Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 382
Filter
1.
Stroke ; 55(1): 139-145, 2024 01.
Article in English | MEDLINE | ID: mdl-38018833

ABSTRACT

BACKGROUND: The optimal cut point of baseline National Institutes of Health Stroke Scale (NIHSS) and Glasgow Coma Scale scores for prognosticating acute intracerebral hemorrhage (ICH) is unknown. METHODS: Secondary analyses of participant data are from the INTERACT (Intensive Blood Pressure Reduction in Acute Intracerebral Hemorrhage Trials) 1 and 2 studies. Receiver operating characteristic analyses were used to compare the predictive performance of baseline NIHSS and Glasgow Coma Scale scores, ICH score, and max-ICH score. Optimal cut points for predicting 90-day clinical outcomes (death or major disability [defined as modified Rankin Scale scores 3-6], major disability [defined as modified Rankin Scale scores 3-5], and death alone) were determined using the Youden index. Logistic regression models were adjusted for age, sex, hematoma volume, and other known risk factors for poor prognosis. We validated our findings in the INTERACT1 database. RESULTS: There were 2829 INTERACT2 patients (age, 63.5±12.9 years; male, 62.9%; ICH volume, 10.96 [5.77-19.49] mL) included in the main analyses. The baseline NIHSS score (area under the curve, 0.796) had better prognostic utility for predicting death or major disability than the Glasgow Coma Scale score (area under the curve, 0.650) and ICH score (area under the curve, 0.674) and was comparable to max-ICH score (area under the curve, 0.789). Similar findings were observed when assessing the outcome of major disability. A cut point of 10 on baseline NIHSS optimally (sensitivity, 77.5%; specificity, 69.2%) predicted death or major disability (adjusted odds ratio, 4.50 [95% CI, 3.60-5.63]). The baseline NIHSS cut points that optimally predicted major disability and death alone were 10 and 12, respectively. The predictive effect of NIHSS≥10 for poor functional outcomes was consistent in all subgroups including age and baseline hematoma volume. Results were consistent when analyzed in the independent INTERACT1 validation database. CONCLUSIONS: In patients with mild-to-moderate ICH, a baseline NIHSS score of ≥10 was optimal for predicting poor outcomes at 90 days. Prediction based on baseline NIHSS is better than baseline Glasgow Coma Scale score. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifiers: NCT00226096 and NCT00716079.


Subject(s)
Cerebral Hemorrhage , Hematoma , Aged , Humans , Male , Middle Aged , Glasgow Coma Scale , Prognosis , Risk Factors
2.
FASEB J ; 37(8): e23063, 2023 08.
Article in English | MEDLINE | ID: mdl-37401890

ABSTRACT

Sepsis-induced myocardial depression (SIMD) is common in pediatric intensive care units and seriously threatens children's health. Recently, long noncoding RNAs (lncRNAs) have been showed to play important roles in various diseases; however, its role in SIMD is unclear. In this study, we used lipopolysaccharide (LPS)-treated rats and H9c2 cardiomyocytes to mimic SIMD in vivo and in vitro. We found that the expression of a novel lncRNA, we named lncRNA-AABR07066529.3, was elevated in LPS-induced rat heart tissue and H9c2 cardiomyocytes. In addition, LPS-induced inflammation, apoptosis, and pyroptosis were significantly exacerbated after lncRNA-AABR07066529.3 knockdown. Moreover, we found that myeloid differentiation factor 88 (MyD88) was upregulated in LPS-treated groups and was inhibited by lncRNA-AABR07066529.3. Besides, MyD88 knockdown abolished lncRNA-AABR07066529.3 silencing effects on inflammation, apoptosis, and pyroptosis induced by LPS in H9c2 cardiomyocytes. In our study, we found lncRNA-AABR07066529.3 exerted protective effects on LPS-induced cardiomyocytes by regulating MyD88 and might serve as a potential treatment target for SIMD.


Subject(s)
Cardiomyopathies , MicroRNAs , RNA, Long Noncoding , Animals , Rats , Apoptosis , Cardiomyopathies/metabolism , Depression , Inflammation/chemically induced , Inflammation/genetics , Inflammation/metabolism , Lipopolysaccharides/pharmacology , MicroRNAs/genetics , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Myocytes, Cardiac/metabolism , Pyroptosis/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
3.
Pediatr Res ; 95(4): 1088-1094, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37990079

ABSTRACT

BACKGROUND: To analyze the clinical characteristics and outcomes of children with severe neurological symptoms associated with the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection during the Omicron pandemic in China. METHODS: This study used a questionnaire to obtain data from pediatric intensive care unit (PICU) centers in seven tertiary hospitals in Northeast China from December 1, 2022, to January 31, 2023. RESULTS: A total of 255 patients were confirmed to have SARS-CoV-2 infection, and 45 patients (17.65 %) were included in this study. Of these, seven (15.6%) patients died, and the median time from admission to death was 35 h (IQR, 14-120 h). Twenty (52.6%) survivors experienced neurological sequelae. Patients with platelet counts lower than 100 × 109/L had a higher incidence of complications such as multiple organ dysfunction, mechanical ventilation rate, and mortality. Cranial magnetic resonance imaging (MRI) always reveals cerebral tissue edema, with some severe lesions forming a softening site. CONCLUSION: Children infected with SARS-CoV-2 often exhibit severe neurological symptoms, and in some cases, they may rapidly develop malignant cerebral edema or herniation, leading to a fatal outcome. An early decrease in platelet count may associated with an unfavorable prognosis. IMPACT: Since early December 2022, China has gradually adjusted its prevention and control policy of SARS-CoV-2; Omicron outbreaks have occurred in some areas for a relatively short period. Due to the differences in ethnicity, endemic strains and vaccination status, there was a little difference from what has been reported about children with SARS-CoV-2 infection with severe neurological symptoms in abroad. This is the first multicenter clinical study in children with nervous system involvement after acute SARS-CoV-2 infection in China, and helpful for pediatricians to have a more comprehensive understanding of the clinical symptoms and prognosis of such disease.


Subject(s)
Brain Edema , COVID-19 , Child , Humans , SARS-CoV-2 , Pandemics , China/epidemiology , Retrospective Studies
4.
Pharmacol Res ; 203: 107182, 2024 May.
Article in English | MEDLINE | ID: mdl-38614373

ABSTRACT

Inflammatory diseases, including infectious diseases, diabetes-related diseases, arthritis-related diseases, neurological diseases, digestive diseases, and tumor, continue to threaten human health and impose a significant financial burden despite advancements in clinical treatment. Pyroptosis, a pro-inflammatory programmed cell death pathway, plays an important role in the regulation of inflammation. Moderate pyroptosis contributes to the activation of native immunity, whereas excessive pyroptosis is associated with the occurrence and progression of inflammation. Pyroptosis is complicated and tightly controlled by various factors. Accumulating evidence has confirmed that epigenetic modifications and post-translational modifications (PTMs) play vital roles in the regulation of pyroptosis. Epigenetic modifications, which include DNA methylation and histone modifications (such as methylation and acetylation), and post-translational modifications (such as ubiquitination, phosphorylation, and acetylation) precisely manipulate gene expression and protein functions at the transcriptional and post-translational levels, respectively. In this review, we summarize the major pathways of pyroptosis and focus on the regulatory roles and mechanisms of epigenetic and post-translational modifications of pyroptotic components. We also illustrate these within pyroptosis-associated inflammatory diseases. In addition, we discuss the effects of novel therapeutic strategies targeting epigenetic and post-translational modifications on pyroptosis, and provide prospective insight into the regulation of pyroptosis for the treatment of inflammatory diseases.


Subject(s)
Epigenesis, Genetic , Inflammation , Protein Processing, Post-Translational , Pyroptosis , Humans , Pyroptosis/drug effects , Animals , Inflammation/genetics , Inflammation/metabolism , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology
5.
Cerebrovasc Dis ; 53(1): 14-27, 2024.
Article in English | MEDLINE | ID: mdl-37423205

ABSTRACT

INTRODUCTION: Poststroke sleep disturbances are common and can affect stroke outcomes, but the clinical studies mainly focus on breathing-related sleep disorders, while the bidirectional impact of circadian rhythm dysfunction in ischemic stroke remains unknown. This study observed the characteristics of melatonin secretion in acute ischemic stroke patients and evaluated whether melatonin rhythm impacts the prognosis after stroke by assessing the neurological function, cognition, emotion, and quality of life 3 months after stroke. METHODS: Acute ischemic stroke patients were selected from the Department of Neurology Inpatients of the Second Hospital affiliated with Soochow University from October 2019 to July 2021. Healthy control subjects were recruited at the same time. Demographic and clinical data were collected, and relevant scale scores (including neurological function, cognition, emotion, and sleep) were assessed within 2 weeks of onset and followed up 3 months later. All participants collected salivary melatonin samples on the 4th day of hospitalization and dim light melatonin onset (DLMO) was calculated according to melatonin concentration. Stroke patients were then divided into three groups based on their DLMO values. RESULTS: A total of 74 stroke patients and 33 control subjects were included in this analysis. Compared with healthy controls, stroke patients exhibited a delayed melatonin rhythm during the acute phase of stroke (21:36 vs. 20:38, p = 0.004). Stroke patients were then divided into three groups, namely normal (n = 36), delayed (n = 28), or advanced DLMO (n = 10), based on their DLMO values. A χ2 test showed that there were significant differences in the rate of poor prognosis (p = 0.011) and depression tendency (p = 0.028) among the three groups. A further pairwise comparison revealed that stroke patients with delayed DLMO were more likely to experience poor short-term outcomes than normal DLMO group (p = 0.003). The average melatonin concentration of stroke patients at 5 time points was significantly lower than that of the control group (3.145 vs. 7.065 pg/mL, p < 0.001). Accordingly, we split stroke patients into three groups, namely low melatonin level (n = 14), normal melatonin level (n = 54), or high melatonin level (n = 6). Unfortunately, there were no great differences in the clinical characteristics, cognition, emotion, sleep quality, and short-term outcome among groups. CONCLUSIONS: This is a preliminary study, and our results indicate that changes in melatonin secretion phase of stroke patients may have effect on their short-term prognosis.


Subject(s)
Ischemic Stroke , Melatonin , Stroke , Humans , Melatonin/analysis , Quality of Life , Circadian Rhythm , Sleep , Stroke/complications , Stroke/diagnosis , Prognosis
6.
Cerebrovasc Dis ; : 1-9, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38749409

ABSTRACT

INTRODUCTION: We aimed to determine predictors of early (END) and delayed neurological deterioration (DND) and their association with the functional outcome in patients with acute ischemic stroke (AIS) who participated in the international Enhanced Control of Hypertension and Thrombolysis Stroke Study (ENCHANTED). METHODS: END and DND (without END) were defined as scores of a ≥2-point increase on the National Institutes of Health Stroke Scale (NIHSS) or a ≥1-point decrease on the Glasgow coma scale or death, from baseline to 24 h and 24-72 h, respectively. Multivariable logistic regression models were used to determine independent predictors of END and DND and their association with 90-day outcomes (dichotomous scores on the modified Rankin scale [mRS] of 2-6 vs. 0-1 and 3-6 vs. 0-2 and death). RESULTS: Of 4,496 patients, 871 (19.4%) and 302 (8.4%) patients experienced END and DND, respectively. Higher baseline NIHSS score, older age, large-artery occlusion due to significant atheroma, cardioembolic stroke subtype, hemorrhagic infarction and parenchymatous hematoma within 24 h were all independent predictors for both END (all p ≤ 0.01) and DND (all p ≤ 0.024). Moreover, higher baseline systolic blood pressure (BP) (odds ratio [OR] 1.07, 95% confidence interval [CI] 1.02-1.12), higher diastolic BP variability within 24 h (OR 1.07, 95% CI 1.04-1.09), patients from Asia (OR 1.25, 95% CI 1.03-1.52) were the only independent predictors for END. However, Asian ethnicity was negatively associated with DND (OR 0.64, 95% CI 0.47-0.86). Hemorrhagic infarction and parenchymatous hematoma within 24 h were the key predictors of END across all stroke subtypes. END and DND were all associated with a poor functional outcome at 90 days (all p < 0.001). CONCLUSION: We identified overlapping and unique demographic and clinical predictors of END and DND after thrombolysis for AIS. Both END and DND predict unfavorable outcomes at 90 days.

7.
J Pineal Res ; 76(2): e12948, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38488331

ABSTRACT

Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic (DA) neurons and aggregation of α-synuclein (α-syn). Ferroptosis, a form of cell death induced by iron accumulation and lipid peroxidation, is involved in the pathogenesis of PD. It is unknown whether melatonin receptor 1 (MT1) modulates α-syn and ferroptosis in PD. Here, we used α-syn preformed fibrils (PFFs) to induce PD models in vivo and in vitro. In PD mice, α-syn aggregation led to increased iron deposition and ferroptosis. MT1 knockout exacerbated these changes and resulted in more DA neuronal loss and severe motor impairment. MT1 knockout also suppressed the Sirt1/Nrf2/Ho1/Gpx4 pathway, reducing resistance to ferroptosis, and inhibited expression of ferritin Fth1, leading to more release of ferrous ions. In vitro experiments confirmed these findings. Knockdown of MT1 enhanced α-syn PFF-induced intracellular α-syn aggregation and suppressed expression of the Sirt1/Nrf2/Ho1/Gpx4 pathway and Fth1 protein, thereby aggravating ferroptosis. Conversely, overexpression of MT1 reversed these effects. Our findings reveal a novel mechanism by which MT1 activation prevents α-syn-induced ferroptosis in PD, highlighting the neuroprotective role of MT1 in PD.


Subject(s)
Ferroptosis , Melatonin , Parkinson Disease , Mice , Animals , Parkinson Disease/metabolism , Parkinson Disease/pathology , alpha-Synuclein/metabolism , alpha-Synuclein/pharmacology , NF-E2-Related Factor 2/metabolism , Melatonin/pharmacology , Receptor, Melatonin, MT1/metabolism , Sirtuin 1/metabolism , Dopaminergic Neurons , Iron/metabolism
8.
BMC Neurol ; 24(1): 94, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38468238

ABSTRACT

OBJECTIVES: Overactive bladder (OAB) and dyskinesia are frequent complications in patients with Parkinson's disease (PD). However, the correlation between OAB and dyskinesia has been insufficiently explored. The purpose of this study was to examine the relationship between dyskinesia, OAB, and clinical characteristics among individuals with PD. METHODS: 1338 PD patients were included in the present study. Demographic features were compared between patients with or without dyskinesia and OAB symptoms. Logistic regression was conducted on dyskinesia to screen clinically relevant factors. Overactive Bladder Symptom Score (OABSS) was further used to stratify the association between the severity of OAB and the occurrence of dyskinesia. RESULTS: This study indicates that both dyskinesia and OAB are significantly related to disease severity and cognitive status. PD patients with dyskinesia and OAB having higher UPDRS scores (p < 0.001), H-Y scores (p < 0.001), NMSQ (p < 0.001) and MoCA scores (p < 0.001), and lower MMSE scores (p < 0.001) are identified. The multivariate logistic regression confirms that disease duration (p = 0.041), LEDD (p < 0.001), UPDRSII (p < 0.001), MoCA (p = 0.024), urgency (p < 0.001), frequency (p < 0.001), and nocturia (p = 0.002) are independent risk factors for dyskinesia. Trend analysis indicates that the risk of dyskinesia significantly increases when patients exhibit moderate to severe OAB symptoms (OABSS > 5) (p < 0.001). No significant interactions were found between OABSS and age, gender, disease duration, LEDD, and NMSQ scores in different subgroups, indicating that dyskinesia is more pronounced in patients with OABSS > 5. DISCUSSION: This study provides compelling evidence supporting the strong correlation between OAB and dyskinesia in PD patients, emphasizing the presence of shared pathogenic mechanisms between these two conditions. Our findings underscore the importance of considering both OAB and dyskinesia in the clinical management of PD, investigating the intricate connections between OAB and dyskinesia could unveil valuable insights into the complex pathophysiology of PD and potentially identify novel therapeutic targets for more effective PD treatment strategies.


Subject(s)
Dyskinesias , Parkinson Disease , Urinary Bladder, Overactive , Humans , Urinary Bladder, Overactive/epidemiology , Urinary Bladder, Overactive/diagnosis , Urinary Bladder, Overactive/drug therapy , Parkinson Disease/complications , Parkinson Disease/epidemiology , Cohort Studies , Follow-Up Studies
9.
Acta Pharmacol Sin ; 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38671193

ABSTRACT

Despite the widespread prevalence and important medical impact of insomnia, effective agents with few side effects are lacking in clinics. This is most likely due to relatively poor understanding of the etiology and pathophysiology of insomnia, and the lack of appropriate animal models for screening new compounds. As the main homeostatic, circadian, and neurochemical modulations of sleep remain essentially similar between humans and rodents, rodent models are often used to elucidate the mechanisms of insomnia and to develop novel therapeutic targets. In this article, we focus on several rodent models of insomnia induced by stress, diseases, drugs, disruption of the circadian clock, and other means such as genetic manipulation of specific neuronal activity, respectively, which could be used to screen for novel hypnotics. Moreover, important advantages and constraints of some animal models are discussed. Finally, this review highlights that the rodent models of insomnia may play a crucial role in novel drug development to optimize the management of insomnia.

10.
BMC Pediatr ; 24(1): 119, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38355526

ABSTRACT

OBJECTIVE: This study investigated the clinical, imaging, and electroencephalogram (EEG) characteristics of methylmalonic acidemia (MMA) with nervous system damage as the primary manifestation. METHODS: From January 2017 to November 2022, patients with nervous system injury as the main clinical manifestation, diagnosed with methylmalonic acidemia by metabolic and genetic testing, were enrolled and analyzed. Their clinical, imaging, and electroencephalogram data were analyzed. RESULTS: A total of 18 patients were enrolled, including 15 males and 3 females. The clinical symptoms were convulsions, poor feeding, growth retardation, disorder of consciousness, developmental delay, hypotonia, and blood system changes. There were 6 cases (33%) of hydrocephalus, 9 (50%) of extracerebral space widened, 5 (27%) of corpus callosum thinning, 3 (17%) of ventricular dilation, 3 (17%) of abnormal signals in the brain parenchyma (frontal lobe, basal ganglia region, and brain stem), and 3 (17%) of abnormal signals in the lateral paraventricular. In addition, there were 3 cases (17%) of cerebral white matter atrophy and 1 (5%) of cytotoxic edema in the basal ganglia and cerebral peduncle. EEG data displayed 2 cases (11%) of hypsarrhythmia, 3 (17%) of voltage reduction, 12(67%) of abnormal discharge, 13 (72%) of abnormal sleep physiological waves or abnormal sleep structure, 1 (5%) of immature (delayed) EEG development, and 8 (44%) of slow background. There were 2 cases (11%) of spasms, 1 (5%) of atonic seizures, and 1 (5%) of myoclonic seizures. There were 16 patients (89%) with hyperhomocysteinemia. During follow-up, 1 patient was lost to follow-up, and 1 died. In total, 87.5% (14/16) of the children had varying developmental delays. EEG was re-examined in 11 cases, of which 8 were normal, and 3 were abnormal. Treatments included intramuscular injections of vitamin B12, L-carnitine, betaine, folic acid, and oral antiepileptic therapy. Acute treatment included anti-infective, blood transfusion, fluid replacement, and correcting acidosis. The other treatments included low-protein diets and special formula milk powder. CONCLUSION: Methylmalonic acidemia can affect the central nervous system, leading to structural changes or abnormal signals on brain MRI. Metabolic screening and genetic testing help clarify the diagnosis. EEG can reflect changes in brain waves during the acute phase.


Subject(s)
Amino Acid Metabolism, Inborn Errors , Child , Male , Female , Humans , Amino Acid Metabolism, Inborn Errors/diagnosis , Amino Acid Metabolism, Inborn Errors/genetics , Amino Acid Metabolism, Inborn Errors/therapy , Vitamin B 12 , Mutation , Seizures/etiology , Seizures/drug therapy , Electroencephalography , Methylmalonic Acid , Oxidoreductases/genetics
11.
Stroke ; 54(1): 113-121, 2023 01.
Article in English | MEDLINE | ID: mdl-36475470

ABSTRACT

BACKGROUND: DPP4 (dipeptidyl peptidase-4) inhibitors have been proven to promote neuronal regeneration, reverse the development of cognitive deficits. However, the association of circulating soluble form (sDPP4 [soluble DPP4]) with poststroke cognitive impairment (PSCI) is unclear. We aimed to investigate the association between plasma sDPP4 levels and PSCI in patients with ischemic stroke. METHODS: A total of 600 noncardioembolic stroke patients were included based on a preplanned ancillary study from the CATIS (China Antihypertensive Trial in Acute Ischemic Stroke). We used the Montreal Cognitive Assessment to evaluate cognitive function at 3 months follow-up after ischemic stroke. Binary logistic regression analyses were performed to investigate the association of plasma sDPP4 levels with subsequent PSCI. We further calculated integrated discrimination improvement and category-free net reclassification improvement to investigate the incremental prognostic effect of plasma sDPP4 beyond the basic model with conventional risk factors. RESULTS: Plasma sDPP4 was inversely associated with PSCI after ischemic stroke, and the adjusted odds ratio (95% CI) for the highest versus lowest quartile of sDPP4 was 0.49 (0.29-0.81; P for trend=0.011). Each 1-SD increase of logarithm-transformed plasma sDPP4 concentration was associated with 17% (odds ratio, 0.83 [95% CI, 0.70-0.99]) lower risk of PSCI. Adding plasma sDPP4 to the basic model notably improved risk reclassification for PSCI, as shown by a category-free net reclassification improvement of 19.10% (95% CI, 2.52%-35.68%; P=0.03) and integrated discrimination improvement of 0.79% (95% CI, 0.13%-1.46%; P=0.02). CONCLUSIONS: Higher plasma sDPP4 levels were associated with decreased risk of cognitive impairment after noncardioembolic ischemic stroke.


Subject(s)
Cognitive Dysfunction , Ischemic Stroke , Stroke , Humans , Ischemic Stroke/complications , Dipeptidyl Peptidase 4 , Cognitive Dysfunction/complications , Stroke/complications , Risk Factors
12.
Hum Mol Genet ; 30(16): 1535-1542, 2021 07 28.
Article in English | MEDLINE | ID: mdl-34002226

ABSTRACT

Parkinson's disease (PD) is a neurodegenerative disease with movement disorders including resting tremor, rigidity, bradykinesia and postural instability. Recent studies have identified a new PD associated gene, TMEM230 (transmembrane protein 230). However, the pathological roles of TMEM230 and its variants are not fully understood. TMEM230 gene encodes two protein isoforms. Isoform2 is the major protein form (~95%) in human. In this study, we overexpress isoform2 TMEM230 variants (WT or PD-linked *184Wext*5 mutant) or knockdown endogenous protein in cultured SH-5Y5Y cells and mouse primary hippocampus neurons to study their pathological roles. We found that overexpression of WT and mutant TMEM230 or knockdown of endogenous TMEM230-induced neurodegeneration and impaired mitochondria transport at the retrograde direction in axons. Mutant TMEM230 caused more severe neurotoxicity and mitochondrial transport impairment than WT-TMEM230 did. Our results demonstrate that maintaining TMEM230 protein levels is critical for neuron survival and axon transport. These findings suggest that mutant-TMEM230-induced mitochondrial transport impairment could be the early event leading to neurite injury and neurodegeneration in PD development.


Subject(s)
Neurodegenerative Diseases , Parkinson Disease , Animals , Axonal Transport/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mitochondria/genetics , Mitochondria/metabolism , Mutation , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Parkinson Disease/genetics
13.
Mol Med ; 29(1): 93, 2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37415097

ABSTRACT

The metabolism of glucose and lipids is essential for energy production in the body, and dysregulation of the metabolic pathways of these molecules is implicated in various acute and chronic diseases, such as type 2 diabetes, Alzheimer's disease, atherosclerosis (AS), obesity, tumor, and sepsis. Post-translational modifications (PTMs) of proteins, which involve the addition or removal of covalent functional groups, play a crucial role in regulating protein structure, localization function, and activity. Common PTMs include phosphorylation, acetylation, ubiquitination, methylation, and glycosylation. Emerging evidence indicates that PTMs are significant in modulating glucose and lipid metabolism by modifying key enzymes or proteins. In this review, we summarize the current understanding of the role and regulatory mechanisms of PTMs in glucose and lipid metabolism, with a focus on their involvement in disease progression associated with aberrant metabolism. Furthermore, we discuss the future prospects of PTMs, highlighting their potential for gaining deeper insights into glucose and lipid metabolism and related diseases.


Subject(s)
Diabetes Mellitus, Type 2 , Glucose , Humans , Lipid Metabolism , Protein Processing, Post-Translational , Phosphorylation , Proteins
14.
Cardiovasc Diabetol ; 22(1): 274, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37817149

ABSTRACT

BACKGROUND AND OBJECTIVES: Evidence on the associations between baseline stromal cell-derived factor (SDF)-1 and clinical outcomes in acute ischemic stroke patients is lacking. The present study aimed to examine the relationship between plasma SDF-1 levels and clinical outcomes based on a large multicenter study of the China Antihypertensive Trial in Acute Ischemic Stroke (CATIS). METHODS: Secondary analysis was conducted among 3,255 participants from the CATIS trial with a baseline measurement of plasma SDF-1 levels. We evaluated the associations between plasma SDF-1 levels and one-year recurrent stroke, cardiovascular events, and all-cause mortality using Cox regression models. We further investigated the prognostic effect of SDF-1 on clinical outcomes in patients with different characteristics. RESULTS: Higher plasma SDF-1 levels were not associated with recurrent stroke, cardiovascular events, and all-cause mortality at one-year after ischemic stroke (all P trend ≥ 0.05). There were significant interactions between plasma SDF-1 levels and history of diabetes mellitus on recurrent stroke (P = 0.005), cardiovascular events (P = 0.007) and all-cause mortality (P = 0.04) at one year. In patients with diabetes mellitus, plasma SDF-1 was significantly associated with an increased risk of recurrent stroke and cardiovascular events after adjustment for confounders. For example, 1-SD higher log-SDF-1 was associated with a hazard ratio (95% confidence interval) of 1.65 (1.18-2.32) for recurrent stroke and 1.47 (1.08-1.99) for the cardiovascular events, but not all-cause mortality 1.36 (0.96-1.93) at one year. However, there were no associations between plasma SDF-1 and clinical outcomes in patients without diabetes mellitus (all P > 0.05). The addition of plasma SDF-1 to the conventional risk factors model significantly improved the risk prediction of all outcomes. Similarly, findings between elevated SDF-1 levels and two-year outcomes were found only in patients with diabetes mellitus. CONCLUSIONS: Elevated plasma SDF-1 was significantly associated with an increased risk of recurrent stroke and cardiovascular events only in ischemic patients with diabetes mellitus.


Subject(s)
Brain Ischemia , Diabetes Mellitus , Ischemic Stroke , Myocardial Infarction , Stroke , Humans , Prognosis , Antihypertensive Agents , Stroke/diagnosis , Stroke/etiology , Brain Ischemia/diagnosis , Diabetes Mellitus/diagnosis , Diabetes Mellitus/epidemiology , Cerebral Infarction , Myocardial Infarction/complications , Risk Factors
15.
Inflamm Res ; 72(3): 443-462, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36598534

ABSTRACT

BACKGROUND: Parkinson's disease (PD) is the second most common neurodegenerative disease, and is characterized by accumulation of α-synuclein (α-syn). Neuroinflammation driven by microglia is an important pathological manifestation of PD. α-Syn is a crucial marker of PD, and its accumulation leads to microglia M1-like phenotype polarization, activation of NLRP3 inflammasomes, and impaired autophagy and phagocytosis in microglia. Autophagy of microglia is related to degradation of α-syn and NLRP3 inflammasome blockage to relieve neuroinflammation. Microglial autophagy and phagocytosis of released α-syn or fragments from apoptotic neurons maintain homeostasis in the brain. A variety of PD-related genes such as LRRK2, GBA and DJ-1 also contribute to this stability process. OBJECTIVES: Further studies are needed to determine how α-syn works in microglia. METHODS: A keyword-based search was performed using the PubMed database for published articles. CONCLUSION: In this review, we discuss the interaction between microglia and α-syn in PD pathogenesis and the possible mechanism of microglial autophagy and phagocytosis in α-syn clearance and inhibition of neuroinflammation. This may provide a novel insight into treatment of PD.


Subject(s)
Neurodegenerative Diseases , Parkinson Disease , Humans , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Autophagy , Inflammasomes/metabolism , Microglia/metabolism , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Neuroinflammatory Diseases , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Parkinson Disease/genetics , Parkinson Disease/metabolism , Parkinson Disease/pathology , Phagocytosis
16.
Acta Pharmacol Sin ; 44(7): 1322-1336, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36765267

ABSTRACT

Depression is one of the common non-motor symptoms of Parkinson's disease (PD). In the clinic, botulinum neurotoxin A (BoNT/A) has been used to treat depression. In this study, we investigated the mechanisms underlying the anti-depressive effect of BoNT/A in a PD mouse model. Mice were administered reserpine (3 µg/mL in the drinking water) for 10 weeks. From the 10th week, BoNT/A (10 U·kg-1·d-1) was injected into the cheek for 3 consecutive days. We showed that chronic administration of reserpine produced the behavioral phenotypes of depression and neurochemical changes in the substantia nigra pars compacta (SNpc) and striatum. BoNT/A treatment significantly ameliorated the depressive-like behaviors, but did not improve TH activity in SNpc of reserpine-treated mice. We demonstrated that BoNT/A treatment reversed reserpine-induced complement and microglia activation in the hippocampal CA1 region. Furthermore, BoNT/A treatment significantly attenuated the microglial engulfment of presynaptic synapses, thus ameliorating the apparent synapse and spine loss in the hippocampus in the reserpine-treated mice. Moreover, BoNT/A treatment suppressed microglia-mediated expression of pro-inflammatory cytokines TNF-α and IL-1ß in reserpine-treated mice. In addition, we showed that BoNT/A (0.1 U/mL) ameliorated reserpine-induced complement and microglia activation in mouse BV2 microglial cells in vitro. We conclude that BoNT/A ameliorates depressive-like behavior in a reserpine-induced PD mouse model through reversing the synapse loss mediated by classical complement induced-microglial engulfment as well as alleviating microglia-mediated proinflammatory responses. BoNT/A ameliorates depressive-like behavior, and reverses synapse loss mediated by classical complement pathway-initiated microglia engulfment as well as alleviates microglia-mediated proinflammatory response in the reserpine-induced Parkinson's disease mouse model.


Subject(s)
Botulinum Toxins, Type A , Parkinson Disease , Mice , Animals , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Microglia/metabolism , Botulinum Toxins, Type A/metabolism , Botulinum Toxins, Type A/pharmacology , Reserpine/metabolism , Reserpine/pharmacology , Neuroinflammatory Diseases , Disease Models, Animal , Hippocampus/metabolism , Mice, Inbred C57BL
17.
Acta Pharmacol Sin ; 44(1): 32-43, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35896696

ABSTRACT

Inflammation is one of the pathogenic processes in Parkinson's disease (PD). Dopamine receptor agonist pramipexole (PPX) is extensively used for PD treatment in clinics. A number of studies show that PPX exerts neuroprotection on dopaminergic (DA) neurons, but the molecular mechanisms underlying the protective effects of PPX on DA neurons are not fully elucidated. In the present study, we investigated whether PPX modulated PD-related neuroinflammation and underlying mechanisms. PD model was established in mice by bilateral striatum injection of lipopolyssaccharide (LPS). The mice were administered PPX (0.5 mg·kg-1·d-1, i.p.) 3 days before LPS injection, and for 3 or 21 days after surgery, respectively, for biochemical and histological analyses. We showed that PPX administration significantly alleviated the loss of DA neurons, and suppressed the astrocyte activation and levels of proinflammatory cytokine IL-1ß in the substantia nigra of LPS-injected mice. Furthermore, PPX administration significantly decreased the expression of NLRP3 inflammasome-associated proteins, i.e., cleaved forms of caspase-1, IL-1ß, and apoptosis-associated speck-like protein containing a caspase recruit domain (ASC) in the striatum. These results were validated in LPS+ATP-stimulated primary mouse astrocytes in vitro. Remarkably, we showed that PPX (100-400 µM) dose-dependently enhanced the autophagy activity in the astrocytes evidenced by the elevations in LC3-II and BECN1 protein expression, as well as the increase of GFP-LC3 puncta formation. The opposite effects of PPX on astrocytic NLRP3 inflammasome and autophagy were eliminated by Drd3 depletion. Moreover, we demonstrated that both pretreatment of astrocytes with autophagy inhibitor chloroquine (40 µM) in vitro and astrocyte-specific Atg5 knockdown in vivo blocked PPX-caused inhibition on NLRP3 inflammasome and protection against DA neuron damage. Altogether, this study demonstrates an anti-neuroinflammatory activity of PPX via a Drd3-dependent enhancement of autophagy activity in astrocytes, and reveals a new mechanism for the beneficial effect of PPX in PD therapy.


Subject(s)
Parkinson Disease , Mice , Animals , Pramipexole/therapeutic use , Pramipexole/metabolism , Pramipexole/pharmacology , Parkinson Disease/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Inflammasomes/metabolism , Astrocytes/metabolism , Lipopolysaccharides/pharmacology , Autophagy , Mice, Inbred C57BL
18.
Acta Pharmacol Sin ; 44(12): 2418-2431, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37563446

ABSTRACT

Pain is a common annoying non-motor symptom in Parkinson's disease (PD) that causes distress to patients. Treatment for PD pain remains a big challenge, as its underlying mechanisms are elusive. Pituitary adenylate cyclase-activating polypeptide (PACAP) and its receptor PAC1-R play important roles in regulating a variety of pathophysiological processes. In this study, we investigated whether PACAP/PAC1-R signaling was involved in the mechanisms of PD pain. 6-hydroxydopamine (6-OHDA)-induced PD model was established in rats. Behavioral tests, electrophysiological and Western blotting analysis were conducted 3 weeks later. We found that 6-OHDA rats had significantly lower mechanical paw withdrawal 50% threshold in von Frey filament test and shorter tail flick latency, while mRNA levels of Pacap and Adcyap1r1 (gene encoding PAC1-R) in the spinal dorsal horn were significantly upregulated. Whole-cell recordings from coronal spinal cord slices at L4-L6 revealed that the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) in dorsal horn neurons was significantly increased, which was reversed by application of a PAC1-R antagonist PACAP 6-38 (250 nM). Furthermore, we demonstrated that intrathecal microinjection of PACAP 6-38 (0.125, 0.5, 2 µg) dose-dependently ameliorated the mechanical and thermal hyperalgesia in 6-OHDA rats. Inhibition of PACAP/PAC1-R signaling significantly suppressed the activation of Ca2+/calmodulin-dependent protein kinase II and extracellular signal-regulated kinase (ERK) in spinal dorsal horn of 6-OHDA rats. Microinjection of pAAV-Adcyap1r1 into L4-L6 spinal dorsal horn alleviated hyperalgesia in 6-OHDA rats. Intrathecal microinjection of ERK antagonist PD98059 (10 µg) significantly alleviated hyperalgesia in 6-OHDA rats associated with the inhibition of sEPSCs in dorsal horn neurons. In addition, we found that serum PACAP-38 concentration was significantly increased in PD patients with pain, and positively correlated with numerical rating scale score. In conclusion, activation of PACAP/PAC1-R induces the development of PD pain and targeting PACAP/PAC1-R is an alternative strategy for treating PD pain.


Subject(s)
Parkinson Disease , Pituitary Adenylate Cyclase-Activating Polypeptide , Rats , Humans , Animals , Pituitary Adenylate Cyclase-Activating Polypeptide/pharmacology , Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Hyperalgesia/drug therapy , Hyperalgesia/metabolism , Oxidopamine , Parkinson Disease/drug therapy , Synaptic Transmission , Pain , Extracellular Signal-Regulated MAP Kinases/metabolism , Posterior Horn Cells/metabolism , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism
19.
Neurol Sci ; 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37985633

ABSTRACT

OBJECTIVES: Transcranial sonography has been used as a valid neuroimaging tool to diagnose Parkinson's disease (PD). This study aimed to develop a modified transcranial sonography (TCS) technique based on a deep convolutional neural network (DCNN) model to predict Parkinson's disease. METHODS: This retrospective diagnostic study was conducted using 1529 transcranial sonography images collected from 854 patients with PD and 775 normal controls admitted to the Second Affiliated Hospital of Soochow University (Suzhou, Jiangsu, China) between September 2019 and May 2022. The data set was divided into training cohorts (570 PD patients and 541 normal controls), and the validation set (184 PD patients and 234 normal controls). Using these datasets, we developed four different DCNN models (ResNet18, ResNet50, ResNet152, and DenseNet121). We then assessed their diagnostic performance, including the area under the receiver operating characteristic (AUROC) curve, specificity, sensitivity, positive predictive value (PPV), negative predictive value (NPV), and F1 score and compared with traditional diagnostic criteria. RESULTS: Among the 1529 TCS images, 570 PD patients and 541 normal controls from 4 of 6 sonographers of the TCS team were selected as the training cohort, and 184 PD patients and 234 normal controls from the other 2 sonographers were chosen as the validation cohort. There were no sex and age differences between PD patients and normal control subjects in the training and validation cohorts (P values > 0.05). All DCNN models achieved good performance in distinguishing PD patients from normal control subjects on the validation datasets, with diagnostic AUROCs and accuracy of 0.949 (95% CI 0.925, 0.965) and 86.60 for the RestNet18 model, 0.949 (95% CI 0.929, 0.971) and 87.56 for ResNet50, 0.945 (95% CI 0.931, 0.969) and 88.04 for ResNet152, 0.953 (95% CI 0.935, 0.971) and 87.80 for DenseNet121, respectively. On the other hand, the diagnostic accuracy of the traditional diagnostic method was 82.30. The accuracy of all DCNN models was higher than that of traditional diagnostic method. Moreover, the 5k-fold cross-validation results in train datasets showed that these DCNN models are robust. CONCLUSION: The developed transcranial sonography-based DCNN models performed better than traditional diagnostic criteria, thus improving the sonographer's accuracy in diagnosing PD.

20.
Sleep Breath ; 27(4): 1325-1332, 2023 08.
Article in English | MEDLINE | ID: mdl-36272057

ABSTRACT

OBJECTIVE: This study aimed to explore the relationship between patients with obstructive sleep apnea (OSA) from subgroups of varying severity and substantia nigra (SN) hyperechogenicity as well as cerebral blood flow detected by transcranial sonography (TCS). The study also explored if there were differences in damage of the SN and in the cerebral blood flow between the bilateral sides. METHODS: Right-handed men diagnosed with OSA by polysomnography were recruited from August 2018 to August 2020. The included patients were divided into 3 subgroups (mild, moderate, and severe OSA), and all patients underwent TCS. RESULTS: Among the 157 study patients (30 with mild OSA, 25 moderate, and 102 severe), the overall prevalence of SN hyperechogenicity was 15% (23/157). The hyperechogenicity detection rates were 3% (4/157) in the right SN subgroup and 13% (20/157) in the left SN subgroup, which were significantly different. The left side always had reduced blood flow on TCS (P < 0.05). No correlation was observed between the severity of OSA and the detection rates of SN hyperechogenicity (P > 0.05). CONCLUSION: Patients with OSA showed a higher detection rate of SN hyperechogenicity on the left compared with the right side. The left middle cerebral arteries had reduced blood flow, which was consistent with the more severe damage of the left SN. No relationship was observed between the severity of OSA and the detection rate of SN hyperechogenicity or hemodynamic parameters.


Subject(s)
Sleep Apnea, Obstructive , Ultrasonography, Doppler, Transcranial , Male , Humans , Ultrasonography, Doppler, Transcranial/methods , Ultrasonography , Substantia Nigra , Sleep Apnea, Obstructive/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL