ABSTRACT
A formal demonstration that mammalian pluripotent stem cells possess preimplantation embryonic cell-like (naive) pluripotency is the generation of chimeric animals through early embryo complementation with homologous cells. Whereas such naive pluripotency has been well demonstrated in rodents, poor chimerism has been achieved in other species including non-human primates due to the inability of the donor cells to match the developmental state of the host embryos. Here, we have systematically tested various culture conditions for establishing monkey naive embryonic stem cells and optimized the procedures for chimeric embryo culture. This approach generated an aborted fetus and a live chimeric monkey with high donor cell contribution. A stringent characterization pipeline demonstrated that donor cells efficiently (up to 90%) incorporated into various tissues (including the gonads and placenta) of the chimeric monkeys. Our results have major implications for the study of primate naive pluripotency and genetic engineering of non-human primates.
Subject(s)
Embryonic Stem Cells , Genetic Engineering , Haplorhini , Animals , Female , Pregnancy , Haplorhini/genetics , Live Birth , Mammals , Pluripotent Stem Cells , Primates , Genetic Engineering/methodsABSTRACT
Elucidating the cellular organization of the cerebral cortex is critical for understanding brain structure and function. Using large-scale single-nucleus RNA sequencing and spatial transcriptomic analysis of 143 macaque cortical regions, we obtained a comprehensive atlas of 264 transcriptome-defined cortical cell types and mapped their spatial distribution across the entire cortex. We characterized the cortical layer and region preferences of glutamatergic, GABAergic, and non-neuronal cell types, as well as regional differences in cell-type composition and neighborhood complexity. Notably, we discovered a relationship between the regional distribution of various cell types and the region's hierarchical level in the visual and somatosensory systems. Cross-species comparison of transcriptomic data from human, macaque, and mouse cortices further revealed primate-specific cell types that are enriched in layer 4, with their marker genes expressed in a region-dependent manner. Our data provide a cellular and molecular basis for understanding the evolution, development, aging, and pathogenesis of the primate brain.
Subject(s)
Cerebral Cortex , Macaca , Single-Cell Analysis , Transcriptome , Animals , Humans , Mice , Cerebral Cortex/cytology , Cerebral Cortex/metabolism , Macaca/metabolism , Transcriptome/geneticsABSTRACT
Breakthrough infections by SARS-CoV-2 variants become the global challenge for pandemic control. Previously, we developed the protein subunit vaccine ZF2001 based on the dimeric receptor-binding domain (RBD) of prototype SARS-CoV-2. Here, we developed a chimeric RBD-dimer vaccine approach to adapt SARS-CoV-2 variants. A prototype-Beta chimeric RBD-dimer was first designed to adapt the resistant Beta variant. Compared with its homotypic forms, the chimeric vaccine elicited broader sera neutralization of variants and conferred better protection in mice. The protection of the chimeric vaccine was further verified in macaques. This approach was generalized to develop Delta-Omicron chimeric RBD-dimer to adapt the currently prevalent variants. Again, the chimeric vaccine elicited broader sera neutralization of SARS-CoV-2 variants and conferred better protection against challenge by either Delta or Omicron SARS-CoV-2 in mice. The chimeric approach is applicable for rapid updating of immunogens, and our data supported the use of variant-adapted multivalent vaccine against circulating and emerging variants.
Subject(s)
COVID-19 , Vaccines , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Mice , SARS-CoV-2/geneticsABSTRACT
Spatially resolved transcriptomic technologies are promising tools to study complex biological processes such as mammalian embryogenesis. However, the imbalance between resolution, gene capture, and field of view of current methodologies precludes their systematic application to analyze relatively large and three-dimensional mid- and late-gestation embryos. Here, we combined DNA nanoball (DNB)-patterned arrays and in situ RNA capture to create spatial enhanced resolution omics-sequencing (Stereo-seq). We applied Stereo-seq to generate the mouse organogenesis spatiotemporal transcriptomic atlas (MOSTA), which maps with single-cell resolution and high sensitivity the kinetics and directionality of transcriptional variation during mouse organogenesis. We used this information to gain insight into the molecular basis of spatial cell heterogeneity and cell fate specification in developing tissues such as the dorsal midbrain. Our panoramic atlas will facilitate in-depth investigation of longstanding questions concerning normal and abnormal mammalian development.
Subject(s)
Organogenesis , Transcriptome , Animals , DNA/genetics , Embryo, Mammalian , Female , Gene Expression Profiling/methods , Mammals/genetics , Mice , Organogenesis/genetics , Pregnancy , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Transcriptome/geneticsABSTRACT
Inorganic phosphate (Pi) is a fundamental macronutrient for all living organisms, the homeostasis of which is critical for numerous biological activities1-3. As the only known human Pi exporter to date, XPR1 has an indispensable role in cellular Pi homeostasis4,5. Dysfunction of XPR1 is associated with neurodegenerative disease6-8. However, the mechanisms underpinning XPR1-mediated Pi efflux and regulation by the intracellular inositol polyphosphate (InsPP) sensor SPX domain remain poorly understood. Here we present cryo-electron microscopy structures of human XPR1 in Pi-bound closed, open and InsP6-bound forms, revealing the structural basis for XPR1 gating and regulation by InsPPs. XPR1 consists of an N-terminal SPX domain, a dimer-formation core domain and a Pi transport domain. Within the transport domain, three basic clusters are responsible for Pi binding and transport, and a conserved W573 acts as a molecular switch for gating. In addition, the SPX domain binds to InsP6 and facilitates Pi efflux by liberating the C-terminal loop that limits Pi entry. This study provides a conceptual framework for the mechanistic understanding of Pi homeostasis by XPR1 homologues in fungi, plants and animals.
Subject(s)
Biological Transport , Cryoelectron Microscopy , Phosphates , Phytic Acid , Xenotropic and Polytropic Retrovirus Receptor , Humans , Binding Sites , Homeostasis , Models, Molecular , Phosphates/metabolism , Phosphates/chemistry , Phytic Acid/metabolism , Phytic Acid/chemistry , Protein Binding , Protein Domains , Xenotropic and Polytropic Retrovirus Receptor/chemistry , Xenotropic and Polytropic Retrovirus Receptor/metabolism , Xenotropic and Polytropic Retrovirus Receptor/ultrastructureABSTRACT
Muscle atrophy and functional decline (sarcopenia) are common manifestations of frailty and are critical contributors to morbidity and mortality in older people1. Deciphering the molecular mechanisms underlying sarcopenia has major implications for understanding human ageing2. Yet, progress has been slow, partly due to the difficulties of characterizing skeletal muscle niche heterogeneity (whereby myofibres are the most abundant) and obtaining well-characterized human samples3,4. Here we generate a single-cell/single-nucleus transcriptomic and chromatin accessibility map of human limb skeletal muscles encompassing over 387,000 cells/nuclei from individuals aged 15 to 99 years with distinct fitness and frailty levels. We describe how cell populations change during ageing, including the emergence of new populations in older people, and the cell-specific and multicellular network features (at the transcriptomic and epigenetic levels) associated with these changes. On the basis of cross-comparison with genetic data, we also identify key elements of chromatin architecture that mark susceptibility to sarcopenia. Our study provides a basis for identifying targets in the skeletal muscle that are amenable to medical, pharmacological and lifestyle interventions in late life.
Subject(s)
Aging , Muscle, Skeletal , Single-Cell Analysis , Adolescent , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Young Adult , Aging/genetics , Aging/pathology , Aging/physiology , Cell Nucleus/metabolism , Chromatin/metabolism , Chromatin/genetics , Disease Susceptibility , Epigenesis, Genetic , Frailty/genetics , Frailty/pathology , Muscle, Skeletal/cytology , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Atrophy/genetics , Muscular Atrophy/pathology , Sarcopenia/genetics , Sarcopenia/pathology , TranscriptomeABSTRACT
The coronavirus disease 2019 (COVID-19) pandemic poses a current world-wide public health threat. However, little is known about its hallmarks compared to other infectious diseases. Here, we report the single-cell transcriptional landscape of longitudinally collected peripheral blood mononuclear cells (PBMCs) in both COVID-19- and influenza A virus (IAV)-infected patients. We observed increase of plasma cells in both COVID-19 and IAV patients and XIAP associated factor 1 (XAF1)-, tumor necrosis factor (TNF)-, and FAS-induced T cell apoptosis in COVID-19 patients. Further analyses revealed distinct signaling pathways activated in COVID-19 (STAT1 and IRF3) versus IAV (STAT3 and NFκB) patients and substantial differences in the expression of key factors. These factors include relatively increase of interleukin (IL)6R and IL6ST expression in COVID-19 patients but similarly increased IL-6 concentrations compared to IAV patients, supporting the clinical observations of increased proinflammatory cytokines in COVID-19 patients. Thus, we provide the landscape of PBMCs and unveil distinct immune response pathways in COVID-19 and IAV patients.
Subject(s)
Coronavirus Infections/immunology , Cytokines/immunology , Influenza, Human/immunology , Leukocytes, Mononuclear/immunology , Pneumonia, Viral/immunology , Signal Transduction/immunology , Betacoronavirus/immunology , COVID-19 , Humans , Influenza A Virus, H1N1 Subtype/immunology , Pandemics , SARS-CoV-2ABSTRACT
After fertilization, the quiescent zygote experiences a burst of genome activation that initiates a short-lived totipotent state. Understanding the process of totipotency in human cells would have broad applications. However, in contrast to in mice1,2, demonstration of the time of zygotic genome activation or the eight-cell (8C) stage in in vitro cultured human cells has not yet been reported, and the study of embryos is limited by ethical and practical considerations. Here we describe a transgene-free, rapid and controllable method for producing 8C-like cells (8CLCs) from human pluripotent stem cells. Single-cell analysis identified key molecular events and gene networks associated with this conversion. Loss-of-function experiments identified fundamental roles for DPPA3, a master regulator of DNA methylation in oocytes3, and TPRX1, a eutherian totipotent cell homeobox (ETCHbox) family transcription factor that is absent in mice4. DPPA3 induces DNA demethylation throughout the 8CLC conversion process, whereas TPRX1 is a key executor of 8CLC gene networks. We further demonstrate that 8CLCs can produce embryonic and extraembryonic lineages in vitro or in vivo in the form of blastoids5 and complex teratomas. Our approach provides a resource to uncover the molecular process of early human embryogenesis.
Subject(s)
Embryo, Mammalian , Embryonic Development , Pluripotent Stem Cells , Zygote , Humans , Chromosomal Proteins, Non-Histone/genetics , Embryo, Mammalian/cytology , Homeodomain Proteins/genetics , Pluripotent Stem Cells/cytology , Transcription Factors/genetics , Zygote/cytologyABSTRACT
Studying tissue composition and function in non-human primates (NHPs) is crucial to understand the nature of our own species. Here we present a large-scale cell transcriptomic atlas that encompasses over 1 million cells from 45 tissues of the adult NHP Macaca fascicularis. This dataset provides a vast annotated resource to study a species phylogenetically close to humans. To demonstrate the utility of the atlas, we have reconstructed the cell-cell interaction networks that drive Wnt signalling across the body, mapped the distribution of receptors and co-receptors for viruses causing human infectious diseases, and intersected our data with human genetic disease orthologues to establish potential clinical associations. Our M. fascicularis cell atlas constitutes an essential reference for future studies in humans and NHPs.
Subject(s)
Macaca fascicularis , Transcriptome , Animals , Cell Communication , Macaca fascicularis/genetics , Receptors, Virus/genetics , Transcriptome/genetics , Wnt Signaling PathwayABSTRACT
BACKGROUND: Coinfection of human immunodeficiency virus type 1 (HIV-1) is the most significant risk factor for tuberculosis (TB). The immune responses of the lung are essential to restrict the growth of Mycobacterium tuberculosis and avoid the emergence of the disease. Nevertheless, there is still limited knowledge about the local immune response in people with HIV-1-TB coinfection. METHODS: We employed single-cell RNA sequencing (scRNA-seq) on bronchoalveolar lavage fluid from 9 individuals with HIV-1-TB coinfection and 10 with pulmonary TB. RESULTS: A total of 19 058 cells were grouped into 4 major cell types: myeloid cells, T/natural killer (NK) cells, B cells, and epithelial cells. The myeloid cells and T/NK cells were further divided into 10 and 11 subsets, respectively. The proportions of dendritic cell subsets, CD4+ T cells, and NK cells were lower in the HIV-1-TB coinfection group compared to the TB group, while the frequency of CD8+ T cells was higher. Additionally, we identified numerous differentially expressed genes between the CD4+ and CD8+ T-cell subsets between the 2 groups. CONCLUSIONS: HIV-1 infection not only affects the abundance of immune cells in the lungs but also alters their functions in patients with pulmonary TB.
Subject(s)
Bronchoalveolar Lavage Fluid , Coinfection , HIV Infections , HIV-1 , Single-Cell Analysis , Tuberculosis, Pulmonary , Humans , Tuberculosis, Pulmonary/immunology , Tuberculosis, Pulmonary/complications , HIV Infections/complications , HIV Infections/immunology , Coinfection/virology , Coinfection/immunology , Coinfection/microbiology , HIV-1/immunology , Male , Adult , Bronchoalveolar Lavage Fluid/microbiology , Bronchoalveolar Lavage Fluid/virology , Bronchoalveolar Lavage Fluid/immunology , Female , Mycobacterium tuberculosis/immunology , Middle Aged , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Killer Cells, Natural/immunology , Lung/microbiology , Lung/immunology , Lung/virologyABSTRACT
Aloe-emodin (AE) has been shown to inhibit the proliferation of several cancer cell lines, including human nasopharyngeal carcinoma (NPC) cell lines. In this study, we confirmed that AE inhibited malignant biological behaviors, including cell viability, abnormal proliferation, apoptosis, and migration of NPC cells. Western blotting analysis revealed that AE upregulated the expression of DUSP1, an endogenous inhibitor of multiple cancer-associated signaling pathways, resulting in blockage of the extracellular signal-regulated kinase (ERK)-1/2, protein kinase B (AKT), and p38-mitogen activated protein kinaseï¼p38-MAPKï¼ signaling pathways in NPC cell lines. Moreover, the selective inhibitor of DUSP1, BCI-hydrochloride, partially reversed the AE-induced cytotoxicity and blocked the aforementioned signaling pathways in NPC cells. In addition, the binding between AE and DUSP1 was predicted via molecular docking analysis using AutoDock-Vina software and further verified via a microscale thermophoresis assay. The binding amino acid residues were adjacent to the predicted ubiquitination site (Lys192) of DUSP1. Immunoprecipitation with the ubiquitin antibody, ubiquitinated DUSP1 was shown to be upregulated by AE. Our findings revealed that AE can stabilize DUSP1 by blocking its ubiquitin-proteasome-mediated degradation and proposed an underlying mechanism by which AE-upregulated DUSP1 may potentially target multiple pathways in NPC cells.
Subject(s)
Aloe , Emodin , Nasopharyngeal Neoplasms , Humans , Emodin/pharmacology , Nasopharyngeal Carcinoma , Ubiquitin , Molecular Docking Simulation , Signal Transduction , Apoptosis , p38 Mitogen-Activated Protein Kinases/metabolism , Nasopharyngeal Neoplasms/drug therapy , Cell Line, Tumor , Cell Proliferation , Dual Specificity Phosphatase 1/metabolismABSTRACT
Universal lesion detection (ULD) in computed tomography (CT) images is an important and challenging prerequisite for computer-aided diagnosis (CAD) to find abnormal tissue, such as tumors of lymph nodes, liver tumors, and lymphadenopathy. The key challenge is that lesions have a tiny size and high similarity with non-lesions, which can easily lead to high false positives. Specifically , non-lesions are nearby normal anatomy that include the bowel, vasculature, and mesentery, which decrease the conspicuity of small lesions since they are often hard to differentiate. In this study, we present a novel scale-attention module that enhances feature discrimination between lesion and non-lesion regions by utilizing the domain knowledge of radiologists to reduce false positives effectively. Inspired by the domain knowledge that radiologists tend to divide each CT image into multiple areas, then detect lesions in these smaller areas separately, a local axial scale-attention (LASA) module is proposed to re-weight each pixel in a feature map by aggregating local features from multiple scales adaptively. In addition, to keep the same weight, a combination of axial pixels in the height- and width-axes is designed, attached with position embedding. The model can be used in CNNs easily and flexibly. We test our method on the DeepLesion dataset. The sensitivities at 0.5, 1, 2, 4, 8, and 16 false positives (FPs) per image and average sensitivity at [0.5, 1, 2, 4] are calculated to evaluate the accuracy. The sensitivities are 78.30%, 84.96%, 89.86%, 93.14%, 95.36%, and 95.54% at 0.5, 1, 2, 4, 8, and 16 FPs per image; the average sensitivity is 86.56%, outperforming the former methods. The proposed method enhances feature discrimination between lesion and non-lesion regions by adding LASA modules. These encouraging results illustrate the potential advantage of exploiting the domain knowledge for lesion detection.
Subject(s)
Diagnosis, Computer-Assisted , Tomography, X-Ray Computed , Humans , Tomography, X-Ray Computed/methods , Diagnosis, Computer-Assisted/methods , Radiographic Image Interpretation, Computer-Assisted/methodsABSTRACT
The characteristics of neonatal immune cells display intrinsic differences compared with adult immune cells. Therefore, a comprehensive analysis of key gene expression regulation is required to understand the response of the human fetal immune system to infections. Here, we applied single-cell RNA sequencing (scRNA-seq) and single-cell sequencing assay for transposase-accessible chromatin (scATAC-seq) to systematically profile umbilical cord blood (UCB) nucleated cells and peripheral blood mononuclear cells (PBMCs) to identify their composition and differentially expressed genes. The immune cells in neonatal UCB demonstrated the expression of key genes, such as HBG2, NFKBIA, JUN, FOS, and TNFAIP3. In contrast, natural killer and T cells, which are constituents of adult PBMCs, exhibited high cytotoxic gene expression. Furthermore, we obtained similar results from the data of scATAC-seq by identifying the status of chromatin accessibility of key genes. Therefore, scRNA-seq and scATAC-seq of neonatal UCB nucleated cells and adult PBMCs could serve as an invaluable resource for elucidating the regulatory mechanisms of responses of distinct immune cell types and further identifying the differences between neonatal and adult immune responses to predict the potential underlying mechanism for neonatal immune tolerance.
Subject(s)
Fetal Blood , Single-Cell Analysis , Adult , Chromatin/metabolism , Humans , Immune Tolerance/genetics , Infant, Newborn , Leukocytes, Mononuclear/metabolism , Single-Cell Analysis/methods , Transposases/geneticsABSTRACT
BACKGROUND: C-C chemokine receptor 5 (CCR5) has recently been recognized as an underlying therapeutic target for various malignancies. However, the association of CCR5 with prognosis in the head and neck squamous cell carcinoma (HNSC) patients and tumor-infiltrating lymphocytes (TILs) is unclear. METHODS: In the current experiment, methods such as the Tumor Immune Estimation Resource Analysis (TIMER), Gene Expression Profiling Interactive Analysis (GEPIA), UALCAN, and Kaplan-Meier plotter Analysis were used to comprehensively evaluate the expression of CCR5 in human various malignancies and the clinical prognosis in HNSC patients. Subsequently, we used the TIMER database and the TISIDB platform to investigate the correlation between CCR5 expression levels and immune cell infiltration in the HNSC tumor microenvironment. Furthermore, immunomodulatory and chemokine profiling were performed using the TISIDB platform to analyse the correlation between CCR5 expression levels and immunomodulation in HNSC patients. RESULTS: We found that CCR5 expression in HNSC tumor tissues was significantly upregulated than in normal tissues. In HNSC, patients with high CCR5 expression levels had worse overall survival (OS, HR = 0.59, p = 0.00015) and worse recurrence-free survival (RFS, HR = 3.27, p = 0.00098). Upregulation of CCR5 expression is closely associated with immunomodulators, chemokines, and infiltrating levels of CD4+ T cells, neutrophils, macrophages, and myeloid dendritic cells. Furthermore, upregulated CCR5 was significantly associated with different immune markers in the immune cell subsets of HNSC. CONCLUSIONS: High expression of CCR5 plays an important prognostic role in HNSC patients and may serve as a prognostic biomarker correlated with immune infiltration, and further studies are still needed to investigate therapeutic targeting HNSC patients in the future.
Subject(s)
Computational Biology , Head and Neck Neoplasms , Computational Biology/methods , Head and Neck Neoplasms/genetics , Humans , Immunologic Factors , Prognosis , Receptors, CCR5/genetics , Receptors, Chemokine , Squamous Cell Carcinoma of Head and Neck/genetics , Tumor MicroenvironmentABSTRACT
For its ultrahigh sensitivity, the microfluidic system combined with surface-enhanced Raman spectroscopy (SERS) becomes one of the most interesting topics in integrated online monitoring related fields. In previous reports, the commonest surface plasmon-enhanced substrates in microfluidics consist of immobilized metal nanostructures on the channel surface to overcome the disturbance of Brownian motion. In this work, a hybrid optoplasmonic microfluidic conveyer is developed, in which the movable, highly ordered optoplasmonic particles are delivered to the detection spot for SERS detection. Here, the optoplasmonic particle is the SiO2 microsphere with in situ photochemical reduced Ag nanoparticles on the surface. Because of the converged light at the SiO2 microsphere surface, the SERS spectra collected at this optoplasmonic particle in the channel exhibit excellent performance, which is confirmed by the simulated electric field distribution. In addition, the experimental data also demonstrate that the quantitative analysis is achieved at 1 nM in this optoplasmonic microfluidic conveyer. Furthermore, the used optoplasmonic particle can be ejected from the microfluidic channel by modulating the velocity of injected fluid such that the new optoplasmonic particle will be delivered to the detection spot for repeatable SERS detection in the same channel. The dynamic process of optoplasmonic particle transport is investigated in this microconveyer, and the built theoretical model to predict the particle release is highly identical with the experimental data. These data point out that our hybrid optoplasmonic microfluidic conveyer has repeatable enhanced substrates with the high SERS sensitivity to overcome the cross-contamination of different target molecules in repeatable detection.
Subject(s)
Metal Nanoparticles , Microfluidics , Silicon Dioxide , Silver , Spectrum Analysis, RamanABSTRACT
BACKGROUND: In adults, the anastomosis between carotid and vertebrobasilar arteries is usually the posterior communicating artery, sometimes the primitive trigeminal artery. In this case, the basilar artery fed the internal carotid artery through the pontine-to-tentorial artery anastomosis after severe stenosis from traumatic carotid dissection. CASE PRESENTATION: A 32-year-old female was diagnosed with ischemic stroke caused by traumatic carotid artery dissection. Aspirin (100 mg/day) and clopidogrel (75 mg/day) were prescribed. Digital subtraction angiography performed 6 days after stroke onset showed a dissection in the cervical segment of left internal carotid artery with severe local stenosis, and a collateral pathway from BA to the cavernous segment of internal carotid artery through the lateral pontine and tentorial artery. Without interventional therapy, clinical symptoms improved significantly within 10 days after onset. At 3-month follow-up, left common carotid artery angiography showed the stenosis had been significantly improved with a residual aneurysm. There was no collateral pathway between carotid-vertebrobasilar arteries, and a residual small artery originated from the posterior vertical segment of cavernous internal carotid artery. The small artery was clearly visualized by 3-dimensional rotational angiography and identified the tentorial artery. CONCLUSION: To the author's knowledge, this is the first report of a collateral pathway between carotid vertebrobasilar arteries through the pontine-to-tentorial artery anastomosis. Meanwhile, tentorial artery origination directly from the cavernous segment of internal carotid artery is rare and easily mistaken for persistent primitive trigeminal artery. 3-dimensional rotational angiography can provide sensitive and accurate diagnostic assessment of the small artery, and may be a useful tool for screening of abnormal small arteries.
Subject(s)
Angiography, Digital Subtraction , Basilar Artery/diagnostic imaging , Carotid Artery, Internal/diagnostic imaging , Adult , Aortic Dissection/diagnostic imaging , Carotid Artery Diseases/diagnostic imaging , Female , Humans , Stroke/etiologyABSTRACT
BACKGROUND: Dual antiplatelet aggregation therapy leads to better outcomes in patients with carotid artery stenosis, intracranial artery stenosis, minor strokes, or transient ischaemic attacks. However, carriers of the CYP2C19 loss-of-function allele may not experience the desired effects. We attempted to increase the clopidogrel dose to determine whether it would improve the outcomes of stroke patients who carry a single loss-of-function allele. METHODS: We recruited 131 patients with minor ischaemic stroke, within less than 7 days of stroke onset and a CYP2C19 loss-of-function allele, who had moderate-to-severe cerebral artery stenosis. Patients were divided into the high dose group (clopidogrel 150 mg per day + aspirin 100 mg per day over 21 days.) and a normal dose group (clopidogrel 75 mg per day + aspirin 100 mg per day over 21 days). The reported outcomes included any vascular or major bleeding events as the primary and safety endpoints, respectively. RESULTS: One and six vascular events occurred in the high dose and normal dose groups during the 3-months follow-up period, respectively. However, no significant difference was found between the two groups when adjusted for history of diabetes (hazard ratio, 5482; 95% confidence interval, 0.660 to 45.543; P = 0.115). No major bleeding events occurred. CONCLUSIONS: In patients with ischaemic stroke who had a single CYP2C19 loss-of-function allele and moderate to severe cerebral stenosis, fewer vascular events occurred within 3 months with high dose of clopidogrel and aspirin than with normal dose of clopidogrel and aspirin. However, the difference between the two groups was not significant. TRIAL REGISTRATION: Clinical study of clopidogrel in the treatment of patients with symptomatic moderate to severe cerebral artery stenosis with intermediate metabolites of CYP2C19, URL: http://www.chictr.org.cn/ . Unique identifier: ChiCTR1800017411 , 07/28/2018.
Subject(s)
Aspirin/administration & dosage , Clopidogrel/administration & dosage , Cytochrome P-450 CYP2C19/genetics , Ischemic Stroke/drug therapy , Ischemic Stroke/genetics , Platelet Aggregation Inhibitors/therapeutic use , Aged , Carotid Stenosis/complications , Dose-Response Relationship, Drug , Female , Heterozygote , Humans , Ischemic Stroke/etiology , Male , Middle Aged , Treatment OutcomeABSTRACT
The current theory of programmed temperature gas chromatography considers that solutes are focused by the stationary phase at the column head completely and does not explicitly recognize the different effects of initial temperature (To ) and heating rate (rT ) on the retention time or temperature of a homologue series. In the present study, n-alkanes, 1-alkenes, 1-alkyl alcohols, alkyl benzenes, and fatty acid methyl esters standards were used as model chemicals and were separated on two nonpolar columns, one moderately polar column and one polar column. Effects of To and rT on the retention of nonstationary phase focusing solutes can be explicitly described with isothermal and cubic equation models, respectively. When the solutes were in the stationary phase focusing status, the single-retention behavior of solutes was observed. It is simple, dependent upon rT only and can be well described by the cubic equation model that was visualized through four sequential slope analyses. These observed dual- and single-retention behaviors of solutes were validated by various experimental data, physical properties, and computational simulation.
ABSTRACT
Spatial transcriptomics analysis allows the examination of the biological characteristics and spatial distribution of individual lung cells at a single-cell resolution. However, due to the presence of cavities in the alveoli of the lungs, it is challenging to section them for spatial transcriptomics experiments. Here, we present a protocol for acquiring high-quality fresh mouse lung spatial transcriptomics data. We describe steps for lung perfusion, acquiring frozen slices, collecting cDNA from lung sections, and data analysis. For complete details on the use and execution of this protocol, please refer to Jiang et al.1.
Subject(s)
Data Analysis , Gene Expression Profiling , Animals , Mice , DNA, Complementary , Perfusion , LungABSTRACT
Single-cell analysis of human peripheral blood cells provides insights into innate and adaptive immune systems. However, robust protocols are essential to ensuring single-cell sequencing data quality and cell viability. Here, we present a protocol for acquiring high-quality single-cell multi-omics data from human peripheral blood mononuclear cells (PBMCs). We describe steps for collecting human blood followed by single-cell sequencing, whole-genome sequencing, and metabolome and proteome analysis of PBMCs using modified multi-omics sample processing.