Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 136
Filter
1.
Proc Natl Acad Sci U S A ; 119(42): e2207326119, 2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36215478

ABSTRACT

Electrochemical conversion of CO2 into formate is a promising strategy for mitigating the energy and environmental crisis, but simultaneously achieving high selectivity and activity of electrocatalysts remains challenging. Here, we report low-dimensional SnO2 quantum dots chemically coupled with ultrathin Ti3C2Tx MXene nanosheets (SnO2/MXene) that boost the CO2 conversion. The coupling structure is well visualized and verified by high-resolution electron tomography together with nanoscale scanning transmission X-ray microscopy and ptychography imaging. The catalyst achieves a large partial current density of -57.8 mA cm-2 and high Faradaic efficiency of 94% for formate formation. Additionally, the SnO2/MXene cathode shows excellent Zn-CO2 battery performance, with a maximum power density of 4.28 mW cm-2, an open-circuit voltage of 0.83 V, and superior rechargeability of 60 h. In situ X-ray absorption spectroscopy analysis and first-principles calculations reveal that this remarkable performance is attributed to the unique and stable structure of the SnO2/MXene, which can significantly reduce the reaction energy of CO2 hydrogenation to formate by increasing the surface coverage of adsorbed hydrogen.

2.
Nano Lett ; 24(2): 541-548, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38185876

ABSTRACT

Electrochemical reduction of NO to NH3 (NORR) offers a prospective method for efficient NH3 electrosynthesis. Herein, we first design single-atom Pd-alloyed Cu (Pd1Cu) as an efficient and robust NORR catalyst at industrial-level current densities (>0.2 A cm-2). Operando spectroscopic characterizations and theoretical computations unveil that Pd1 strongly electronically couples its adjacent two Cu atoms (Pd1Cu2) to enhance the NO activation while promoting the NO-to-NH3 protonation energetics and suppressing the competitive hydrogen evolution. Consequently, the flow cell assembled with Pd1Cu exhibits an unprecedented NH3 yield rate of 1341.3 µmol h-1 cm-2 and NH3-Faradaic efficiency of 85.5% at an industrial-level current density of 210.3 mA cm-2, together with an excellent long-term durability for 200 h of electrolysis, representing one of the highest NORR performances on record.

3.
Small ; : e2306692, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773907

ABSTRACT

Charge separation driven by the internal electric field is a research hotspot in photocatalysis. However, it remains challenging to accurately control the electric field to continuously accelerate the charge transfer. Herein, a strategy of constructing a tandem electric field to continuously accelerate charge transfer in photocatalysts is proposed. The plasma electric field, interface electric field, and intramolecular electric field are integrated into the Ag/g-C3N4/urea perylene imide (Ag/PCN/UPDI) ternary heterojunction to achieve faster charge separation and longer carrier lifetime. The triple electric fields function as three accelerators on the charge transport path, promoting the separation of electron-hole pairs, accelerating charge transfer, enhancing light absorption, and increasing the concentration of energetic electrons on the catalyst. The H2 evolution rate of Ag/PCN/UPDI is 16.8 times higher than that of pristine PDI, while the degradation rate of oxytetracycline is increased by 4.5 times. This new strategy will provide a groundbreaking idea for the development of high-efficiency photocatalysts.

4.
Small ; 20(17): e2305434, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38126941

ABSTRACT

MAX phase combines both ceramic and metallic properties, which exhibits widespread application prospects. 2D MAX nanosheets have more abundant surface-active sites, being anticipated to improve the performance of surface-related applications. Herein, for the first time, 2D Nb2AlC nanosheets (NSs) as novel supports anchored with Ru catalysts for overall water splitting are developed. The optimized catalyst of Ru@Nb2AlC NSs exhibit Pt-comparable kinetics and superior catalytic activity toward hydrogen evolution reaction (HER) (low overpotentials of 61 and 169 mV at 10 and 100 mA cm-2, respectively) with excellent durability (5000 cycles or 80 h) in alkaline media. In particular, Ru@Nb2AlC NSs achieve a mass activity of ≈4.8 times larger than the commercial Pt/C (20 wt.%) catalyst. The post-oxidation resultant catalyst of RuO2@Nb2AlC NSs also exhibit boosting HER and oxygen evolution reaction activities and ≈100% Faraday efficiency for overall water splitting with a cell voltage of 1.61 V to achieve 10 mA cm-2. Therefore, the novel category of 2D MAX supports anchored with Ru nanocrystals offers a novel strategy for designing a wide range of MAX-supported metal catalysts for the renewable energy field.

5.
Small ; 20(16): e2308841, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38009776

ABSTRACT

A facile strategy is developed to fabricate 3 nm RuIrOx nanocrystals anchored onto N-doped hollow carbon for highly efficient and pH-universal overall water splitting and alkaline seawater electrolysis. The designed catalyst exhibits much lower overpotential and superior stability than most previously reported Ru- and Ir-based electrocatalysts for hydrogen/oxygen evolution reactions. It also manifests excellent overall water splitting activities and maintains ≈100% Faradic efficiency with a cell voltage of 1.53, 1.51, and 1.54 V at 10 mA cm-2 for 140, 255, and 200 h in acid, alkaline, and alkaline seawater electrolytes, respectively. The excellent electrocatalytic performance can be attributed to solid bonding between RuIrOx and the hollow carbon skeleton, and effective electronic coupling between Ru and Ir, thus inducing its remarkable electrocatalytic activities and long-lasting stability.

6.
Small ; 20(25): e2309557, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705855

ABSTRACT

This review focuses on the advanced design and optimization of nanostructured zinc-air batteries (ZABs), with the aim of boosting their energy storage and conversion capabilities. The findings show that ZABs favor porous nanostructures owing to their large surface area, and this enhances the battery capacity, catalytic activity, and life cycle. In addition, the nanomaterials improve the electrical conductivity, ion transport, and overall battery stability, which crucially reduces dendrite growth on the zinc anodes and improves cycle life and energy efficiency. To obtain a superior performance, the importance of controlling the operational conditions and using custom nanostructural designs, optimal electrode materials, and carefully adjusted electrolytes is highlighted. In conclusion, porous nanostructures and nanoscale materials significantly boost the energy density, longevity, and efficiency of Zn-air batteries. It is suggested that future research should focus on the fundamental design principles of these materials to further enhance the battery performance and drive sustainable energy solutions.

7.
Small ; 19(48): e2303165, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37541297

ABSTRACT

The development of efficient and affordable electrode materials is crucial for clean energy storage systems, which are considered a promising strategy for addressing energy crises and environmental issues. Metal phosphorous chalcogenides (MPX3 ) are a fascinating class of two-dimensional materials with a tunable layered structure and high ion conductivity, making them particularly attractive for energy storage applications. This review article aims to comprehensively summarize the latest research progress on MPX3 materials, with a focus on their preparation methods and modulation strategies. Additionally, the diverse applications of these novel materials in alkali metal ion batteries, metal-air batteries, and all-solid-state batteries are highlighted. Finally, the challenges and opportunities of MPX3 materials are presented to inspire their better potential in energy storage applications. This review provides valuable insights into the promising future of MPX3 materials in clean energy storage systems.

8.
Small ; 19(16): e2207249, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36605005

ABSTRACT

Since the discovery of graphene, research on the family of 2D materials has been a thriving field. Metal phosphorous chalcogenides (MPX3 ) have attracted renewed attention due to their distinctive physical and chemical properties. The advantages of MPX3 , such as tunable layered structures, unique electronic properties, thermodynamically appropriate band alignments and abundant catalytic active sites on the surface, make MPX3 material great potential in electrocatalysis. In this review, the applications of MPX3 electrocatalysts in recent years, including hydrogen evolution reaction, oxygen evolution reaction, and oxygen reduction reaction, are summarized. Structural regulation, chemical doping and multi-material composite that are often effective and practical research methods to further optimize the catalytic properties of these materials, are introduced. Finally, the challenges and opportunities for electrocatalytic applications of MPX3 materials are discussed. This report aims to advance future efforts to develop MPX3 and related materials for electrocatalysis.

9.
Chemistry ; 29(23): e202204034, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-36628553

ABSTRACT

Exploiting effective non-noble metal electrocatalysts for oxygen reduction reaction (ORR) is crucial for fuel cells and metal-air batteries. Herein, we designed and fabricated Co nanoparticles confined in Mo/N co-doped polyhedral carbon frameworks (Co-NP/MNCF) derived from polyoxometalate-encapsuled metal-organic framework, which showed comparable ORR performance with commercial Pt/C and a larger diffusion-limited current density. Moreover, the Co-NP/MNCF also exhibited excellent ORR stability and methanol tolerance. These appealing performances can be attributed to the porosity regulation and heteroatom doping of metal-organic framework derived polyhedral carbon frameworks, which could be beneficial for the exposure of more active sites, the optimization of electronic structure and the mass transfer of electrolyte/electron/ion.

10.
Small ; 18(52): e2204524, 2022 12.
Article in English | MEDLINE | ID: mdl-36287086

ABSTRACT

With the development of renewable energy systems, clean hydrogen is burgeoning as an optimal alternative to fossil fuels, in which its application is promising to retarding the global energy and environmental crisis. The hydrogen evolution reaction (HER), capable of producing high-purity hydrogen rapidly in electrocatalytic water splitting, has received much attention. Abundant research about HER has been done, focusing on advanced electrocatalyst design with high efficiency and robust stability. As potential HER catalysts, metal nanoclusters (MNCs) have been studied extensively. They are composed of several to a hundred metal atoms, with sizes being comparable to the Fermi wavelength of electrons, that is, < 2.0 nm. Different from metal atoms/nanoparticles, they exhibit unique catalytic properties due to their quantum size effect and low-coordination environment. In this review, the activity-enhancing approaches of MNCs applied in HER electrocatalysis are mainly summarized. Furthermore, recent progress in MNCs classified with different stabilization strategies, that is, the freestanding MNCs, MNCs with organic, metal and carbon supports, are introduced. Finally, the current challenges and deficiencies of these MNCs for HER are prospected.


Subject(s)
Carbon , Metal Nanoparticles , Catalysis , Electrons , Hydrogen
11.
Small ; 18(10): e2104965, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35032144

ABSTRACT

Emerging Fe bonded with heteroatom P in carbon matrix (FePC) holds great promise for electrochemical catalysis, but the design of highly active and cost-efficient FePC structure for the electrocatalytic CO2 reduction reaction (CO2 RR) and aqueous ZnCO2 batteries (ZCBs) is still challenging. Herein, polyhedron-shaped bifunctional electrocatalysts, FeP nanocrystals anchored in N-doped carbon polyhedrons (Fe-P@NCPs), toward a reversible aqueous ZnCO2 battery, are reported. The Fe-P@NCPs are synthesized through a facile strategy by using self-templated zeolitic imidazolate frameworks (ZIFs), followed by an in situ high-temperature calcination. The resultant catalysts exhibit aqueous CO2 RR activity with a CO Faradaic efficiency up to 95% at -0.55 V versus reversible hydrogen electrode (RHE), comparable to the previously best-reported values of FeNC structure. The as-constructed ZCBs with designed Fe-P@NCPs cathode, show the peak power density of 0.85 mW cm-2 and energy density of 231.8 Wh kg-1 with a cycling durability over 500 cycles, and outstanding stability in terms of discharge voltage for 7 days. The high selectivity and efficiency of the battery are attributed to the presence of highly catalytic FeP nanocrystals in N-doped carbon matrix, which can effectively increase the number of catalytically active sites and interfacial charge-transfer conductivity, thereby improving the CO2 RR activity.

12.
Rapid Commun Mass Spectrom ; 36(22): e9383, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36002225

ABSTRACT

RATIONALE: In situ Pb isotope analyses of tiny melt inclusions using laser ablation-multi-collector-inductively coupled plasma-mass spectrometry (LA-MC-ICP-MS) are crucial for exploring the origins of mafic lavas. However, quantitative use of this technique with low-Pb (<10 ppm) melt inclusions is difficult due to their low 204 Pb content and 204 Hg interference. METHODS: Pb isotopic ratios of various reference glasses and olivine-hosted melt inclusions were determined using LA-MC-ICP-MS. Multiple ion counters were used to simultaneously determine signal intensities of all Pb isotopes and 202 Hg. An Hg signal-removal smoothing device reduced its signal in the gas blank by >80%. Instrumental mass bias was corrected using the standard-sample bracketing method. RESULTS: With 24-90 µm diameter laser spots, 2-4 Hz repetition rates, and 2.5-4 J cm-2 energy fluence, the analytical precisions of 20x Pb/204 Pb ratios (x = 6, 7, 8) for standards BHVO-2G, ML3B-G, NIST 614, NKT-1G, T1-G, GOR132-G, and StHs6/80-G were <1.0% (2RSD) when 208 Pb signals >100 000 cps. The Wangjiadashan melt inclusions have 206 Pb/204 Pb = 17.14-18.44, 207 Pb/204 Pb = 15.28-15.66, and 208 Pb/204 Pb = 37.12-38.68. CONCLUSIONS: The described method improves the precision and accuracy of in situ Pb isotope analysis in low-Pb melt inclusions using LA-MC-ICP-MS. The Pb isotopic compositions of the Wangjiadashan melt inclusions indicate the coexistence of LoMu and EMII+young HIMU components in the mantle source of weakly alkaline basalts.

13.
Acta Biochim Biophys Sin (Shanghai) ; 54(10): 1507-1517, 2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36239355

ABSTRACT

Monocyte chemoattractant protein-1 (MCP-1) plays a crucial role in various inflammatory diseases. To reveal the impact of MCP-1 during diseases and to develop anti-inflammatory agents, we establish a transgenic mouse line. The firefly luciferase gene is incorporated into the mouse genome and driven by the endogenous MCP-1 promoter. A bioluminescence photographing system is applied to monitor luciferase levels in live mice during inflammation, including lipopolysaccharide-induced sepsis, concanavalin A-induced T cell-dependent liver injury, CCl 4-induced acute hepatitis, and liver fibrosis. The results demonstrate that the luciferase signal induced in inflammatory processes is correlated with endogenous MCP-1 expression in mice. Furthermore, the expressions of MCP-1 and the luciferase gene are dramatically inhibited by administration of the anti-inflammatory drug dexamethasone in a septicemia model. Our results suggest that the transgenic MCP-1-Luc mouse is a useful model to study MCP-1 expression in inflammation and disease and to evaluate the efficiency of anti-inflammatory drugs in vivo.


Subject(s)
Anti-Inflammatory Agents , Chemokine CCL2 , Mice , Animals , Chemokine CCL2/genetics , Anti-Inflammatory Agents/pharmacology , Mice, Transgenic , Inflammation/genetics , Luciferases/genetics
14.
Nano Lett ; 21(9): 4092-4098, 2021 May 12.
Article in English | MEDLINE | ID: mdl-33881875

ABSTRACT

Pd is the only metal that can catalyze electrochemical CO2 reduction to formate at close-to-zero overpotential. It is unfortunately subjected to severe poisoning by trace CO as the side product and suffers from deteriorating stability and selectivity with increasing overpotential. Here, we demonstrate that alloying Pd with Cu in the form of two-dimensional nanodendrites could enable highly stable and selective formate production. Such unique bimetallic nanostructures are formed as a result of the rapid in-plane growth and suppressed out-of-plane growth by carefully controlling a set of experimental parameters. Thanks to the combined electronic effect and nanostructuring effect, our alloy product catalyzes CO2 reduction to formate with remarkable stability and selectivity under the working potential as cathodic as -0.4 V. Our results are rationalized by computational simulations, evidencing that Cu atoms weaken the *CO adsorption and stabilize the *OCHO adsorption on neighboring Pd atoms.

15.
Molecules ; 27(4)2022 Feb 14.
Article in English | MEDLINE | ID: mdl-35209051

ABSTRACT

The development of non-precious metal catalysts with excellent bifunctional activities is significant for air-metal batteries. ABO3-type perovskite oxides can improve their catalytic activity and electronic conductivity by doping transition metal elements at B sites. Here, we develop a novel Sm0.5Sr0.5Co1-xNixO3-δ (SSCN) nanofiber-structured electrocatalyst. In 0.1 M KOH electrolyte solution, Sm0.5Sr0.5Co0.8Ni0.2O3-δ (SSCN82) with the optimal Co: Ni molar ratio exhibits good electrocatalytic activity for OER/ORR, affording a low onset potential of 1.39 V, a slight Tafel slope of 123.8 mV dec-1, and a current density of 6.01 mA cm-2 at 1.8 V, and the ORR reaction process was four-electron reaction pathway. Combining the morphological characteristic of SSCN nanofibers with the synergistic effect of cobalt and nickel with a suitable molar ratio is beneficial to improving the catalytic activity of SSCN perovskite oxides. SSCN82 exhibits good bi-functional catalytic performance and electrochemical double-layer capacitance.

16.
Nanotechnology ; 33(6)2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34706360

ABSTRACT

Developing nonprecious-metal based catalysts with highly active and stable performance for hydrogen evolution reaction (HER) in neutral media is crucial points for realizing low-carbon economy because their practical use typically suffers from the slow kinetics. Herein, we developed S-doped MoO3nanosheets toward neutral HER, fabricated by a versatile solvothermal and subsequently sulfuration processes. The obtained catalyst exhibits a small overpotential of 106 mV to reach 10 mA cm-2in 1.0 M phosphate buffered saline, overwhelming most of recently reported catalysts. Meantime, it shows no notable deactivation after more than 60 h continuous electrolysis and 50 000 cycling tests. More importantly, the catalyst also can be applied in buffered seawater for electrocatalyzing HER, requiring 262 mV at 10 mA cm-2and maintaining over 60 h. These findings open a new route for designing MoO3-based catalysts for neutral hydrogen production.

17.
Nanotechnology ; 32(41)2021 Jul 22.
Article in English | MEDLINE | ID: mdl-34229303

ABSTRACT

Designing highly active and cost-effective electrocatalysts for seawater-splitting with large current densities is compelling for developing hydrogen energy. Great advancements in hydrogen evolution reaction (HER) have been achieved, but the progress on driving HER in seawater is still limited. Herein, Fe-doped MoS2nanoshseets array supported by 3D carbon fibers was explored to be an efficient HER electrocatalyst operating in seawater. Strikingly, it exhibited small overpotentials of 119 and 300 mV to reach the current densities of 10 and 250 mA cm-2in buffered seawater, respectively, both of them are comparable to the best-reported values under similar conditions. Meantime, the catalyst could keep the stable HER activity for 30 h without notable loss. Theoretical calculations revealed that Fe doping increases the S-edge activity. Our work provides a new avenue for designing MoS2-based HER electrocatalysts for industry application.

18.
Nanotechnology ; 32(50)2021 Oct 14.
Article in English | MEDLINE | ID: mdl-34547735

ABSTRACT

Visible light-driven photoreduction of CO2and H2O to tunable syngas is an appealing strategy for both artificial carbon neutral and Fischer-Tropsch processes. However, the development of photocatalysts with high activity and selectivity remains challenging. For this case, we here design a hybrid catalyst, synthesized byin situdeposition of Ag crystals on GaN nanobelts, that delivers a tunable H2/CO ratio between 0.5 and 3 under visible light irradiation (λ > 400 nm). The obtained photocatalyst delivers a maximal turnover frequency value of 3.85 h-1and a corresponding yield rate of 2.12 mmol h-1g-1for CO production, while the photocatalytic activity keeps stable during five cycling tests. Additionally, syngas can be detected even atλ > 600 nm. Experiments and mechanistic studies reveal that the existence of Ag crystals not only extends the light absorption region but also promotes the charge transfer efficiency, and thereby leading to a photocatalytic improvement. Accordingly, the present work affords an opportunity for developing an efficient photo-driven system by using solar energy to alleviate CO2emissions.

19.
J Clin Lab Anal ; 35(1): e23581, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32951270

ABSTRACT

BACKGROUND: (a) To evaluate the clinical performance of endocrine analytes using the sigma metrics (σ) model. (b) To redesign quality control strategies for performance improvement. METHODS: The sigma values of the analytes were initially evaluated based on the allowable total error (TEa), bias, and coefficient of variation (CV) at QC materials level 1 and 2 in March 2018. And then, the normalized QC performance decision charts, personalized QC rules, quality goal index (QGI) analysis, and root causes analysis (RCA) were performed based on the sigma values of the analytes. Finally, the sigma values were re-evaluated in September 2018 after a series of targeted corrective actions. RESULTS: Based on the initial sigma values, two analytes (FT3 and TSH) with σ > 6, only needed one QC rule (13S ) with N2 and R500 for QC management. On the other hand, seven analytes (FT4, TT4, CROT, E2, PRL, TESTO, and INS) with σ < 4 at one QC material level or both needed multiple rules (13S /22S /R4S /41S /10X ) with N6 and R10-500 depending on different sigma values for QC management. Subsequently, detailed and comprehensive RCA and timely corrective actions were performed on all the analytes base on the QGI analysis. Compared with the initial sigma values, the re-evaluated sigma metrics of all the analytes increased significantly. CONCLUSIONS: It was demonstrated that the combination of sigma metrics, QGI analysis, and RCA provided a useful evaluation system for the analytical performance of endocrine analytes.


Subject(s)
Biomarkers , Clinical Chemistry Tests/standards , Diagnostic Techniques, Endocrine/standards , Quality Control , Total Quality Management , Adult , Biomarkers/analysis , Biomarkers/metabolism , Female , Humans , Male , Metabolic Diseases/diagnosis , Young Adult
20.
Angew Chem Int Ed Engl ; 60(1): 345-350, 2021 Jan 04.
Article in English | MEDLINE | ID: mdl-32939894

ABSTRACT

The electrochemical reduction of N2 to NH3 is emerging as a promising alternative for sustainable and distributed production of NH3 . However, the development has been impeded by difficulties in N2 adsorption, protonation of *NN, and inhibition of competing hydrogen evolution. To address the issues, we design a catalyst with diatomic Pd-Cu sites on N-doped carbon by modulation of single-atom Pd sites with Cu. The introduction of Cu not only shifts the partial density of states of Pd toward the Fermi level but also promotes the d-2π* coupling between Pd and adsorbed N2 , leading to enhanced chemisorption and activated protonation of N2 , and suppressed hydrogen evolution. As a result, the catalyst achieves a high Faradaic efficiency of 24.8±0.8 % and a desirable NH3 yield rate of 69.2±2.5 µg h-1 mgcat. -1 , far outperforming the individual single-atom Pd catalyst. This work paves a pathway of engineering single-atom-based electrocatalysts for enhanced ammonia electrosynthesis.

SELECTION OF CITATIONS
SEARCH DETAIL