Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Article in English | MEDLINE | ID: mdl-33526681

ABSTRACT

Near-shore marine sediments deposited during the Paleocene-Eocene Thermal Maximum at Wilson Lake, NJ, contain abundant conventional and giant magnetofossils. We find that giant, needle-shaped magnetofossils from Wilson Lake produce distinct magnetic signatures in low-noise, high-resolution first-order reversal curve (FORC) measurements. These magnetic measurements on bulk sediment samples identify the presence of giant, needle-shaped magnetofossils. Our results are supported by micromagnetic simulations of giant needle morphologies measured from transmission electron micrographs of magnetic extracts from Wilson Lake sediments. These simulations underscore the single-domain characteristics and the large magnetic coercivity associated with the extreme crystal elongation of giant needles. Giant magnetofossils have so far only been identified in sediments deposited during global hyperthermal events and therefore may serve as magnetic biomarkers of environmental disturbances. Our results show that FORC measurements are a nondestructive method for identifying giant magnetofossil assemblages in bulk sediments, which will help test their ecology and significance with respect to environmental change.


Subject(s)
Aquatic Organisms/isolation & purification , Geologic Sediments/chemistry , Magnetosomes/chemistry , Aquatic Organisms/chemistry , Ferrosoferric Oxide/chemistry , Fossils , Geologic Sediments/analysis , Humans , Magnetic Phenomena , Magnetics , Physical Phenomena
2.
Langmuir ; 39(1): 556-562, 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36573036

ABSTRACT

The capacity for crystals to adsorb elements and molecules is a function of the structures of their crystal faces and the relative proportions of those faces. More importantly, this study shows that the surface structure of crystal faces is affected by their surface roughness and is the dominant factor controlling the absorption site density. In a continuation of the study of synthetic goethites with varying single crystal size distributions, two more synthetic goethites with intermediate sizes were analyzed by Brunauer-Emmett-Teller (BET) and atomic-resolution scanning transmission electron microscopy (STEM) to determine the effects of crystal size on their shape, atomic-scale surface roughness, and ultimately on their total surface site density. Results show that surface roughness scales directly with the size [or inversely with the specific surface area (SSA)] of synthetic goethites in the SSA range of 40-75 m2/g. This surface roughness, in turn, increases the total site density over ideal atomically smooth crystals. The total site density of synthetic goethite increases from a combination of decreasing crystal length/width ratio and increasing surface roughness.

3.
Nano Lett ; 19(12): 9154-9159, 2019 12 11.
Article in English | MEDLINE | ID: mdl-31738851

ABSTRACT

The local structure and geometry of catalytic interfaces can influence the selectivity of chemical reactions. Selectivity is often critical for the practical realization of reactions such as the electroreduction of carbon dioxide (CO2). Previously developed strategies to manipulate the structure and geometry of catalysts for electroreduction of CO2 involve complex processes or fail to efficiently alter the selectivity. Here, using a prestrained polymer, we uniaxially and biaxially compress a 60 nm gold film to form a nano-folded electrocatalyst for CO2 reduction. We observe two kinds of folds and can tune the ratio of loose to tight folds by varying the extent of prestrain in the polymer. We characterize the nano-folded catalysts using X-ray diffraction, scanning, and transmission electron microscopy. We observe grain reorientation and coarsening in the nano-folded gold catalysts. We measure an enhancement of Faradaic efficiency for carbon monoxide formation with the biaxially compressed nano-folded catalyst by a factor of about nine as compared to the flat catalyst (up to 87.4%). We rationalize this observation by noting that an increase of the local pH in the tight folds of the catalyst outweighs the effects of alterations in grain characteristics. Together, our studies demonstrate that nano-folded geometries can significantly alter grain characteristics, mass transport, and catalytic performance.

4.
Langmuir ; 33(36): 8924-8932, 2017 09 12.
Article in English | MEDLINE | ID: mdl-28810122

ABSTRACT

Two synthetic goethites of varying crystal size distributions were analyzed by BET, conventional TEM, cryo-TEM, atomic resolution STEM and HRTEM, and electron tomography in order to determine the effects of crystal size, shape, and atomic scale surface roughness on their adsorption capacities. The two samples were determined by BET to have very different site densities based on CrVI adsorption experiments. Model specific surface areas generated from TEM observations showed that, based on size and shape, there should be little difference in their adsorption capacities. Electron tomography revealed that both samples crystallized with an asymmetric {101} tablet habit. STEM and HRTEM images showed a significant increase in atomic-scale surface roughness of the larger goethite. This difference in roughness was quantified based on measurements of relative abundances of crystal faces {101} and {201} for the two goethites, and a reactive surface site density was calculated for each goethite. Singly coordinated sites on face {210} are 2.5 more dense than on face {101}, and the larger goethite showed an average total of 36% {210} as compared to 14% for the smaller goethite. This difference explains the considerably larger adsorption capacitiy of the larger goethite vs the smaller sample and points toward the necessity of knowing the atomic scale surface structure in predicting mineral adsorption processes.

5.
Inorg Chem ; 55(20): 10248-10258, 2016 Oct 17.
Article in English | MEDLINE | ID: mdl-27672696

ABSTRACT

Layered manganese (Mn) oxides, such as birnessite, are versatile materials in industrial applications and common minerals mediating elemental cycling in natural environment. Many of birnessite properties are controlled by Mn(III) concentration and particle sizes. Thus, it is important to synthesize birnessite nanoparticles with controlled Mn(III) concentrations and sizes so that one can tune its properties for many applications. Birnessite was synthesized in the presence of oxyanions (phosphate, silicate, or sulfate) during reductive precipitation of KMnO4 by HCl and characterized using multiple synchrotron X-ray techniques, electron microscopy, and diffuse reflectance UV-vis spectroscopy. Results indicate that all three anions decrease MnO6 sheet sizes, attributed to oxyanion adsorption on edges of the sheets, inhibiting their lateral growth. As a result of decreased sizes, sheets undergo significant structural contraction. Meanwhile, Mn(III) concentration significantly increases with increasing oxyanion/Mn ratio. The increased Mn(III) concentration, along with the decreased size, enlarges both direct and indirect band gaps of birnessite. Phosphate imposes the strongest influence, followed by silicate and then by sulfate, consistent with their decreasing adsorption affinity. Reacting with 1 M KOH solution effectively removed the adsorbed oxyanions while leading to increased sheet sizes, probably due to oriented attachment-driven particle growth mechanisms. The results have important implications for developing highly performed birnessite materials, for example, small size Mn(III)-rich birnessite for photochemical and catalytic applications, as well as for understanding chemical compositional variations of naturally occurring birnessite.

6.
Nano Lett ; 15(10): 6829-35, 2015 Oct 14.
Article in English | MEDLINE | ID: mdl-26352048

ABSTRACT

Electrochemical reduction of CO2, an artificial way of carbon recycling, represents one promising solution for energy and environmental sustainability. However, it is challenged by the lack of active and selective catalysts. Here, we report a two-step synthesis of highly dense Cu nanowires as advanced electrocatalysts for CO2 reduction. CuO nanowires were first grown by oxidation of Cu mesh in air and then reduced by either annealing in the presence of hydrogen or applying a cathodic electrochemical potential to produce Cu nanowires. The two reduction methods generated Cu nanowires with similar dimensions but distinct surface structures, which have provided an ideal platform for comparative studies of the effect of surface structure on the electrocatalytic properties. In particular, the Cu nanowires generated by electrochemical reduction were highly active and selective for CO2 reduction, requiring an overpotential of only 0.3 V to reach 1 mA/cm(2) electrode current density and achieving Faradaic efficiency toward CO as high as ∼60%. Our work has advanced the understanding of the structure-property relationship of Cu-based nanocatalysts, which could be valuable for the further development of advanced electrocatalytic materials for CO2 reduction.


Subject(s)
Carbon Dioxide/chemistry , Copper/chemistry , Nanowires , Catalysis
7.
Environ Sci Technol ; 49(6): 3523-31, 2015 Mar 17.
Article in English | MEDLINE | ID: mdl-25688449

ABSTRACT

Manganese sulfide (MnS(s)) minerals exist in sulfidic environments and can have unique reactive abilities because of sulfide, which is a known reductant, and Mn, the oxyhydroxides of which are known oxidants. This study elucidated the role of MnS(s) in controlling Cr speciation with implications on its fate and toxicity in the natural environment, specifically sulfidic sediments that undergo biogeochemical changes due to sediment resuspension during dredging, bioturbation, and flood events. In continuously mixed batch reaction experiments, aqueous CrVI reduction under anaerobic conditions occurred primarily on the surface of MnS(s) displaying a biphasic behavior- the initial rapid removal of CrVI from solution was followed by a slow decline due to surface passivation by reaction products, mainly sorbed or precipitated CrIII. The reaction progress increased with MnS(s) surface area loading but decreased on increasing CrVI concentration and pH, suggesting that surface site regeneration through product desorption was the rate-controlling mechanism. Below circum-neutral pH, higher solubility of MnS(s) resulted in additional CrVI reduction by reduced sulfur species in solution, whereas increased CrIII solubility lowered surface passivation allowing for more reactive sites to participate in the reaction. Aeration of MnS(s) at pH≥7 caused the formation of a heterogeneous MnIII(hydr)oxide that was composed of hausmanite and manganite. CrVI reoccurrence was observed on aeration of CrVI-spiked MnS(s) from the oxidation of product CrIII. The reoccurrence at pH≥7 was attributed to the oxidation of product CrIII by MnIII(hydr)oxide, whereas the reoccurrence at pH<7 was hypothesized from the oxidation of product CrIII by intermediate aqueous MnIII and/or sulfur species. Just as with Cr, MnS(s) may play an important role in speciation, fate, and transport of other environmental contaminants.


Subject(s)
Chromium/chemistry , Manganese Compounds/chemistry , Oxygen/chemistry , Sulfides/chemistry , Water Pollutants, Chemical/chemistry , Oxidation-Reduction , Oxides/chemistry , Sulfur/chemistry
8.
J Am Chem Soc ; 135(14): 5372-4, 2013 Apr 10.
Article in English | MEDLINE | ID: mdl-23527484

ABSTRACT

High-temperature superconductivity has a range of applications from sensors to energy distribution. Recent reports of this phenomenon in compounds containing electronically active BiS2 layers have the potential to open a new chapter in the field of superconductivity. Here we report the identification and basic properties of two new ternary Bi-O-S compounds, Bi2OS2 and Bi3O2S3. The former is non-superconducting; the latter likely explains the superconductivity at T(c) = 4.5 K previously reported in "Bi4O4S3". The superconductivity of Bi3O2S3 is found to be sensitive to the number of Bi2OS2-like stacking faults; fewer faults correlate with increases in the Meissner shielding fractions and T(c). Elucidation of the electronic consequences of these stacking faults may be key to the understanding of electronic conductivity and superconductivity which occurs in a nominally valence-precise compound.


Subject(s)
Bismuth/chemistry , Oxygen/chemistry , Sulfur/chemistry , Electric Conductivity
9.
Langmuir ; 29(23): 6876-83, 2013 Jun 11.
Article in English | MEDLINE | ID: mdl-23675906

ABSTRACT

Crystal surfaces provide physical interfaces between the geosphere and biosphere. It follows that the arrangement of atoms at the surfaces of crystals profoundly influences biological components at many levels, from cells through biopolymers to single organic molecules. Many studies have focused on the crystal-molecule interface in water using large, flat single crystals. However, little is known about atomic-scale surface structures of the nanometer- to micrometer-sized crystals of simple metal oxides typically used in batch adsorption experiments under conditions relevant to biogeochemistry and the origins of life. Here, we present atomic-resolution microscopy data with unprecedented detail of the circumferences of nanosized rutile (α-TiO2) crystals previously used in studies of the adsorption of protons, cations, and amino acids. The data suggest that one-third of the {110} faces, the largest faces on individual crystals, consist of steps at the atomic scale. The steps have the orientation to provide undercoordinated Ti atoms of the type and abundance for adsorption of amino acids as inferred from previous surface complexation modeling of batch adsorption data. A remarkably uniform pattern of step proportions emerges: the step proportions are independent of surface roughness and reflect their relative surface energies. Consequently, the external morphology of rutile nanometer- to micrometer-sized crystals imaged at the coarse scale of scanning electron microscope images is not an accurate indicator of the atomic smoothness or of the proportions of the steps present. Overall, our data strongly suggest that amino acids attach at these steps on the {110} surfaces of rutile.


Subject(s)
Glutamic Acid/chemistry , Titanium/chemistry , Adsorption , Microscopy, Atomic Force , Particle Size , Surface Properties
10.
Front Microbiol ; 14: 1272245, 2023.
Article in English | MEDLINE | ID: mdl-37928658

ABSTRACT

Some thermophilic bacteria from deep-sea hydrothermal vents grow by dissimilatory iron reduction, but our understanding of their biogenic mineral transformations is nascent. Mineral transformations catalyzed by the thermophilic iron-reducing bacterium Desulfovulcanus ferrireducens during growth at 55°C were examined using synthetic nanophase ferrihydrite, akaganeite, and lepidocrocite separately as terminal electron acceptors. Spectral analyses using visible-near infrared (VNIR), Fourier-transform infrared attenuated total reflectance (FTIR-ATR), and Mössbauer spectroscopies were complemented with x-ray diffraction (XRD) and transmission electron microscopy (TEM) using selected area electron diffraction (SAED) and energy dispersive X-ray (EDX) analyses. The most extensive biogenic mineral transformation occurred with ferrihydrite, which produced a magnetic, visibly dark mineral with spectral features matching cation-deficient magnetite. Desulfovulcanus ferrireducens also grew on akaganeite and lepidocrocite and produced non-magnetic, visibly dark minerals that were poorly soluble in the oxalate solution. Bioreduced mineral products from akaganeite and lepidocrocite reduction were almost entirely absorbed in the VNIR spectroscopy in contrast to both parent minerals and the abiotic controls. However, FTIR-ATR and Mössbauer spectra and XRD analyses of both biogenic minerals were almost identical to the parent and control minerals. The TEM of these biogenic minerals showed the presence of poorly crystalline iron nanospheres (50-200 nm in diameter) of unknown mineralogy that were likely coating the larger parent minerals and were absent from the controls. The study demonstrated that thermophilic bacteria transform different types of Fe(III) (oxyhydr)oxide minerals for growth with varying mineral products. These mineral products are likely formed through dissolution-reprecipitation reactions but are not easily predictable through chemical equilibrium reactions alone.

11.
Environ Sci Technol ; 46(2): 970-6, 2012 Jan 17.
Article in English | MEDLINE | ID: mdl-22148625

ABSTRACT

Manganese (Mn) oxides are among the strongest mineral oxidants in the environment and impose significant influence on mobility and bioavailability of redox-active substances, such as arsenic, chromium, and pharmaceutical products, through oxidation processes. Oxidizing potentials of Mn oxides are determined by Mn valence states (2+, 3+, 4+). In this study, the effects of beam damage during electron energy-loss spectroscopy (EELS) in the transmission electron microscope have been investigated to determine the "safe dose" of electrons. Time series analyses determined the safe dose fluence (electrons/nm(2)) for todorokite (10(6) e/nm(2)), acid birnessite (10(5)), triclinic birnessite (10(4)), randomly stacked birnessite (10(3)), and δ-MnO(2) (<10(3)) at 200 kV. The results show that meaningful estimates of the mean Mn valence can be acquired by EELS if proper care is taken.


Subject(s)
Environmental Monitoring/methods , Manganese Compounds/chemistry , Oxides/chemistry , Spectroscopy, Electron Energy-Loss/methods , Oxidation-Reduction
12.
Environ Sci Technol ; 46(21): 11670-7, 2012 Nov 06.
Article in English | MEDLINE | ID: mdl-23043294

ABSTRACT

To better understand the sequestration of toxic metals such as nickel (Ni), zinc (Zn), and cobalt (Co) as layered double hydroxide (LDH) phases in soils, we systematically examined the presence of Al and the role of mineral dissolution during Zn sorption/precipitation on γ-Al(2)O(3) (γ-alumina) at pH 7.5 using extended X-ray absorption fine structure spectroscopy (EXAFS), high-resolution transmission electron microscopy (HR-TEM), synchrotron-radiation powder X-ray diffraction (SR-XRD), and (27)Al solid-state NMR. The EXAFS analysis indicates the formation of Zn-Al LDH precipitates at Zn concentration ≥0.4 mM, and both HR-TEM and SR-XRD reveal that these precipitates are crystalline. These precipitates yield a small shoulder at δ(Al-27) = +12.5 ppm in the (27)Al solid-state NMR spectra, consistent with the mixed octahedral Al/Zn chemical environment in typical Zn-Al LDHs. The NMR analysis provides direct evidence for the existence of Al in the precipitates and the migration from the dissolution of γ-alumina substrate. To further address this issue, we compared the Zn sorption mechanism on a series of Al (hydr)oxides with similar chemical composition but differing dissolubility using EXAFS and TEM. These results suggest that, under the same experimental conditions, Zn-Al LDH precipitates formed on γ-alumina and corundum but not on less soluble minerals such as bayerite, boehmite, and gibbsite, which point outs that substrate mineral surface dissolution plays an important role in the formation of Zn-Al LDH precipitates.


Subject(s)
Aluminum Oxide/chemistry , Aluminum/chemistry , Hydroxides/chemistry , Zinc/chemistry , Adsorption , Chemical Precipitation , Crystallization , Magnetic Resonance Spectroscopy , Microscopy, Electron, Transmission , Minerals/chemistry , Solubility , X-Ray Absorption Spectroscopy , X-Ray Diffraction
13.
14.
Chemosphere ; 286(Pt 1): 131665, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34315076

ABSTRACT

Legacy phosphorus (P) has accelerated the subsurface transport of colloidal P (CP) in intensively managed agricultural soils in the Midwestern U.S. Because of its high P sorption capacity and mobility, understanding the depth sequence distribution of mobile CP and its speciation in the soil profile is critical in assessing total P (TP) loss to protect the water quality of adjacent water bodies. In this study, physicochemical properties of water-extractable colloids (WECs) from the soil profile at 0-180 cm were characterized using conventional wet chemical analysis. Solution P-31 nuclear magnetic resonance spectroscopy (NMR), P and Fe K-edge X-ray absorption spectroscopy, and transmission electron microscopy were also used to understand P speciation and mineralogy of CP. Percent recovery of WECs per bulk soil increased more than three times with increasing depth. Considering mildly alkaline pH of pore water and negative zeta potential (-21 ± 4 mV) of WECs (size: 1.65 ± 0.45 µm), the transport of P rich WECs (TP: approximately 210-700 mg kg-1) were facilitated from surface to subsoils. Generally, TP in WEC decreased with increasing depth. Interestingly, WECs in subsoil contain organic P (OP) as much as 60 mg kg-1. NMR analysis clearly showed the presence of OP monoesters, OP diesters, and orthophosphate in these particles. Both orthophosphate and OP species interacted with iron oxyhydroxides, calcite, and aluminol functional groups of gibbsite and or phyllosilicates. The study showed the availability of WECs from surface to subsoils that carry orthophosphate as well as OP in legacy P impacted agricultural soils in the Midwestern U.S.


Subject(s)
Phosphorus , Soil , Agriculture , Phosphorus/analysis , Water Quality , X-Ray Absorption Spectroscopy
15.
J Aerosol Sci ; 42(6): 408-418, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21625364

ABSTRACT

Increasing evidence suggests that the physicochemical properties of inhaled nanoparticles influence the resulting toxicokinetics and toxicodynamics. This report presents a method using scanning transmission electron microscopy (STEM) to measure the Mn content throughout the primary particle size distribution of welding fume particle samples collected on filters for application in exposure and health research. Dark field images were collected to assess the primary particle size distribution and energy-dispersive X-ray and electron energy loss spectroscopy were performed for measurement of Mn composition as a function of primary particle size. A manual method incorporating imaging software was used to measure the primary particle diameter and to select an integration region for compositional analysis within primary particles throughout the size range. To explore the variation in the developed metric, the method was applied to 10 gas metal arc welding (GMAW) fume particle samples of mild steel that were collected under a variety of conditions. The range of Mn composition by particle size was -0.10 to 0.19 %/nm, where a positive estimate indicates greater relative abundance of Mn increasing with primary particle size and a negative estimate conversely indicates decreasing Mn content with size. However, the estimate was only statistically significant (p<0.05) in half of the samples (n=5), which all had a positive estimate. In the remaining samples, no significant trend was measured. Our findings indicate that the method is reproducible and that differences in the abundance of Mn by primary particle size among welding fume samples can be detected.

16.
Chemosphere ; 263: 128147, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33297134

ABSTRACT

Subsurface storm flow of phosphorus (P), including particulate P, has been recently discussed as an important P transport path in contrast to typical surface runoff events. However, P speciation, and P concentration during storm events has not been extensively investigated; therefore, its contribution to the water quality is not clearly understood. In this study, the physicochemical properties of particulate P in tile water samples during a high flow event were investigated in Midwestern agricultural lands using wet chemical methods, 31P Nuclear Magnetic Resonance spectroscopy and P K-edge X-ray absorptions near edge structure spectroscopy. In slightly alkaline pH tile water, total P was ranging from ∼0.06 to 0.22 mg L-1, which is significantly greater than dissolved reactive P (DRP) (∼0.02-0.08 mg L-1). The tile water contains P enriched particulate matters (∼200-660 mg L-1). Total P in the colloidal fraction was from 1013 to 2270 mg kg-1. Phosphate and organic P species, especially monoesters, are sorbed in soil colloids like calcite, and iron oxides, and colloids are effective carriers of P in the subsurface transport process during storm events. The results of this study show that storm events can accelerate the subsurface transport of P with soil particles in addition to DRP.


Subject(s)
Phosphorus , Water Movements , Agriculture , Phosphorus/analysis , Soil , Water Quality
17.
ACS Appl Mater Interfaces ; 13(29): 34584-34596, 2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34254769

ABSTRACT

We synthesized highly branched and electron-donating side chain subunits and attached them to polystyrene (PS) used as a dielectric layer in a pentacene field-effect transistor. The influence of these groups on dielectric function, charge retention, and threshold voltage shifts (ΔVth) depending on their positions in dielectric multilayers was determined. We compared the observations made on an N-perphenylated iminobisaniline side chain with those from the same side chains modified with ZnO nanoparticles and with an adduct formed from tetracyanoethylene (TCNE). We also synthesized an analogue in which six methoxy groups are present instead of two amine nitrogens. At 6 mol % side chain, hopping transport was sufficient to cause shorting of the gate, while at 2 mol %, charge trapping was observable as transistor threshold voltage shifts (ΔVth). We created three types of devices: with the substituted PS layer as single-layer dielectric, on top of a cross-linked PS layer but in contact with the pentacene (bilayers), and sandwiched between two PS layers in trilayers. Especially large bias stress effects and ΔVth, larger than those in the case of the hexamethoxy and previously studied dimethoxy analogues, were observed in the second case, and the effects increased with the increasing electron-donating properties of the modified side chains. The highest ΔVth was consistent with a majority of the side chains stabilizing the trapped charge. Trilayer devices showed decreased charge storage capability compared to previous work in which we used less donating side chains but in higher concentrations. The ZnO and TCNE modifications resulted in slightly more and less negative ΔVth, respectively, when the side chain polystyrene was not in contact with the pentacene and isolated from the gate electrode. The results indicate a likely maximum combination of molecular charge stabilizing activity and side chain concentration that still allows gate dielectric function.

18.
Environ Sci Technol ; 44(22): 8467-72, 2010 Nov 15.
Article in English | MEDLINE | ID: mdl-20977204

ABSTRACT

Arsenite (As(III)) oxidation by manganese oxides (Mn-oxides) serves to detoxify and, under many conditions, immobilize arsenic (As) by forming arsenate (As(V)). As(III) oxidation by Mn(IV)-oxides can be quite complex, involving many simultaneous forward reactions and subsequent back reactions. During As(III) oxidation by Mn-oxides, a reduction in oxidation rate is often observed, which is attributed to Mn-oxide surface passivation. X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD) data show that Mn(II) sorption on a poorly crystalline hexagonal birnessite (δ-MnO2) is important in passivation early during reaction with As(III). Also, it appears that Mn(III) in the δ-MnO2 structure is formed by conproportionation of sorbed Mn(II) and Mn(IV) in the mineral structure. The content of Mn(III) within the δ-MnO2 structure appears to increase as the reaction proceeds. Binding of As(V) to δ-MnO2 also changes as Mn(III) becomes more prominent in the δ-MnO 2 structure. The data presented indicate that As(III) oxidation and As(V) sorption by poorly crystalline δ-MnO2 is greatly affected by Mn oxidation state in the δ-MnO2 structure.


Subject(s)
Arsenites/chemistry , Manganese Compounds/chemistry , Oxides/chemistry , X-Ray Absorption Spectroscopy , X-Ray Diffraction , Adsorption , Crystallization , Oxidation-Reduction
19.
Am J Phys Anthropol ; 141(1): 7-15, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19672851

ABSTRACT

Teeth have provided insights into many topics including primate diet, paleobiology, and evolution, due to the fact that they are largely composed of inorganic materials and may remain intact long after an animal is deceased. Previous studies have reported that the mechanical properties, chemistry, and microstructure of human enamel vary with location. This study uses nanoindentation to map out the mechanical properties of Alouatta palliata molar enamel on an axial cross-section of an unworn permanent third molar, a worn permanent first molar, and a worn deciduous first molar. Variations were then correlated with changes in microstructure and chemistry using scanning electron microscopy and electron microprobe techniques. The hardness and Young's modulus varied with location throughout the cross-sections from the occlusal surface to the dentin-enamel junction (DEJ), from the buccal to lingual sides, and also from one tooth to another. These changes in mechanical properties correlated with changes in the organic content of the tooth, which was shown to increase from approximately 6% near the occlusal surface to approximately 20% just before the DEJ. Compared to human enamel, the Alouatta enamel showed similar microstructures, chemical constituents, and magnitudes of mechanical properties, but showed less variation in hardness and Young's modulus, despite the very different diet of this species.


Subject(s)
Alouatta/anatomy & histology , Fossils , Molar/anatomy & histology , Animals , Dental Enamel/chemistry , Dental Enamel/physiology , Hardness , Humans , Microscopy, Electron, Scanning , Molar/chemistry , Molar/ultrastructure
20.
ACS Nano ; 13(9): 10818-10825, 2019 Sep 24.
Article in English | MEDLINE | ID: mdl-31469544

ABSTRACT

The synthesis of alloys with long-range atomic-scale ordering (ordered intermetallics) is an emerging field of nanochemistry. Ordered intermetallic nanoparticles are useful for a wide variety of applications such as catalysis, superconductors, and magnetic devices. However, the preparation of nanostructured ordered intermetallics is challenging in comparison to disordered alloys, hindering progress in material development. Herein, we report a process for converting colloidally synthesized ordered intermetallic PdBi2 to ordered intermetallic Pd3Bi nanoparticles under ambient conditions by electrochemical dealloying. The low melting point of PdBi2 corresponds to low vacancy formation energies, which enables the facile removal of the Bi from the surface while simultaneously enabling interdiffusion of the constituent atoms via a vacancy diffusion mechanism under ambient conditions. The resulting phase-converted ordered intermetallic Pd3Bi exhibits 11 times and 3.5 times higher mass activity and high methanol tolerance for the oxygen reduction reaction compared with Pt/C and Pd/C, respectively, which is the highest reported for a Pd-based catalyst, to the best of our knowledge. These results establish a key development in the synthesis of noble-metal-rich ordered intermetallic phases with high catalytic activity and set forth guidelines for the design of ordered intermetallic compounds under ambient conditions.

SELECTION OF CITATIONS
SEARCH DETAIL