Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 211
Filter
1.
Cell ; 187(7): 1589-1616, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38552609

ABSTRACT

The last 50 years have witnessed extraordinary developments in understanding mechanisms of carcinogenesis, synthesized as the hallmarks of cancer. Despite this logical framework, our understanding of the molecular basis of systemic manifestations and the underlying causes of cancer-related death remains incomplete. Looking forward, elucidating how tumors interact with distant organs and how multifaceted environmental and physiological parameters impinge on tumors and their hosts will be crucial for advances in preventing and more effectively treating human cancers. In this perspective, we discuss complexities of cancer as a systemic disease, including tumor initiation and promotion, tumor micro- and immune macro-environments, aging, metabolism and obesity, cancer cachexia, circadian rhythms, nervous system interactions, tumor-related thrombosis, and the microbiome. Model systems incorporating human genetic variation will be essential to decipher the mechanistic basis of these phenomena and unravel gene-environment interactions, providing a modern synthesis of molecular oncology that is primed to prevent cancers and improve patient quality of life and cancer outcomes.


Subject(s)
Neoplasms , Humans , Carcinogenesis , Microbiota , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/therapy , Obesity/complications , Quality of Life
2.
Nat Immunol ; 22(11): 1403-1415, 2021 11.
Article in English | MEDLINE | ID: mdl-34686867

ABSTRACT

Tumor-associated macrophages (TAMs) display pro-tumorigenic phenotypes for supporting tumor progression in response to microenvironmental cues imposed by tumor and stromal cells. However, the underlying mechanisms by which tumor cells instruct TAM behavior remain elusive. Here, we uncover that tumor-cell-derived glucosylceramide stimulated unconventional endoplasmic reticulum (ER) stress responses by inducing reshuffling of lipid composition and saturation on the ER membrane in macrophages, which induced IRE1-mediated spliced XBP1 production and STAT3 activation. The cooperation of spliced XBP1 and STAT3 reinforced the pro-tumorigenic phenotype and expression of immunosuppressive genes. Ablation of XBP1 expression with genetic manipulation or ameliorating ER stress responses by facilitating LPCAT3-mediated incorporation of unsaturated lipids to the phosphatidylcholine hampered pro-tumorigenic phenotype and survival in TAMs. Together, we uncover the unexpected roles of tumor-cell-produced lipids that simultaneously orchestrate macrophage polarization and survival in tumors via induction of ER stress responses and reveal therapeutic targets for sustaining host antitumor immunity.


Subject(s)
Endoplasmic Reticulum Stress , Endoplasmic Reticulum/metabolism , Intracellular Membranes/metabolism , Macrophage Activation , Melanoma/metabolism , Membrane Lipids/metabolism , Skin Neoplasms/metabolism , Tumor-Associated Macrophages/metabolism , Animals , Cell Line, Tumor , Cell Survival , Endoplasmic Reticulum/ultrastructure , Glucosylceramidase/metabolism , Intracellular Membranes/ultrastructure , Melanoma/genetics , Melanoma/ultrastructure , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice, Inbred C57BL , Mice, Transgenic , Phenotype , Phosphorylation , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Skin Neoplasms/genetics , Skin Neoplasms/ultrastructure , Tumor Escape , Tumor Microenvironment , Tumor-Associated Macrophages/ultrastructure , X-Box Binding Protein 1/genetics , X-Box Binding Protein 1/metabolism
3.
Cell ; 175(2): 502-513.e13, 2018 10 04.
Article in English | MEDLINE | ID: mdl-30245009

ABSTRACT

Acetate is a major nutrient that supports acetyl-coenzyme A (Ac-CoA) metabolism and thus lipogenesis and protein acetylation. However, its source is unclear. Here, we report that pyruvate, the end product of glycolysis and key node in central carbon metabolism, quantitatively generates acetate in mammals. This phenomenon becomes more pronounced in the context of nutritional excess, such as during hyperactive glucose metabolism. Conversion of pyruvate to acetate occurs through two mechanisms: (1) coupling to reactive oxygen species (ROS) and (2) neomorphic enzyme activity from keto acid dehydrogenases that enable function as pyruvate decarboxylases. Further, we demonstrate that de novo acetate production sustains Ac-CoA pools and cell proliferation in limited metabolic environments, such as during mitochondrial dysfunction or ATP citrate lyase (ACLY) deficiency. By virtue of de novo acetate production being coupled to mitochondrial metabolism, there are numerous possible regulatory mechanisms and links to pathophysiology.


Subject(s)
Acetates/metabolism , Glucose/metabolism , Pyruvic Acid/metabolism , ATP Citrate (pro-S)-Lyase/physiology , Acetyl Coenzyme A/biosynthesis , Acetyl Coenzyme A/metabolism , Acetylation , Animals , Female , Glycolysis/physiology , Lipogenesis/physiology , Male , Mammals/metabolism , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Oxidoreductases , Pyruvate Decarboxylase/physiology , Reactive Oxygen Species/metabolism
4.
Cell ; 175(7): 1780-1795.e19, 2018 12 13.
Article in English | MEDLINE | ID: mdl-30392958

ABSTRACT

Activated T cells differentiate into functional subsets with distinct metabolic programs. Glutaminase (GLS) converts glutamine to glutamate to support the tricarboxylic acid cycle and redox and epigenetic reactions. Here, we identify a key role for GLS in T cell activation and specification. Though GLS deficiency diminished initial T cell activation and proliferation and impaired differentiation of Th17 cells, loss of GLS also increased Tbet to promote differentiation and effector function of CD4 Th1 and CD8 CTL cells. This was associated with altered chromatin accessibility and gene expression, including decreased PIK3IP1 in Th1 cells that sensitized to IL-2-mediated mTORC1 signaling. In vivo, GLS null T cells failed to drive Th17-inflammatory diseases, and Th1 cells had initially elevated function but exhausted over time. Transient GLS inhibition, however, led to increased Th1 and CTL T cell numbers. Glutamine metabolism thus has distinct roles to promote Th17 but constrain Th1 and CTL effector cell differentiation.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cell Differentiation/immunology , Glutaminase/immunology , Lymphocyte Activation , Th1 Cells/immunology , Th17 Cells/immunology , Animals , CD8-Positive T-Lymphocytes/cytology , Cell Differentiation/genetics , Glutaminase/genetics , Male , Mice , Mice, Transgenic , Th1 Cells/cytology , Th17 Cells/cytology
5.
Nat Immunol ; 21(12): 1540-1551, 2020 12.
Article in English | MEDLINE | ID: mdl-33020660

ABSTRACT

The metabolic challenges present in tumors attenuate the metabolic fitness and antitumor activity of tumor-infiltrating T lymphocytes (TILs). However, it remains unclear whether persistent metabolic insufficiency can imprint permanent T cell dysfunction. We found that TILs accumulated depolarized mitochondria as a result of decreased mitophagy activity and displayed functional, transcriptomic and epigenetic characteristics of terminally exhausted T cells. Mechanistically, reduced mitochondrial fitness in TILs was induced by the coordination of T cell receptor stimulation, microenvironmental stressors and PD-1 signaling. Enforced accumulation of depolarized mitochondria with pharmacological inhibitors induced epigenetic reprogramming toward terminal exhaustion, indicating that mitochondrial deregulation caused T cell exhaustion. Furthermore, supplementation with nicotinamide riboside enhanced T cell mitochondrial fitness and improved responsiveness to anti-PD-1 treatment. Together, our results reveal insights into how mitochondrial dynamics and quality orchestrate T cell antitumor responses and commitment to the exhaustion program.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Lymphocyte Count , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Mitochondrial Dynamics/immunology , Biomarkers , Epigenesis, Genetic , Epigenomics , Humans , Mitochondria/drug effects , Mitochondria/immunology , Mitochondria/metabolism , Mitochondria/ultrastructure , Mitophagy , Neoplasms/immunology , Neoplasms/metabolism , Neoplasms/pathology , Neoplasms/therapy , Niacinamide/pharmacology , Programmed Cell Death 1 Receptor/metabolism , Receptors, Antigen, T-Cell/metabolism , Signal Transduction , Stress, Physiological , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
6.
Cell ; 171(4): 736-737, 2017 11 02.
Article in English | MEDLINE | ID: mdl-29100069

ABSTRACT

Nearly 3% of the human population carries bi-allelic loss-of-function variants in the gene encoding CLYBL. While largely healthy, these individuals exhibit reduced circulating vitamin B12 levels. In this issue of Cell, Shen and colleagues uncover the metabolic role of CLYBL, linking its function to B12 metabolism and the immunomodulatory metabolite, itaconate.


Subject(s)
Succinates , Vitamin B 12 , Gene Knockout Techniques , Humans , Vitamins
8.
Nat Immunol ; 20(9): 1186-1195, 2019 09.
Article in English | MEDLINE | ID: mdl-31384058

ABSTRACT

Macrophages are activated during microbial infection to coordinate inflammatory responses and host defense. Here we find that in macrophages activated by bacterial lipopolysaccharide (LPS), mitochondrial glycerol 3-phosphate dehydrogenase (GPD2) regulates glucose oxidation to drive inflammatory responses. GPD2, a component of the glycerol phosphate shuttle, boosts glucose oxidation to fuel the production of acetyl coenzyme A, acetylation of histones and induction of genes encoding inflammatory mediators. While acute exposure to LPS drives macrophage activation, prolonged exposure to LPS triggers tolerance to LPS, where macrophages induce immunosuppression to limit the detrimental effects of sustained inflammation. The shift in the inflammatory response is modulated by GPD2, which coordinates a shutdown of oxidative metabolism; this limits the availability of acetyl coenzyme A for histone acetylation at genes encoding inflammatory mediators and thus contributes to the suppression of inflammatory responses. Therefore, GPD2 and the glycerol phosphate shuttle integrate the extent of microbial stimulation with glucose oxidation to balance the beneficial and detrimental effects of the inflammatory response.


Subject(s)
Glucose/metabolism , Glycerolphosphate Dehydrogenase/metabolism , Macrophage Activation/immunology , Macrophages/immunology , Macrophages/metabolism , Acetyl Coenzyme A/biosynthesis , Acetylation , Animals , Female , Histones/metabolism , Inflammation/pathology , Lipopolysaccharides , Macrophages/cytology , Male , Mice , Mice, Inbred C57BL , Oxidation-Reduction
9.
Cell ; 162(6): 1217-28, 2015 Sep 10.
Article in English | MEDLINE | ID: mdl-26321681

ABSTRACT

Activated T cells engage aerobic glycolysis and anabolic metabolism for growth, proliferation, and effector functions. We propose that a glucose-poor tumor microenvironment limits aerobic glycolysis in tumor-infiltrating T cells, which suppresses tumoricidal effector functions. We discovered a new role for the glycolytic metabolite phosphoenolpyruvate (PEP) in sustaining T cell receptor-mediated Ca(2+)-NFAT signaling and effector functions by repressing sarco/ER Ca(2+)-ATPase (SERCA) activity. Tumor-specific CD4 and CD8 T cells could be metabolically reprogrammed by increasing PEP production through overexpression of phosphoenolpyruvate carboxykinase 1 (PCK1), which bolstered effector functions. Moreover, PCK1-overexpressing T cells restricted tumor growth and prolonged the survival of melanoma-bearing mice. This study uncovers new metabolic checkpoints for T cell activity and demonstrates that metabolic reprogramming of tumor-reactive T cells can enhance anti-tumor T cell responses, illuminating new forms of immunotherapy.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Melanoma/immunology , Melanoma/therapy , Monitoring, Immunologic , Phosphoenolpyruvate/metabolism , Tumor Microenvironment , Animals , Calcium/metabolism , Endoplasmic Reticulum/metabolism , Glycolysis , Hexokinase/metabolism , Immunotherapy , Mice , NFATC Transcription Factors/metabolism , Receptors, Antigen, T-Cell/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Signal Transduction , Transforming Growth Factor beta/immunology
10.
Nat Immunol ; 17(12): 1459-1466, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27695003

ABSTRACT

CD4+ effector T cells (Teff cells) and regulatory T cells (Treg cells) undergo metabolic reprogramming to support proliferation and immunological function. Although signaling via the lipid kinase PI(3)K (phosphatidylinositol-3-OH kinase), the serine-threonine kinase Akt and the metabolic checkpoint kinase complex mTORC1 induces both expression of the glucose transporter Glut1 and aerobic glycolysis for Teff cell proliferation and inflammatory function, the mechanisms that regulate Treg cell metabolism and function remain unclear. We found that Toll-like receptor (TLR) signals that promote Treg cell proliferation increased PI(3)K-Akt-mTORC1 signaling, glycolysis and expression of Glut1. However, TLR-induced mTORC1 signaling also impaired Treg cell suppressive capacity. Conversely, the transcription factor Foxp3 opposed PI(3)K-Akt-mTORC1 signaling to diminish glycolysis and anabolic metabolism while increasing oxidative and catabolic metabolism. Notably, Glut1 expression was sufficient to increase the number of Treg cells, but it reduced their suppressive capacity and Foxp3 expression. Thus, inflammatory signals and Foxp3 balance mTORC1 signaling and glucose metabolism to control the proliferation and suppressive function of Treg cells.


Subject(s)
Forkhead Transcription Factors/metabolism , Glucose Transporter Type 1/metabolism , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Regulatory/immunology , Toll-Like Receptors/metabolism , Animals , Cell Differentiation , Cell Proliferation , Cells, Cultured , Glucose Transporter Type 1/genetics , Glycolysis , Immune Tolerance , Mechanistic Target of Rapamycin Complex 1 , Metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Multiprotein Complexes/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism
11.
Immunity ; 50(1): 64-76.e4, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30635240

ABSTRACT

As long-lived post-mitotic cells, neurons employ unique strategies to resist pathogen infection while preserving cellular function. Here, using a murine model of Zika virus (ZIKV) infection, we identified an innate immune pathway that restricts ZIKV replication in neurons and is required for survival upon ZIKV infection of the central nervous system (CNS). We found that neuronal ZIKV infection activated the nucleotide sensor ZBP1 and the kinases RIPK1 and RIPK3, core components of virus-induced necroptotic cell death signaling. However, activation of this pathway in ZIKV-infected neurons did not induce cell death. Rather, RIPK signaling restricted viral replication by altering cellular metabolism via upregulation of the enzyme IRG1 and production of the metabolite itaconate. Itaconate inhibited the activity of succinate dehydrogenase, generating a metabolic state in neurons that suppresses replication of viral genomes. These findings demonstrate an immunometabolic mechanism of viral restriction during neuroinvasive infection.


Subject(s)
Glycoproteins/metabolism , Hydro-Lyases/metabolism , Neurons/physiology , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Receptors, Pattern Recognition/metabolism , Zika Virus Infection/immunology , Zika Virus/physiology , Animals , Cell Death , Cells, Cultured , Disease Models, Animal , Glycoproteins/genetics , Humans , Hydro-Lyases/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Neuroprotection , RNA, Viral/immunology , RNA-Binding Proteins , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Succinate Dehydrogenase/metabolism , Succinates/metabolism , Virus Replication
12.
CA Cancer J Clin ; 71(4): 333-358, 2021 07.
Article in English | MEDLINE | ID: mdl-33982817

ABSTRACT

Cancer has myriad effects on metabolism that include both rewiring of intracellular metabolism to enable cancer cells to proliferate inappropriately and adapt to the tumor microenvironment, and changes in normal tissue metabolism. With the recognition that fluorodeoxyglucose-positron emission tomography imaging is an important tool for the management of many cancers, other metabolites in biological samples have been in the spotlight for cancer diagnosis, monitoring, and therapy. Metabolomics is the global analysis of small molecule metabolites that like other -omics technologies can provide critical information about the cancer state that are otherwise not apparent. Here, the authors review how cancer and cancer therapies interact with metabolism at the cellular and systemic levels. An overview of metabolomics is provided with a focus on currently available technologies and how they have been applied in the clinical and translational research setting. The authors also discuss how metabolomics could be further leveraged in the future to improve the management of patients with cancer.


Subject(s)
Metabolomics , Neoplasms/metabolism , Biomedical Research , Humans , Medical Oncology , Molecular Targeted Therapy , Neoplasms/therapy
13.
Nature ; 608(7921): 209-216, 2022 08.
Article in English | MEDLINE | ID: mdl-35859173

ABSTRACT

Mechanistic target of rapamycin complex 1 (mTORC1) regulates cell growth and metabolism in response to multiple nutrients, including the essential amino acid leucine1. Recent work in cultured mammalian cells established the Sestrins as leucine-binding proteins that inhibit mTORC1 signalling during leucine deprivation2,3, but their role in the organismal response to dietary leucine remains elusive. Here we find that Sestrin-null flies (Sesn-/-) fail to inhibit mTORC1 or activate autophagy after acute leucine starvation and have impaired development and a shortened lifespan on a low-leucine diet. Knock-in flies expressing a leucine-binding-deficient Sestrin mutant (SesnL431E) have reduced, leucine-insensitive mTORC1 activity. Notably, we find that flies can discriminate between food with or without leucine, and preferentially feed and lay progeny on leucine-containing food. This preference depends on Sestrin and its capacity to bind leucine. Leucine regulates mTORC1 activity in glial cells, and knockdown of Sesn in these cells reduces the ability of flies to detect leucine-free food. Thus, nutrient sensing by mTORC1 is necessary for flies not only to adapt to, but also to detect, a diet deficient in an essential nutrient.


Subject(s)
Adaptation, Physiological , Diet , Drosophila Proteins , Drosophila melanogaster , Leucine , Sestrins , Adaptation, Physiological/genetics , Animal Feed , Animals , Autophagy , Diet/veterinary , Drosophila Proteins/deficiency , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Food Preferences , Leucine/deficiency , Leucine/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Mutant Proteins/genetics , Mutant Proteins/metabolism , Neuroglia/metabolism , Sestrins/deficiency , Sestrins/genetics , Sestrins/metabolism , Signal Transduction
14.
Mol Cell ; 78(6): 1034-1044, 2020 06 18.
Article in English | MEDLINE | ID: mdl-32504556

ABSTRACT

Malignant cells remodel their metabolism to meet the demands of uncontrolled cell proliferation. These demands lead to differential requirements in energy, biosynthetic precursors, and signaling intermediates. Both genetic programs arising from oncogenic events and transcriptional programs and epigenomic events are important in providing the necessary metabolic network activity. Accumulating evidence has established that environmental factors play a major role in shaping cancer cell metabolism. For metabolism, diet and nutrition are the major environmental aspects and have emerged as key components in determining cancer cell metabolism. In this review, we discuss these emerging concepts in cancer metabolism and how diet and nutrition influence cancer cell metabolism.


Subject(s)
Diet Therapy/methods , Neoplasms/diet therapy , Neoplasms/metabolism , Carcinogenesis/metabolism , Cell Proliferation/genetics , Diet/trends , Diet Therapy/trends , Energy Metabolism/genetics , Humans , Metabolic Networks and Pathways/genetics , Metabolic Networks and Pathways/physiology , Neoplasms/genetics , Nutrition Therapy/methods , Signal Transduction/genetics
16.
Immunity ; 48(1): 147-160.e7, 2018 01 16.
Article in English | MEDLINE | ID: mdl-29343435

ABSTRACT

Despite recent advances, many cancers remain refractory to available immunotherapeutic strategies. Emerging evidence indicates that the tolerization of local dendritic cells (DCs) within the tumor microenvironment promotes immune evasion. Here, we have described a mechanism by which melanomas establish a site of immune privilege via a paracrine Wnt5a-ß-catenin-peroxisome proliferator-activated receptor-γ (PPAR-γ) signaling pathway that drives fatty acid oxidation (FAO) in DCs by upregulating the expression of the carnitine palmitoyltransferase-1A (CPT1A) fatty acid transporter. This FAO shift increased the protoporphyrin IX prosthetic group of indoleamine 2,3-dioxgenase-1 (IDO) while suppressing interleukin(IL)-6 and IL-12 cytokine expression, culminating in enhanced IDO activity and the generation of regulatory T cells. We demonstrated that blockade of this pathway augmented anti-melanoma immunity, enhanced the activity of anti-PD-1 antibody immunotherapy, and suppressed disease progression in a transgenic melanoma model. This work implicates a role for tumor-mediated metabolic reprogramming of local DCs in immune evasion and immunotherapy resistance.


Subject(s)
Dendritic Cells/metabolism , Melanoma/immunology , Wnt-5a Protein/metabolism , beta Catenin/metabolism , Animals , Cell Line , Dendritic Cells/immunology , Enzyme-Linked Immunosorbent Assay , Fatty Acids/metabolism , Female , Flow Cytometry , Immunoblotting , Male , Melanoma/metabolism , Mice , Mice, Transgenic , PPAR gamma/metabolism , Paracrine Communication/physiology , Polymerase Chain Reaction , Signal Transduction/physiology
17.
Cell ; 149(3): 656-70, 2012 Apr 27.
Article in English | MEDLINE | ID: mdl-22541435

ABSTRACT

Tumor maintenance relies on continued activity of driver oncogenes, although their rate-limiting role is highly context dependent. Oncogenic Kras mutation is the signature event in pancreatic ductal adenocarcinoma (PDAC), serving a critical role in tumor initiation. Here, an inducible Kras(G12D)-driven PDAC mouse model establishes that advanced PDAC remains strictly dependent on Kras(G12D) expression. Transcriptome and metabolomic analyses indicate that Kras(G12D) serves a vital role in controlling tumor metabolism through stimulation of glucose uptake and channeling of glucose intermediates into the hexosamine biosynthesis and pentose phosphate pathways (PPP). These studies also reveal that oncogenic Kras promotes ribose biogenesis. Unlike canonical models, we demonstrate that Kras(G12D) drives glycolysis intermediates into the nonoxidative PPP, thereby decoupling ribose biogenesis from NADP/NADPH-mediated redox control. Together, this work provides in vivo mechanistic insights into how oncogenic Kras promotes metabolic reprogramming in native tumors and illuminates potential metabolic targets that can be exploited for therapeutic benefit in PDAC.


Subject(s)
Adenocarcinoma/metabolism , Disease Models, Animal , Pancreatic Neoplasms/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism , Animals , Humans , Mice , Proto-Oncogene Proteins p21(ras)/genetics , Transcription, Genetic
18.
Nat Rev Genet ; 21(12): 782, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32978605

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

19.
Nat Rev Genet ; 21(12): 737-753, 2020 12.
Article in English | MEDLINE | ID: mdl-32908249

ABSTRACT

Molecular inputs to chromatin via cellular metabolism are modifiers of the epigenome. These inputs - which include both nutrient availability as a result of diet and growth factor signalling - are implicated in linking the environment to the maintenance of cellular homeostasis and cell identity. Recent studies have demonstrated that these inputs are much broader than had previously been known, encompassing metabolism from a wide variety of sources, including alcohol and microbiotal metabolism. These factors modify DNA and histones and exert specific effects on cell biology, systemic physiology and pathology. In this Review, we discuss the nature of these molecular networks, highlight their role in mediating cellular responses and explore their modifiability through dietary and pharmacological interventions.


Subject(s)
Chromatin/physiology , Epigenesis, Genetic , Alcohol Drinking , Animals , Chromatin/metabolism , Diet , Gene-Environment Interaction , Histones/metabolism , Humans , Microbiota , Neoplasms/genetics , Neoplasms/metabolism , Nutritional Physiological Phenomena , RNA/metabolism
20.
Cell ; 146(4): 607-20, 2011 Aug 19.
Article in English | MEDLINE | ID: mdl-21854985

ABSTRACT

Previous experiments suggest a connection between the N-alpha-acetylation of proteins and sensitivity of cells to apoptotic signals. Here, we describe a biochemical assay to detect the acetylation status of proteins and demonstrate that protein N-alpha-acetylation is regulated by the availability of acetyl-CoA. Because the antiapoptotic protein Bcl-xL is known to influence mitochondrial metabolism, we reasoned that Bcl-xL may provide a link between protein N-alpha-acetylation and apoptosis. Indeed, Bcl-xL overexpression leads to a reduction in levels of acetyl-CoA and N-alpha-acetylated proteins in the cell. This effect is independent of Bax and Bak, the known binding partners of Bcl-xL. Increasing cellular levels of acetyl-CoA by addition of acetate or citrate restores protein N-alpha-acetylation in Bcl-xL-expressing cells and confers sensitivity to apoptotic stimuli. We propose that acetyl-CoA serves as a signaling molecule that couples apoptotic sensitivity to metabolism by regulating protein N-alpha-acetylation.


Subject(s)
Cell Survival , Proteins/metabolism , bcl-X Protein/metabolism , Acetylation , Animals , Apoptosis , Caspase 2/metabolism , Cell Line , Embryo, Mammalian/cytology , Gene Knockout Techniques , HeLa Cells , Humans , Jurkat Cells , Mice , Protein Processing, Post-Translational
SELECTION OF CITATIONS
SEARCH DETAIL