance and tissue damping were decreased. In contrast at 21days, lung resistance, central airway resistance, tissue damping and tissue elastance were increased. These data demonstrate that WTC dust-induced inflammation and oxidative stress are associated with epigenetic modifications in the lung and altered pulmonary mechanics. These changes may contribute to the development of WTC dust pathologies.


Subject(s)
Air Pollutants/toxicity , Dust , Epigenesis, Genetic , Inflammation/diagnosis , Oxidative Stress , Animals , Blotting, Western , Cyclooxygenase 2/metabolism , Cytokines/genetics , DNA Methylation/drug effects , Female , Gene Expression/drug effects , Heme Oxygenase-1/metabolism , Histones/metabolism , Humans , Immunohistochemistry , Inflammation/etiology , Inflammation/genetics , Inhalation Exposure , Lung/drug effects , Lung/metabolism , Lung/physiopathology , Lysine/metabolism , Matrix Metalloproteinases/metabolism , Methylation/drug effects , Mice, Inbred C57BL , Reverse Transcriptase Polymerase Chain Reaction , September 11 Terrorist Attacks , Up-Regulation/drug effects
2.
J Occup Environ Hyg ; 12(9): 577-87, 2015.
Article in English | MEDLINE | ID: mdl-25894766

ABSTRACT

Diesel exhaust (DE) contains a variety of toxic air pollutants, including diesel particulate matter (DPM) and gaseous contaminants (e.g., carbon monoxide (CO)). DPM is dominated by fine (PM2.5) and ultrafine particles (UFP), and can be representatively determined by its thermal-optical refractory as elemental carbon (EC) or light-absorbing characteristics as black carbon (BC). The currently accepted reference method for sampling and analysis of occupational exposure to DPM is the National Institute for Occupational Safety and Health (NIOSH) Method 5040. However, this method cannot provide in-situ short-term measurements of DPM. Thus, real-time monitors are gaining attention to better examine DE exposures in occupational settings. However, real-time monitors are subject to changing environmental conditions. Field measurements have reported interferences in optical sensors and subsequent real-time readings, under conditions of high humidity and abrupt temperature changes. To begin dealing with these issues, we completed a controlled study to evaluate five real-time monitors: Airtec real-time DPM/EC Monitor, TSI SidePak Personal Aerosol Monitor AM510 (PM2.5), TSI Condensation Particle Counter 3007, microAeth AE51 BC Aethalometer, and Langan T15n CO Measurer. Tests were conducted under different temperatures (55, 70, and 80°F), relative humidity (10, 40, and 80%), and DPM concentrations (50 and 200 µg/m(3)) in a controlled exposure facility. The 2-hr averaged EC measurements from the Airtec instrument showed relatively good agreement with NIOSH Method 5040 (R(2) = 0.84; slope = 1.17±0.06; N = 27) and reported ∼17% higher EC concentrations than the NIOSH reference method. Temperature, relative humidity, and DPM levels did not significantly affect relative differences in 2-hr averaged EC concentrations obtained by the Airtec instrument vs. the NIOSH method (p < 0.05). Multiple linear regression analyses, based on 1-min averaged data, suggested combined effects of up to 5% from relative humidity and temperature on real-time measurements. The overall deviations of these real-time monitors from the NIOSH method results were ≤20%. However, simultaneous monitoring of temperature and relative humidity is recommended in field investigations to understand and correct for environmental impacts on real-time monitoring data.


Subject(s)
Air Pollutants, Occupational/analysis , Carbon Monoxide/analysis , Environmental Monitoring/instrumentation , Particulate Matter/analysis , Vehicle Emissions/analysis , Humidity , National Institute for Occupational Safety and Health, U.S. , Particle Size , Temperature , United States
3.
Risk Anal ; 34(1): 44-55, 2014 01.
Article in English | MEDLINE | ID: mdl-23758133

ABSTRACT

To reduce maintenance costs, municipalities and schools are starting to replace natural grass fields with a new generation synthetic turf. Unlike Astro-Turf, which was first introduced in the 1960s, synthetic field turf provides more cushioning to athletes. Part of this cushioning comes from materials like crumb rubber infill, which is manufactured from recycled tires and may contain a variety of chemicals. The goal of this study was to evaluate potential exposures from playing on artificial turf fields and associated risks to trace metals, semi-volatile organic compounds (SVOCs), and polycyclic aromatic hydrocarbons (PAHs) by examining typical artificial turf fibers (n = 8), different types of infill (n = 8), and samples from actual fields (n = 7). Three artificial biofluids were prepared, which included: lung, sweat, and digestive fluids. Artificial biofluids were hypothesized to yield a more representative estimation of dose than the levels obtained from total extraction methods. PAHs were routinely below the limit of detection across all three biofluids, precluding completion of a meaningful risk assessment. No SVOCs were identified at quantifiable levels in any extracts based on a match of their mass spectrum to compounds that are regulated in soil. The metals were measurable but at concentrations for which human health risk was estimated to be low. The study demonstrated that for the products and fields we tested, exposure to infill and artificial turf was generally considered de minimus, with the possible exception of lead for some fields and materials.


Subject(s)
Environmental Exposure/adverse effects , Metals/adverse effects , Volatile Organic Compounds/adverse effects , Body Fluids/metabolism , Humans , Poaceae , Polycyclic Aromatic Hydrocarbons/adverse effects , Recycling , Risk Assessment , Rubber/adverse effects
4.
Risk Anal ; 34(7): 1299-316, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24467550

ABSTRACT

A challenge for large-scale environmental health investigations such as the National Children's Study (NCS), is characterizing exposures to multiple, co-occurring chemical agents with varying spatiotemporal concentrations and consequences modulated by biochemical, physiological, behavioral, socioeconomic, and environmental factors. Such investigations can benefit from systematic retrieval, analysis, and integration of diverse extant information on both contaminant patterns and exposure-relevant factors. This requires development, evaluation, and deployment of informatics methods that support flexible access and analysis of multiattribute data across multiple spatiotemporal scales. A new "Tiered Exposure Ranking" (TiER) framework, developed to support various aspects of risk-relevant exposure characterization, is described here, with examples demonstrating its application to the NCS. TiER utilizes advances in informatics computational methods, extant database content and availability, and integrative environmental/exposure/biological modeling to support both "discovery-driven" and "hypothesis-driven" analyses. "Tier 1" applications focus on "exposomic" pattern recognition for extracting information from multidimensional data sets, whereas second and higher tier applications utilize mechanistic models to develop risk-relevant exposure metrics for populations and individuals. In this article, "tier 1" applications of TiER explore identification of potentially causative associations among risk factors, for prioritizing further studies, by considering publicly available demographic/socioeconomic, behavioral, and environmental data in relation to two health endpoints (preterm birth and low birth weight). A "tier 2" application develops estimates of pollutant mixture inhalation exposure indices for NCS counties, formulated to support risk characterization for these endpoints. Applications of TiER demonstrate the feasibility of developing risk-relevant exposure characterizations for pollutants using extant environmental and demographic/socioeconomic data.


Subject(s)
Environmental Exposure , Hazardous Substances/toxicity , Risk Assessment , Child , Humans , United States
5.
Environ Sci Technol ; 47(9): 4408-15, 2013 May 07.
Article in English | MEDLINE | ID: mdl-23550818

ABSTRACT

The interconversion between Cr(VI), a pulmonary carcinogen, and Cr(III), an essential human nutrient, poses challenges to the measurement of Cr(VI) in airborne particles. Chamber and field tests were conducted to identify the factors affecting Cr(VI)-Cr(III) interconversion in the basic filter medium under typical sampling conditions. In the chamber tests, isotopically enriched (53)Cr(VI) and (50)Cr(III) were spiked on diesel particulate matter (DPM) and secondary organic aerosol (SOA) that were precollected on a basic MCE filter. The filter samples were then exposed to clean air or the air containing SO2 (50 and 160 ppb), 100 ppb O3, or 150 ppb NO2 for 24 h at 16.7 LPM flow rate at designated temperature (20 and 31 °C) and RH (40% and 70%) conditions. Exposure to 160 ppb SO2 had the greatest effect on (53)Cr(VI) reduction, with (53)Cr(VI) recovery of 31.7 ± 15.8% (DPM) and 42.0 ± 7.9% (SOA). DPM and SOA matrix induced (53)Cr(VI) reduction when exposed to clean air while reactive oxygen species in SOA could promote (50)Cr(III) oxidation. Deliquescence when RH increased from 40% to 70% led to conversion of Cr(III) in SOA, whereas oxidized organics in DPM and SOA enhanced hygroscopicity and thus facilitated Cr(VI) reduction. Field tests showed seasonal variation of Cr(VI)-Cr(III) interconversion during sampling. Correction of the interconversion using USEPA method 6800 is recommended to improve accuracy of ambient Cr(VI) measurements.


Subject(s)
Air , Chromium/chemistry , Humidity , Nitrogen Dioxide/chemistry , Ozone/chemistry , Sulfur Dioxide/chemistry , Temperature
6.
Environ Sci Technol ; 47(22): 13077-85, 2013 Nov 19.
Article in English | MEDLINE | ID: mdl-24144266

ABSTRACT

Fuel additives incorporating nanosized ceria have been increasingly used in diesel engines as combustion promoters. However, few studies have assessed the impact of these nanotechnology-based additives on pollutant emissions. Here, we systematically compare emission rates of particulate and gaseous pollutants from a single-cylinder, four-cycle diesel engine using fuel mixes containing nanoceria of varying concentrations. The test fuels were made by adding different amounts of a commercial fuel additive Envirox into an ultralow-sulfur diesel fuel at 0 (base fuel), 0.1-, 1-, and 10-fold the manufacturer-recommended concentration of 0.5 mL Envirox per liter of fuel. The addition of Envirox resulted in ceria-concentration-dependent emission reductions of CO2, CO, total particulate mass, formaldehyde, acetaldehyde, acrolein, and several polycyclic aromatic hydrocarbons. These reductions at the manufacturer-recommended doping concentration, however, were accompanied by a substantial increase of certain other air pollutants, specifically the number of ultrafine particles (+32%), NO(x) (+9.3%), and the particle-phase benzo[a]pyrene toxic equivalence quotient (+35%). Increasing fuel ceria concentrations also led to decreases in the size of emitted particles. Given health concerns related to ultrafine particles and NO(x), our findings call for additional studies to further evaluate health risks associated with the use of nanoceria additives in various engines under various operating conditions.


Subject(s)
Air Pollutants/analysis , Cerium/chemistry , Gases/analysis , Gasoline/analysis , Nanoparticles/chemistry , Particle Size , Particulate Matter/analysis , Vehicle Emissions/analysis , Aerosols/chemistry , Aldehydes/analysis , Carbon Dioxide/analysis , Carbon Monoxide/analysis , Nitrogen Oxides/analysis , Polycyclic Aromatic Hydrocarbons/analysis
7.
Atmos Environ (1994) ; 57: 72-79, 2012 Sep.
Article in English | MEDLINE | ID: mdl-25674036

ABSTRACT

To address disparities in health risks associated with ambient air pollution for racial/ethnic minority groups, this study characterized personal and ambient concentrations of volatile organic compounds (VOCs) in a suspected hot spot of air pollution - the Village of Waterfront South (WFS), and an urban reference community - the Copewood/Davis Streets (CDS) neighborhood in Camden, New Jersey. Both are minority-dominant, impoverished communities. We collected 24-h integrated personal air samples from 54 WFS residents and 53 CDS residents, with one sample on a weekday and one on a weekend day during the summer and winter seasons of 2004-2006. Ambient air samples from the center of each community were also collected simultaneously during personal air sampling. Toluene, ethylbenzene, and xylenes (TEX) presented higher (p < 0.05) ambient levels in WFS than in CDS, particularly during weekdays. A stronger association between personal and ambient concentrations of MTBE and TEX was found in WFS than in CDS. Fourteen to forty-two percent of the variation in personal MTBE, hexane, benzene, and TEX was explained by local outdoor air pollution. These observations indicated that local sources impacted the community air pollution and personal exposure in WFS. The estimated cancer risks resulting from two locally emitted VOCs, benzene and ethylbenzene, and non-cancer neurological and respiratory effects resulting from hexane, benzene, toluene, and xylenes exceeded the US EPA risk benchmarks in both communities. These findings emphasized the need to address disparity in health risks associated with ambient air pollution for the socio-economically disadvantaged groups. This study also demonstrated that air pollution hot spots similar to WFS can provide robust setting to investigate health effects of ambient air pollution.

8.
J Environ Monit ; 14(9): 2411-20, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22820464

ABSTRACT

A new, passive particle deposition air sampler, called the Einstein-Lioy Deposition Sampler (ELDS), has been developed to fill a gap in passive sampling for near-field particle emissions. The sampler can be configured in several ways: with a protective hood for outdoor sampling, without a protective hood, and as a dust plate. In addition, there is an XRF-ready option that allows for direct sampling onto a filter-mounted XRF cartridge which can be used in conjunction with all configurations. A wind tunnel was designed and constructed to test the performance of different sampler configurations using a test dust with a known particle size distribution. The sampler configurations were also tested versus each other to evaluate whether or not the protective hood would affect the collected particle size distribution. A field study was conducted to test the sampler under actual environmental conditions and to evaluate its ability to collect samples for chemical analysis. Individual experiments for each configuration demonstrated precision of the sampler. The field experiment demonstrated the ability of the sampler to both collect mass and allow for the measurement of an environmental contaminant i.e. Cr(6+). The ELDS was demonstrated to be statistically not different for Hooded and Non-Hooded models, compared to each other and the test dust; thus, it can be used indoors and outdoors in a variety of configurations to suit the user's needs.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring/instrumentation , Chromium/analysis , Particle Size
9.
Environ Sci Technol ; 45(7): 2945-50, 2011 Apr 01.
Article in English | MEDLINE | ID: mdl-21351766

ABSTRACT

Exposure and dose estimation are essential to understanding the etiology of environmentally linked childhood diseases. The behavior of resuspended particulate matter (PM) suggests that stationary measurements may underestimate household exposures in young children (ages 6-36 months). Because of the size and weight of the sampling equipment, use of personal samplers in this age group is either difficult or impossible. The Pretoddler Inhalable Particulate Environmental Robotic (PIPER Mk IV) sampler has been developed to provide a surrogate method to ascertain personal exposures to PM for this age group. As part of a study of childhood asthma, 55 homes in central New Jersey were tested. Simultaneous sampling for inhalable PM using stationary (110 cm height) and PIPER mobile sampler were carried out. In homes with bare floors (N=21), the absolute difference was 3.9 µg/m3 (SE=3.01; p=0.217) and relative difference (PIPER/Stationary) was 1.12 (linearized SE=0.11). On carpets (N=34), the absolute difference was 54.1 µg/m3 (SE=13.50; p=0.0003), and the relative difference was 2.30 (linearized SE=0.34). The results confirm the importance of understanding the personal dust cloud caused by children's activity in a room, particularly when rugs or carpets are present.


Subject(s)
Air Pollutants/analysis , Air Pollution, Indoor/analysis , Environmental Monitoring/instrumentation , Inhalation Exposure/analysis , Particulate Matter/analysis , Air Pollution, Indoor/statistics & numerical data , Child, Preschool , Environmental Monitoring/methods , Female , Housing/statistics & numerical data , Humans , Infant , Inhalation Exposure/statistics & numerical data , Male , New Jersey
10.
Res Rep Health Eff Inst ; (160): 3-127; discussion 129-51, 2011 Aug.
Article in English | MEDLINE | ID: mdl-22097188

ABSTRACT

Personal exposures and ambient concentrations of air toxics were characterized in a pollution "hot spot" and an urban reference site, both in Camden, New Jersey. The hot spot was the city's Waterfront South neighborhood; the reference site was a neighborhood, about 1 km to the east, around the intersection of Copewood and Davis streets. Using personal exposure measurements, residential ambient air measurements, statistical analyses, and exposure modeling, we examined the impact of local industrial and mobile pollution sources, particularly diesel trucks, on personal exposures and ambient concentrations in the two neighborhoods. Presented in the report are details of our study design, sample and data collection methods, data- and model-analysis approaches, and results and key findings of the study. In summary, 107 participants were recruited from nonsmoking households, including 54 from Waterfront South and 53 from the Copewood-Davis area. Personal air samples were collected for 24 hr and measured for 32 target compounds--11 volatile organic compounds (VOCs*), four aldehydes, 16 polycyclic aromatic hydrocarbons (PAHs), and particulate matter (PM) with an aerodynamic diameter < or = 2.5 microm (PM2.5). Simultaneously with the personal monitoring, ambient concentrations of the target compounds were measured at two fixed monitoring sites, one each in the Waterfront South and Copewood-Davis neighborhoods. To understand the potential impact of local sources of air toxics on personal exposures caused by temporal (weekdays versus weekend days) and seasonal (summer versus winter) variations in source intensities of the air toxics, four measurements were made of each subject, two in summer and two in winter. Within each season, one measurement was made on a weekday and the other on a weekend day. A baseline questionnaire and a time diary with an activity questionnaire were administered to each participant in order to obtain information that could be used to understand personal exposure to specific air toxics measured during each sampling period. Given the number of emission sources of air toxics in Waterfront South, a spatial variation study consisting of three saturation-sampling campaigns was conducted to characterize the spatial distribution of VOCs and aldehydes in the two neighborhoods. Passive samplers were used to collect VOC and aldehyde samples for 24- and 48-hr sampling periods simultaneously at 22 and 16 grid-based sampling sites in Waterfront South and Copewood-Davis, respectively. Results showed that measured ambient concentrations of some target pollutants (mean +/- standard deviation [SD]), such as PM2.5 (31.3 +/- 12.5 microg/m3), toluene (4.24 +/- 5.23 microg/m3), and benzo[a]pyrene (0.36 +/- 0.45 ng/m3), were significantly higher (P < 0.05) in Waterfront South than in Copewood-Davis, where the concentrations of PM2.5, toluene, and benzo[a]pyrene were 25.3 +/- 11.9 microg/m3, 2.46 +/- 3.19 microg/m3, and 0.21 +/- 0.26 ng/m3, respectively. High concentrations of specific air toxics, such as 60 microg/m3 for toluene and 159 microg/m3 for methyl tert-butyl ether (MTBE), were also found in areas close to local stationary sources in Waterfront South during the saturation-sampling campaigns. Greater spatial variation in benzene, toluene, ethylbenzene, and xylenes (known collectively as BTEX) as well as of MTBE was observed in Waterfront South than in Copewood-Davis during days with low wind speed. These observations indicated the significant impact of local emission sources of these pollutants and possibly of other pollutants emitted by individual source types on air pollution in Waterfront South. (Waterfront South is a known hot spot for these pollutants.) There were no significant differences between Waterfront South and Copewood-Davis in mean concentrations of benzene or MTBE, although some stationary sources of the two compounds have been reported in Waterfront South. Further, a good correlation (R > 0.6) was found between benzene and MTBE in both locations. These results suggest that automobile exhausts were the main contributors to benzene and MTBE air pollution in both neighborhoods. Formaldehyde and acetaldehyde concentrations were found to be high in both neighborhoods. Mean (+/- SD) concentrations of formaldehyde were 20.2 +/- 19.5 microg/m3 in Waterfront South and 24.8 +/- 20.8 microg/m3 in Copewood-Davis. A similar trend was observed for the two compounds during the saturation-sampling campaigns. The results indicate that mobile sources (i.e., diesel trucks) had a large impact on formaldehyde and acetaldehyde concentrations in both neighborhoods and that both are aldehyde hot spots. The study also showed that PM2.5, aldehydes, BTEX, and MTBE concentrations in both Waterfront South and Copewood-Davis were higher than ambient background concentrations in New Jersey and than national average concentrations, indicating that both neighborhoods are in fact hot spots for these pollutants. Higher concentrations were observed on weekdays than on weekend days for several compounds, including toluene, ethylbenzene, and xylenes (known collectively as TEX) as well as PAHs and PM2.5. These observations showed the impact on ambient air pollution of higher traffic volumes and more active industrial and commercial operations in the study areas on weekdays. Seasonal variations differed by species. Concentrations of TEX, for example, were found to be higher in winter than in summer in both locations, possibly because of higher emission rates from automobiles and reduced photochemical reactivity in winter. In contrast, concentrations of MTBE were found to be significantly higher in summer than in winter in both locations, possibly because of higher evaporation rates from gasoline in summer. Similarly, concentrations of heavier PAHs, such as benzo[a]pyrene, were found to be higher in winter in both locations, possibly because of higher emission rates from mobile sources, the use of home heating, and the reduced photochemical reactivity of benzo[a]pyrene in winter. In contrast, concentrations of lighter PAHs were found to be higher in summer in both locations, possibly because of volatilization of these compounds from various surfaces in summer. In addition, higher concentrations of formaldehyde were observed in summer than in winter, possibly because of significant contributions from photochemical reactions to formaldehyde air pollution in summer. Personal concentrations of toluene (25.4 +/- 13.5 microg/m3) and acrolein (1.78 +/- 3.7 microg/m3) in Waterfront South were found to be higher than those in the Copewood-Davis neighborhood (13.1 +/- 15.3 microg/m3 for toluene and 1.27 +/- 2.36 microg/m3 for acrolein). However, personal concentrations for most of the other compounds measured in Waterfront South were found to be similar to or lower than those than in Copewood-Davis. (For example, mean +/- SD concentrations were 4.58 +/- 17.3 microg/m3 for benzene, 4.06 +/- 5.32 microg/m3 for MTBE, 16.8 +/- 15.5 microg/m3 for formaldehyde, and 0.40 +/- 0.94 ng/m3 for benzo[a]pyrene in Waterfront South and 9.19 +/- 34.0 microg/m3 for benzene, 6.22 +/- 19.0 microg/m3 for MTBE, 16.0 +/- 16.7 microg/m3 for formaldehyde, and 0.42 +/- 1.08 ng/m3 for benzo[a]pyrene in Copewood-Davis.) This was probably because many of the target compounds had both outdoor and indoor sources. The higher personal concentrations of these compounds in Copewood-Davis might have resulted in part from higher exposure to environmental tobacco smoke (ETS) of subjects from Copewood-Davis. The Spearman correlation coefficient (R) was found to be high for pollutants with significant outdoor sources. The R's for MTBE and carbon tetrachloride, for example, were > 0.65 in both Waterfront South and Copewood-Davis. The R's were moderate or low (0.3-0.6) for compounds with both outdoor and indoor sources, such as BTEX and formaldehyde. A weaker association (R < 0.5) was found for compounds with significant indoor sources, such as BTEX, formaldehyde, PAHs, and PM2.5. The correlations between personal and ambient concentrations of MTBE and BTEX were found to be stronger in Waterfront South than in Copewood-Davis, reflecting the significant impact of local air pollution sources on personal exposure to these pollutants in Waterfront South. Emission-based ambient concentrations of benzene, toluene, and formaldehyde and contributions of ambient exposure to personal concentrations of these three compounds were modeled using atmospheric dispersion modeling and Individual Based Exposure Modeling (IBEM) software, respectively, which were coupled for analysis in the Modeling Environment for Total Risk (MENTOR) system. The compounds were associated with the three types of dominant sources in the two neighborhoods: industrial sources (toluene), exhaust from gasoline-powered motor vehicles (benzene), and exhaust from diesel-powered motor vehicles (formaldehyde). Subsequently, both the calculated and measured ambient concentrations of each of the three compounds were separately combined with the time diaries and activity questionnaires completed by the subjects as inputs to IBEM-MENTOR for estimating personal exposures from ambient sources. Modeled ambient concentrations of benzene and toluene were generally in agreement with the measured ambient concentrations within a factor of two, but the values were underestimated at the high-end percentiles. The major local (neighborhood) contributors to ambient benzene concentrations were from mobile sources in the study areas; both mobile and stationary (point and area) sources contributed to the ambient toluene concentrations. This finding can be used as guidance for developing better emission inventories to characterize, through modeling, the ambient concentrations of air toxics in the study areas. (ABSTRACT TRUNCATED)


Subject(s)
Air Pollutants/analysis , Environmental Exposure/analysis , Hazardous Substances/analysis , Adolescent , Adult , Aged , Aged, 80 and over , Aldehydes/analysis , Case-Control Studies , Child , Environmental Monitoring/methods , Female , Health Surveys , Humans , Linear Models , Male , Middle Aged , New Jersey , Particulate Matter/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Poverty Areas , Small-Area Analysis , Volatile Organic Compounds/analysis
11.
J Air Waste Manag Assoc ; 61(10): 1015-25, 2011 Oct.
Article in English | MEDLINE | ID: mdl-22070034

ABSTRACT

The objective of this study was to estimate the contribution of a facility that processes steel production slag into raw material for cement production to local outdoor particle deposition in Camden, NJ. A dry deposition sampler that can house four 37-mm quartz fiber filters was developed and used for the collection of atmospheric particle deposits. Two rounds of particle collection (3-4 weeks each) were conducted in 8-11 locations 200-800 m downwind of the facility. Background samples were concurrently collected in a remote area located -2 km upwind from the facility. In addition, duplicate surface wipe samples were collected side-by-side from each of the 13 locations within the same sampling area during the first deposition sampling period. One composite source material sample was also collected from a pile stored in the facility. Both the bulk of the source material and the < 38 microm fraction subsample were analyzed to obtain the elemental source profile. The particle deposition flux in the study area was higher (24-83 mg/m2 x day) than at the background sites (13-17 mg/m2day). The concentration of Ca, a major element in the cement source production material, was found to exponentially decrease with increasing downwind distance from the facility (P < 0.05). The ratio of Ca/Al, an indicator of Ca enrichment due to anthropogenic sources in a given sample, showed a similar trend. These observations suggest a significant contribution of the facility to the local particle deposition. The contribution of the facility to outdoor deposited particle mass was further estimated by three independent models using the measurements obtained from this study. The estimated contributions to particle deposition in the study area were 1.8-7.4% from the regression analysis of the Ca concentration in particle deposition samples against the distance from the facility, 0-11% from the U.S. Environmental Protection Agency (EPA) Chemical Mass Balance (CMB) source-receptor model, and 7.6-13% from the EPA Industrial Source Complex Short Term (ISCST3) dispersion model using the particle-size-adjusted permit-based emissions estimates.


Subject(s)
Air Pollutants, Occupational/analysis , Construction Materials , Particulate Matter/analysis , Algorithms , Data Interpretation, Statistical , Dust , Environmental Monitoring , New Jersey , Particle Size , Quality Control , Regression Analysis
12.
Mil Med ; 176(7 Suppl): 71-6, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21916334

ABSTRACT

The strategies for protecting our deployed U.S. Forces are outlined in National Research Council documents published in 1999-2000. This article summarizes experiences and information gathered and interpreted regarding population and rescue workers' exposures in the aftermath of the 2001 World Trade Center attacks, with the aim to provide insights on issues related to military deployment to locations with hazardous agents. Issues covered include phases of exposure, materials of concern, detection equipment, and personal protection equipment. The focus is on human exposure issues, which are primarily associated with strategies 1 through 3 of the National Research Council's report entitled "Protecting Those Who Serve: Strategies to Protect the Health of Deployed U.S. Forces". Contact and duration of contact with hazardous substances are critical areas of concern, which require prevention and intervention procedures and protocols to reduce the incidence of acute and long-term health outcomes.


Subject(s)
Environmental Exposure/prevention & control , Environmental Monitoring/methods , Military Personnel , Safety Management/methods , Environmental Exposure/analysis , Hazardous Substances , Humans , National Academy of Sciences, U.S. , Protective Devices , Risk Assessment/methods , September 11 Terrorist Attacks , United States
13.
Int J Occup Environ Health ; 16(4): 378-87, 2010.
Article in English | MEDLINE | ID: mdl-21222382

ABSTRACT

This article discusses the gaps in our understanding of human exposures to nanoparticles stemming from the use of nanotechnology-based consumer products by the general public. It also describes a series of steps that could be taken to characterize such exposures. The suggested steps include classification of the nanotechnology-based products, simulation of realistic exposure patterns, characterization of emissions, analysis of the duration of activities resulting in exposures, and consideration of the bioaccessibility of nanoparticles. In addition, we present a preliminary study with nanotechnology-based cosmetic powders where particle release was studied under realistic powder application conditions. The data demonstrated that when nanotechnology-based cosmetic powders were used, there was a potential for inhaling airborne particles ranging in size from tens of nanometers to tens of micrometers.


Subject(s)
Cosmetics/toxicity , Environmental Monitoring/methods , Inhalation Exposure/analysis , Nanostructures/adverse effects , Research Design , Cosmetics/chemistry , Humans , Inhalation Exposure/adverse effects , Particle Size , Time Factors
14.
J Air Waste Manag Assoc ; 59(6): 733-46, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19603741

ABSTRACT

This study presents the Individual Based Exposure Modeling (IBEM) application of MENTOR (Modeling ENvironment for TOtal Risk studies) in a hot spot area, where there are concentrated local sources on the scale of tens to hundreds of meters, and an urban reference area in Camden, NJ, to characterize the ambient concentrations and personal exposures to benzene and toluene from local ambient sources. The emission-based ambient concentrations in the two neighborhoods were first estimated through atmospheric dispersion modeling. Subsequently, the calculated and measured ambient concentrations of benzene and toluene were separately combined with the time-activity diaries completed by the subjects as inputs to MENTOR/IBEM for estimating personal exposures resulting from ambient sources. The modeling results were then compared with the actual personal measurements collected from over 100 individuals in the field study to identify the gaps in modeling personal exposures in a hot spot. The modeled ambient concentrations of benzene and toluene were generally in agreement with the neighborhood measurements within a factor of 2, but were underestimated at the high-end percentiles. The major local contributors to the benzene ambient levels are from mobile sources, whereas mobile and stationary (point and area) sources contribute to the toluene ambient levels in the study area. This finding can be used as guidance for developing better air toxic emission inventories for characterizing, through modeling, the ambient concentrations of air toxics in the study area. The estimated percentage contributions of personal exposures from ambient sources were generally higher in the hot spot area than the urban reference area in Camden, NJ, for benzene and toluene. This finding demonstrates the hot spot characteristics of stronger local ambient source impacts on personal exposures. Non-ambient sources were also found as significant contributors to personal exposures to benzene and toluene for the population studied.


Subject(s)
Air Pollutants/chemistry , Environmental Exposure , Environmental Monitoring/methods , Air Movements , Air Pollution , Humans , Models, Theoretical , New Jersey , Time Factors
15.
Environ Health Perspect ; 115(6): 958-64, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17589607

ABSTRACT

Our understanding of the relationship between human health and the indoor environment continues to evolve. Previous research on health and indoor environments has tended to concentrate on discrete pollutant sources and exposures and on specific disease processes. Recently, efforts have been made to characterize more fully the complex interactions between the health of occupants and the interior spaces they inhabit. In this article we review recent advances in source characterization, exposure assessment, health effects associated with indoor exposures, and intervention research related to indoor environments. Advances in source characterization include a better understanding of how chemicals are transported and processed within spaces and the role that other factors such as lighting and building design may play in determining health. Efforts are under way to improve our ability to measure exposures, but this remains a challenge, particularly for biological agents. Researchers are also examining the effects of multiple exposures as well as the effects of exposures on vulnerable populations such as children and the elderly. In addition, a number of investigators are also studying the effects of modifying building design, materials, and operations on occupant health. Identification of research priorities should include input from building designers, operators, and the public health community.


Subject(s)
Air Pollution, Indoor/analysis , Environmental Exposure , Environmental Illness/prevention & control , Housing/standards , Building Codes , Construction Materials , Environment Design , Humans , Particulate Matter/analysis
16.
J Air Waste Manag Assoc ; 57(12): 1499-506, 2007 Dec.
Article in English | MEDLINE | ID: mdl-18200935

ABSTRACT

To provide a scientific basis for the selection and use of continuous monitors for exposure and/or health effects studies, and for compliance and episode measurements at strategic locations in the State of New Jersey, we evaluated the performance of seven continuous fine particulate matter (PM2.5) monitors in the present study. Gravimetric samplers, as reference methods, were collocated with realtime instruments in both laboratory and field tests. The results of intercomparison of real-time monitors showed that the two nephelometers used in this study correlated extremely well (r2 approximately 0.97), and two tapered element oscillating monitors (TEOM 1400 and TEOM filter dynamics measurement system [FDMS]) correlated well (r2 > 0.85), whereas two beta gauges displayed a weaker correlation (r2 < 0.6). During a summertime controlled (laboratory) evaluation, the measurements made with the gravimetric method correlated well with the 24-hr integrated measurements made with the real-time monitors. The SidePak nephelometer overestimated the particle concentration by a factor of approximately 3.4 compared with the gravimetric method. During a summertime field evaluation, the TEOM FDMS monitor reported approximately 30% higher mass concentration than the Federal Reference Method (FRM); and the difference could be explained by the loss of semi-volatile materials from the FRM sampler. Results also demonstrated that 24-hr average PM2.5 mass concentrations measured by beta gauges and TEOM (50 degrees C) in winter correlated well with the integrated gravimetric method. Seasonal differences were observed in the performance of the TEOM (50 degrees C) monitor in measuring the particle mass attributed to the higher semi-volatile material loss in the winter weather. In applying the realtime particulate matter monitoring data into Air Quality Index (AQI) reporting, the Conroy method and the 8-hr end-hour average method were both found to be suitable.


Subject(s)
Aerosols/analysis , Environmental Monitoring/instrumentation , Particulate Matter/chemistry , Time Factors
17.
J Air Waste Manag Assoc ; 57(8): 934-9, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17824283

ABSTRACT

There is growing scientific evidence linking early childhood exposure to environmental agents with asthma and other illnesses that may not appear until later in life. Unfortunately the direct measurement of personal exposures of children in the first year of life is not possible by existing methodologies. This study developed and evaluated a new methodology to better assess exposure of children to inhalable particles in the first year of life while involved in floor play in the home. We constructed the Pre-Toddler Inhalable Particulate Environmental Robotic (PIPER) sampler. Two series of measurements of inhalable particles were carried out. One collected filter samples of airborne inhalable particles and a second used a real-time total particle mass concentration monitor. Samples were collected for seven residential locations. Duplicate samples were collected with PIPER 20 cm above the floor and from an identical stationary monitor positioned at a height of 110 cm. The mean observed airborne inhalable particle concentrations measured by PIPER was 98.6 microg/ m3, whereas simultaneously collected stationary samples mean concentration was 49.8 microg/m3. The average observed ratio of PIPER samples to stationary samples was 2.4. A paired t test comparison of the two sampling methods indicated a statistically significant higher level of inhalable particle concentration measured by PIPER in comparison with the fixed sampler (P < 0.0001). Peak concentrations as measured by a real-time monitor were in excess of 3600 microg/m3. The results suggest that children playing on the floor are exposed to a higher concentration of total inhalable particles than previous methodologies estimate.


Subject(s)
Air Pollutants/analysis , Air Pollution, Indoor/analysis , Environmental Exposure , Environmental Monitoring/instrumentation , Particulate Matter/administration & dosage , Particulate Matter/analysis , Filtration , Humans , Infant , Infant, Newborn , Inhalation , Particle Size , Robotics
18.
Ann N Y Acad Sci ; 1076: 54-79, 2006 Sep.
Article in English | MEDLINE | ID: mdl-17119193

ABSTRACT

The attack on the World Trade Center (WTC) resulted in a new era of awareness on terrorism in the United States and the issues surrounding the potential for acute and/or long-term health outcomes caused by personal exposures to toxicants released during a terrorist event or an accident. The aftermath of the collapse yielded a situation usually not encountered in environmental health science: a large population's exposure to a previously uncharacterized complex mixture of airborne gases and particles, and re-suspendable particles (>2.5 microm in diameter). This led to a series of rapidly changing potential and actual exposure categories, both in space and time that were associated with the complex mixture of heterogeneous composition and character; e.g., very large particles mixed with much smaller amounts of fine particles, and gases released by uncontrolled combustion. The four categories of outdoor exposure that were encountered will be discussed over the period from September 11 until the fires ended on December 20, 2001. Further, the complex issue of indoor exposure to deposited dust will be highlighted from the beginning through the residual exposure issues being examined today (Category 5 period). The strength of the information on the initial WTC dust and smoke, and the smoke plumes from the fires and the continuing (permanent) gaps in our knowledge within the exposure sciences will be discussed, as well as our attempt to reconstruct exposure for various segments of the population in southern Manhattan and the surrounding areas. This all will be tied to lessons that must be considered in response to future events, natural or otherwise.


Subject(s)
Air Pollutants/toxicity , Environmental Exposure , Terrorism , Humans , New York City , Particle Size
19.
Article in English | MEDLINE | ID: mdl-17090483

ABSTRACT

Georgopoulos and Lioy (1994) presented a theoretical framework for exposure analysis, incorporating multiple levels of empirical and mechanistic information while characterizing/reducing uncertainties. The present review summarizes efforts towards implementing that framework, through the development of a mechanistic source-to-dose Modeling ENvironment for TOtal Risks studies (MENTOR), a computational toolbox that provides various modeling and data analysis tools to facilitate assessment of cumulative and aggregate (multipathway) exposures to contaminant mixtures. MENTOR adopts a "Person Oriented Modeling" (POM) approach that can be applied to either specific individuals or to populations/subpopulations of interest; the latter is accomplished by defining samples of "virtual" individuals that statistically reproduce the physiological, demographic, etc., attributes of the populations studied. MENTOR implementations currently incorporate and expand USEPA's SHEDS (Stochastic Human Exposure and Dose Simulation) approach and consider multiple exposure routes (inhalation, food, drinking water intake; non-dietary ingestion; dermal absorption). Typically, simulations involve: (1) characterizing background levels of contaminants by combining model predictions and measurement studies; (2) characterizing multimedia levels and temporal profiles of contaminants in various residential and occupational microenvironments; (3) selecting sample populations that statistically reproduce essential demographics (age, gender, race, occupation, education) of relevant population units (e.g., census tracts); (4) developing activity event sequences for each member of the sample by matching attributes to entries of USEPA's Consolidated Human Activity Database (CHAD); (5) calculating intake rates for the sample population members, reflecting physiological attributes and activities pursued; (6) combining intake rates from multiple routes to assess exposures; (7) estimating target tissue doses with physiologically based dosimetry/toxicokinetic modeling.


Subject(s)
Environmental Exposure , Environmental Pollutants/pharmacokinetics , Environmental Pollutants/toxicity , Models, Theoretical , Complex Mixtures , Databases, Factual , Demography , Humans , Population Dynamics , Risk Assessment/methods , User-Computer Interface
20.
Sci Total Environ ; 366(2-3): 525-37, 2006 Aug 01.
Article in English | MEDLINE | ID: mdl-16360767

ABSTRACT

The comprehensive individual field-measurements on non-dietary exposure collected in the Children's-Post-Pesticide-Application-Exposure-Study (CPPAES) were used within MENTOR/SHEDS-Pesticides, a physically based stochastic human exposure and dose model. In this application, however, the model was run deterministically. The MENTOR/SHEDS-Pesticides employed the CPPAES as input variables to simulate the exposure and the dose profiles for seven children over a 2-week post-application period following a routine residential and professional indoor crack-and-crevice chlorpyrifos application. The input variables were obtained from a personal activity diary, microenvironmental measurements and personal biomonitoring data obtained from CPPAES samples collected from the individual children and in their homes. Simulation results were compared with CPPAES field measured values obtained from the children's homes to assess the utility of the different microenvironmental data collected in CPPAES, i.e. indicator toys and wipe samplers to estimate aggregate exposures that can be result from one or more exposure pathways and routes. The final analyses of the database involved comparisons of the actual data obtained from the individual biomarker samples of a urinary metabolite of chlorpyrifos (TCPy) and the values predicted by MENTOR/SHEDS-Pesticides using the CPPAES-derived variables. Because duplicate diet samples were not part of the CPPAES study design, SHEDs-Pesticides simulated dose profiles did not account for the dietary route. The research provided more confidence in the types of data that can be used in the inhalation and dermal contact modules of MENTOR/SHEDS-Pesticides to predict the pesticide dose received by a child. It was determined that we still need additional understanding about: (1) the types of activities and durations of activities that result in non-dietary ingestion of pesticides and (2) the influence of dietary exposures on the levels of TCPy found in the urine.


Subject(s)
Air Pollution, Indoor/analysis , Chlorpyrifos/analysis , Environmental Exposure/analysis , Models, Biological , Pesticides/analysis , Air Pollutants/analysis , Air Pollutants/pharmacokinetics , Air Pollutants/urine , Child , Chlorpyrifos/pharmacokinetics , Chlorpyrifos/urine , Environmental Monitoring , Housing , Humans , Pesticides/pharmacokinetics , Pesticides/urine , Play and Playthings
SELECTION OF CITATIONS
SEARCH DETAIL