Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Eur Heart J ; 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39078224

ABSTRACT

BACKGROUND AND AIMS: Patients suffering from Brugada syndrome (BrS) are predisposed to life-threatening cardiac arrhythmias. Diagnosis is challenging due to the elusive electrocardiographic (ECG) signature that often requires unconventional ECG lead placement and drug challenges to be detected. Although NaV1.5 sodium channel dysfunction is a recognized pathophysiological mechanism in BrS, only 25% of patients have detectable SCN5A variants. Given the emerging role of autoimmunity in cardiac ion channel function, this study explores the presence and potential impact of anti-NaV1.5 autoantibodies in BrS patients. METHODS: Using engineered HEK293A cells expressing recombinant NaV1.5 protein, plasma from 50 BrS patients and 50 controls was screened for anti-NaV1.5 autoantibodies via western blot, with specificity confirmed by immunoprecipitation and immunofluorescence. The impact of these autoantibodies on sodium current density and their pathophysiological effects were assessed in cellular models and through plasma injection in wild-type mice. RESULTS: Anti-NaV1.5 autoantibodies were detected in 90% of BrS patients vs. 6% of controls, yielding a diagnostic area under the curve of .92, with 94% specificity and 90% sensitivity. These findings were consistent across varying patient demographics and independent of SCN5A mutation status. Electrophysiological studies demonstrated a significant reduction specifically in sodium current density. Notably, mice injected with BrS plasma showed Brugada-like ECG abnormalities, supporting the pathogenic role of these autoantibodies. CONCLUSIONS: The study demonstrates the presence of anti-NaV1.5 autoantibodies in the majority of BrS patients, suggesting an immunopathogenic component of the syndrome beyond genetic predispositions. These autoantibodies, which could serve as additional diagnostic markers, also prompt reconsideration of the underlying mechanisms of BrS, as evidenced by their role in inducing the ECG signature of the syndrome in wild-type mice. These findings encourage a more comprehensive diagnostic approach and point to new avenues for therapeutic research.

2.
Int J Cardiol ; 324: 242-248, 2021 02 01.
Article in English | MEDLINE | ID: mdl-32956782

ABSTRACT

BACKGROUND: Hydroxychloroquine (HCQ) and azithromycin (AZT) have been proposed for COVID-19 treatment. Data available in the literature reported a potential increased risk of fatal arrhythmias under these therapies. The aim of this study was to assess the effects of these drugs on QT interval and outcome in a COVID-19 population. METHOD: A total of 112 consecutive COVID-19 patients were included in this analysis and were divided in 3 groups according to the receiving therapeutic regimens: 19 (17%) patients in Group 1 (no treatment), 40 (36%) in Group 2 (HCQ only), 53 (47%) in Group 3 (HCQ/AZT). RESULTS: A prolonged QTc interval was found in 61% of patients treated with HCQ alone or in combination with AZT, but only 4 (4%) patients showed a QTc > 500 ms. HCQ/AZT combination determined a greater increase of QTc duration compared to the other two strategies (Group 3 452 ± 26.4 vs Group 2 436.3 ± 28.4 vs Group 1 424.4 ± 24.3 ms, respectively; p < 0.001). Multivariate analysis demonstrated that HCQ/AZT combination (OR 9.02, p = 0.001) and older age (OR 1.04, p = 0.031) were independent predictors of QTc prolongation. The risk increased with age (incremental utility analysis p = 0.02). Twenty patients (18%) died, and no cardiac arrest neither arrhythmic fatalities were documented. CONCLUSIONS: The HCQ/AZT combination therapy causes a significantly increase of QT interval compared to HCQ alone. Older patients under such regimen are at higher risk of experiencing QT prolongation. The use of such drugs may be considered as safe relating to arrhythmic risk in the treatment of COVID-19 patients as no arrhythmic fatalities occurred.


Subject(s)
Azithromycin/administration & dosage , Azithromycin/adverse effects , COVID-19/chemically induced , Hydroxychloroquine/administration & dosage , Hydroxychloroquine/adverse effects , Long QT Syndrome/drug therapy , Aged , Aged, 80 and over , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/adverse effects , Antimalarials/administration & dosage , Antimalarials/adverse effects , COVID-19/diagnosis , COVID-19/physiopathology , Drug Therapy, Combination , Electrocardiography/drug effects , Electrocardiography/trends , Female , Follow-Up Studies , Humans , Long QT Syndrome/diagnosis , Male , Middle Aged , Patient Safety , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL