Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
PLoS One ; 18(4): e0284982, 2023.
Article in English | MEDLINE | ID: mdl-37104284

ABSTRACT

Substantial guidance is available on undergraduate quantitative training for biologists, including reports focused on biomedical science. Far less attention has been paid to the graduate curriculum and the particular challenges of the diversity of specialization within the life sciences. We propose an innovative approach to quantitative education that goes beyond recommendations of a course or set of courses or activities, derived from analysis of the expectations for students in particular programs. Due to the plethora of quantitative methods, it is infeasible to expect that biomedical PhD students can be exposed to more than a minority of the quantitative concepts and techniques employed in modern biology. We collected key recent papers suggested by the faculty in biomedical science programs, chosen to include important scientific contributions that the faculty consider appropriate for all students in the program to be able to read with confidence. The quantitative concepts and methods inherent in these papers were then analyzed and categorized to provide a rational basis for prioritization of those concepts to be emphasized in the education program. This novel approach to prioritization of quantitative skills and concepts provides an effective method to drive curricular focus based upon program-specific faculty input for science programs of all types. The results of our particular application to biomedical science training highlight the disconnect between typical undergraduate quantitative education for life science students, focused on continuous mathematics, and the concepts and skills in graphics, statistics, and discrete mathematics that arise from priorities established by biomedical science faculty. There was little reference in the key recent papers chosen by faculty to classic mathematical areas such as calculus which make up a large component of the formal undergraduate mathematics training of graduate students in biomedical areas.


Subject(s)
Biological Science Disciplines , Students , Humans , Curriculum , Educational Status , Faculty , Education, Graduate
2.
CBE Life Sci Educ ; 22(2): ar16, 2023 06.
Article in English | MEDLINE | ID: mdl-36862803

ABSTRACT

Mastery of quantitative skills is increasingly critical for student success in life sciences, but few curricula adequately incorporate quantitative skills. Quantitative Biology at Community Colleges (QB@CC) is designed to address this need by building a grassroots consortium of community college faculty to 1) engage in interdisciplinary partnerships that increase participant confidence in life science, mathematics, and statistics domains; 2) generate and publish a collection of quantitative skills-focused open education resources (OER); and 3) disseminate these OER and pedagogical practices widely, in turn expanding the network. Currently in its third year, QB@CC has recruited 70 faculty into the network and created 20 modules. Modules can be accessed by interested biology and mathematics educators in high school, 2-year, and 4-year institutions. Here, we use survey responses, focus group interviews, and document analyses (principles-focused evaluation) to evaluate the progress in accomplishing these goals midway through the QB@CC program. The QB@CC network provides a model for developing and sustaining an interdisciplinary community that benefits participants and generates valuable resources for the broader community. Similar network-building programs may wish to adopt some of the effective aspects of the QB@CC network model to meet their objectives.


Subject(s)
Faculty , Students , Humans , Universities , Schools , Biology
3.
CBE Life Sci Educ ; 18(4): ar64, 2019 12.
Article in English | MEDLINE | ID: mdl-31782692

ABSTRACT

Quantitative skills are an important competency for undergraduate biology students and should be incorporated early and frequently in an undergraduate's career. Community colleges (CCs) are responsible for teaching introductory biology to a large proportion of biology and prehealth students, and quantitative skills are critical for their careers. However, we know little about the challenges and affordances that CC instructors encounter when incorporating quantitative skills into their courses. To explore this, we interviewed CC biology instructors (n = 20) about incorporating quantitative biology (QB) instruction into their classes. We used a purposeful sampling approach to recruit instructors who were likely to have tried evidence-based pedagogies and were likely aware of the importance of QB instruction. We used open coding to identify themes related to the affordances to and constraints on teaching QB. Overall, our study participants met with challenges typical of incorporating new material or techniques into any college-level class, including perceptions of student deficits, tension between time to teach quantitative skills and cover biology content, and gaps in teacher professional knowledge (e.g., content and pedagogical content knowledge). We analyze these challenges and offer potential solutions and recommendations for professional development to support QB instruction at CCs.


Subject(s)
Biology/education , Faculty , Perception , Teaching , Universities , Accreditation , Curriculum , Education, Professional , Female , Financing, Organized , Humans , Male , Mathematics/education , Problem-Based Learning , Self Efficacy , Social Support , Students
SELECTION OF CITATIONS
SEARCH DETAIL