Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters

Publication year range
1.
Opt Express ; 31(2): 3315-3324, 2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36785327

ABSTRACT

The ability of pulsed nature of synchrotron radiation opens up the possibility of studying microsecond dynamics in complex materials via speckle-based techniques. Here, we present the study of measuring the dynamics of a colloidal system by combining single and multiple X-ray pulses of a storage ring. In addition, we apply speckle correlation techniques at various pulse patterns to collect correlation functions from nanoseconds to milliseconds. The obtained sample dynamics from all correlation techniques at different pulse patterns are in very good agreement with the expected dynamics of Brownian motions of silica nanoparticles in water. Our study will pave the way for future pulsed X-ray investigations at various synchrotron X-ray sources using individual X-ray pulse patterns.

2.
Proc Natl Acad Sci U S A ; 117(39): 24110-24116, 2020 09 29.
Article in English | MEDLINE | ID: mdl-32934145

ABSTRACT

Dynamics and kinetics in soft matter physics, biology, and nanoscience frequently occur on fast (sub)microsecond but not ultrafast timescales which are difficult to probe experimentally. The European X-ray Free-Electron Laser (European XFEL), a megahertz hard X-ray Free-Electron Laser source, enables such experiments via taking series of diffraction patterns at repetition rates of up to 4.5 MHz. Here, we demonstrate X-ray photon correlation spectroscopy (XPCS) with submicrosecond time resolution of soft matter samples at the European XFEL. We show that the XFEL driven by a superconducting accelerator provides unprecedented beam stability within a pulse train. We performed microsecond sequential XPCS experiments probing equilibrium and nonequilibrium diffusion dynamics in water. We find nonlinear heating on microsecond timescales with dynamics beyond hot Brownian motion and superheated water states persisting up to 100 µs at high fluences. At short times up to 20 µs we observe that the dynamics do not obey the Stokes-Einstein predictions.

3.
Opt Lett ; 47(2): 293-296, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-35030590

ABSTRACT

Three-dimensional photon correlation spectroscopy (3D PCS) is a well-known technique developed to suppress multiple scattering contributions in correlation functions, which are inevitably involved when an optical laser is employed to investigate dynamics in a turbid system. Here, we demonstrate a proof-of-principle study of 3D PCS in the hard X-ray regime. We employ an X-ray optical cross-correlator to measure the dynamics of silica colloidal nanoparticles dispersed in polypropylene glycol. The obtained cross correlation functions show very good agreement with auto-correlation measurements. This demonstration provides the foundation for X-ray speckle-based studies of very densely packed soft matter systems.

4.
Chemphyschem ; 21(12): 1318-1325, 2020 06 16.
Article in English | MEDLINE | ID: mdl-32250508

ABSTRACT

We study the structure and dynamics of poly(N-isopropylacrylamide) (PNIPAm) core-shell nanogels dispersed in aqueous trimethylamine N-oxide (TMAO) solutions by means of small-angle X-ray scattering and X-ray photon correlation spectroscopy (XPCS). Upon increasing the temperature above the lower critical solution temperature of PNIPAm at 33 °C, a colloidal gel is formed as identified by an increase of I(q) at small q as well as a slowing down of sample dynamics by various orders of magnitude. With increasing TMAO concentration the gelation transition shifts linearly to lower temperatures. Above a TMAO concentration of approximately 0.40 mol/L corresponding to a 1 : 1 ratio of TMAO and NIPAm groups, collapsed PNIPAm states are found for all temperatures without any gelation transition. This suggests that reduction of PNIPAm-water hydrogen bonds due to the presence of TMAO results in a stabilisation of the collapsed PNIPAm state and suppresses gelation of the nanogel.

5.
Soft Matter ; 16(11): 2864-2872, 2020 Mar 21.
Article in English | MEDLINE | ID: mdl-32108204

ABSTRACT

We investigate the out-of-equilibrium dynamics of a colloidal gel obtained by quenching a suspension of soft polymer-coated gold nanoparticles close to and below its gelation point using X-ray Photon Correlation Spectroscopy (XPCS). A faster relaxation process emergent from the localized motions of the nanoparticles reveals a dynamically-arrested network at the nanoscale as a key signature of the gelation process. We find that the slower network dynamics is hyperdiffusive with a compressed exponential form, consistent with stress-driven relaxation processes. Specifically, we use direction-dependent correlation functions to characterize the anisotropy in dynamics. We show that the anisotropy is greater for the gel close to its gelation point than at lower temperatures, and the anisotropy decreases as the gel ages. We quantify the anisotropic dynamical heterogeneities emergent in such a stress-driven dynamical system using higher order intensity correlations, and demonstrate that the aging phenomenon contributes significantly to the properties evaluated by the fluctuations in the intensity correlations. Our results provide important insights into the structural origin of the emergent anisotropic and cooperative heterogeneous dynamics, and we discuss analogies with previous work on other soft disordered systems.

6.
Soft Matter ; 16(2): 466-475, 2020 Jan 02.
Article in English | MEDLINE | ID: mdl-31803889

ABSTRACT

We study the structure and dynamics of aqueous dispersions of densely packed core-shell nanoparticles composed of a silica core and a poly(N-isoproylacrylamide) (PNIPAm) shell as a function of temperature and concentration. With small angle X-ray scattering (SAXS) and X-ray photon correlation spectroscopy (XPCS) we shed light on the structural and dynamical changes of the thermo-responsive colloidal nanogel during its volume phase transition at a lower critical solution temperature (LCST) of 32 °C. A transition of the dynamics and its distinct dependency on the particle number concentration could be determined by analysing the intensity autocorrelation function while the structural transition remains concentration independent. We found the dynamics of a jammed system beyond a critical concentration. In addition, by variation of the PNIPAm shell size we tuned both the effective volume fraction and the underlying nature of the dynamics in the system. With our results we can present a full phase diagram of a PNIPAm core-shell system that spans from diluted suspensions, where the system behaves like a liquid, to an effective volume fraction of more than ninety percent where after exceeding a critical concentration the system undergoes a temperature-induced transition from a liquid towards a colloidal gel.

7.
Small ; 15(20): e1900438, 2019 May.
Article in English | MEDLINE | ID: mdl-30993864

ABSTRACT

Self-assembled nanocrystal superlattices have attracted large scientific attention due to their potential technological applications. However, the nucleation and growth mechanisms of superlattice assemblies remain largely unresolved due to experimental difficulties to monitor intermediate states. Here, the self-assembly of colloidal PbS nanocrystals is studied in real time by a combination of controlled solvent evaporation from the bulk solution and in situ small-angle X-ray scattering (SAXS) in transmission geometry. For the first time for the investigated system a hexagonal closed-packed (hcp) superlattice formed in a solvent vapor saturated atmosphere is observed during slow solvent evaporation from a colloidal suspension. The highly ordered hcp superlattice is followed by a transition into the final body-centered cubic superlattice upon complete drying. Additionally, X-ray cross-correlation analysis of Bragg reflections is applied to access information on precursor structures in the assembly process, which is not evident from conventional SAXS analysis. The detailed evolution of the crystal structure with time provides key results for understanding the assembly mechanism and the role of ligand-solvent interactions, which is important both for fundamental research and for fabrication of superlattices with desired properties.

8.
Sci Adv ; 10(16): eadm7876, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38640237

ABSTRACT

Stimuli-responsive polymers are an important class of materials with many applications in nanotechnology and drug delivery. The most prominent one is poly-N-isopropylacrylamide (PNIPAm). The characterization of the kinetics of its change after a temperature jump is still a lively research topic, especially at nanometer-length scales where it is not possible to rely on conventional microscopic techniques. Here, we measured in real time the collapse of a PNIPAm shell on silica nanoparticles with megahertz x-ray photon correlation spectroscopy at the European XFEL. We characterize the changes of the particles diffusion constant as a function of time and consequently local temperature on sub-microsecond timescales. We developed a phenomenological model to describe the observed data and extract the characteristic times associated to the swelling and collapse processes. Different from previous studies tracking the turbidity of PNIPAm dispersions and using laser heating, we find collapse times below microsecond timescales and two to three orders of magnitude slower swelling times.

9.
J Phys Chem Lett ; 14(20): 4719-4725, 2023 May 25.
Article in English | MEDLINE | ID: mdl-37171882

ABSTRACT

The dynamics and time scales of higher-order correlations are studied in supercooled colloidal systems. A combination of X-ray photon correlation spectroscopy (XPCS) and X-ray cross-correlation analysis (XCCA) shows the typical slowing of the dynamics of a hard sphere system when approaching the glass transition. The time scales of higher-order correlations are probed using a novel time correlation function gC, tracking the time evolution of cross-correlation function C. With an increasing volume fraction, the ratio of relaxation times of gC to the standard individual particle relaxation time obtained by XPCS increases from ∼0.4 to ∼0.9. While a value of ∼0.5 is expected for free diffusion, the increasing values suggest that the local orders within the sample are becoming more long-lived for larger volume fractions. Furthermore, the dynamics of local order is more heterogeneous than the individual particle dynamics. These results indicate that not only the presence but also the lifetime of locally favored structures increases close to the glass transition.

10.
IUCrJ ; 8(Pt 5): 775-783, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34584738

ABSTRACT

Many soft-matter systems are composed of macromolecules or nanoparticles suspended in water. The characteristic times at intrinsic length scales of a few nanometres fall therefore in the microsecond and sub-microsecond time regimes. With the development of free-electron lasers (FELs) and fourth-generation synchrotron light-sources, time-resolved experiments in such time and length ranges will become routinely accessible in the near future. In the present work we report our findings on prototypical soft-matter systems, composed of charge-stabilized silica nanoparticles dispersed in water, with radii between 12 and 15 nm and volume fractions between 0.005 and 0.2. The sample dynamics were probed by means of X-ray photon correlation spectroscopy, employing the megahertz pulse repetition rate of the European XFEL and the Adaptive Gain Integrating Pixel Detector. We show that it is possible to correctly identify the dynamical properties that determine the diffusion constant, both for stationary samples and for systems driven by XFEL pulses. Remarkably, despite the high photon density the only observable induced effect is the heating of the scattering volume, meaning that all other X-ray induced effects do not influence the structure and the dynamics on the probed timescales. This work also illustrates the potential to control such induced heating and it can be predicted with thermodynamic models.

11.
Front Neurosci ; 14: 618395, 2020.
Article in English | MEDLINE | ID: mdl-33519369

ABSTRACT

Over the past decades, the human life span has dramatically increased, and therefore, a steady increase in diseases associated with age (such as Alzheimer's disease and Parkinson's disease) is expected. In these neurodegenerative diseases, there is a cognitive decline and memory loss, which accompany increased systemic inflammation, the inflamm-aging, and the insulin resistance. Despite numerous studies of age-related pathologies, data on the contribution of brain insulin resistance and innate immunity components to aging are insufficient. Recently, much research has been focused on the consequences of nutrients and adiposity- and nutrient-related signals in brain aging and cognitive decline. Moreover, given the role of metainflammation in neurodegeneration, lifestyle interventions such as calorie restriction may be an effective way to break the vicious cycle of metainflammation and have a role in social behavior. The various effects of calorie restriction on metainflammation, insulin resistance, and neurodegeneration have been described. Less attention has been paid to the social determinants of aging and the possible mechanism by which calorie restriction might influence social behavior. The purpose of this review is to discuss current knowledge in the interdisciplinary field of geroscience-immunosenescence, inflamm-aging, and metainflammation-which makes a significant contribution to aging. A substantial part of the review is devoted to frontiers in the brain insulin resistance in relation to neuroinflammation. In addition, we summarize new data on potential mechanisms of calorie restriction that influence as a lifestyle intervention on the social brain. This knowledge can be used to initiate successful aging and slow the onset of neurodegenerative diseases.

12.
J Phys Chem Lett ; 10(20): 6331-6338, 2019 Oct 17.
Article in English | MEDLINE | ID: mdl-31578064

ABSTRACT

We study the in situ self-assembly of faceted PbS nanocrystals from colloidal suspensions upon controlled solvent evaporation using time-resolved small-angle X-ray scattering and X-ray cross-correlation analysis. In our bulk-sensitive experiment in transmission geometry, the superlattice crystallization is observed in real time, revealing a hexagonal closed-packed (hcp) structure followed by formation of a body-centered cubic (bcc) superlattice. The bcc superlattice undergoes continuous tetragonal distortion in the solvated state shortly after its formation, resulting in the body-centered tetragonal (bct) structure. Upon solvent evaporation, the bct superstructure becomes more pronounced with the still coexisting hcp phase. These findings corroborate the existing simulations of assembling cuboctahedral-shaped particles and illustrate that we observed the predicted equilibrium states. This work is essential for a deeper understanding of the fundamental forces that direct nanocrystal assembly including nanocrystal shape and ligand coverage.

13.
J Phys Chem Lett ; 10(17): 5231-5236, 2019 Sep 05.
Article in English | MEDLINE | ID: mdl-31433650

ABSTRACT

We present the structure and dynamics of highly concentrated core-shell nanoparticles composed of a silica core and a poly(N-isoproylacrylamide) (PNIPAm) shell suspended in water. With X-ray photon correlation spectroscopy, we are able to follow dynamical changes over the volume phase transition of PNIPAm at LCST = 32 °C. On raising the temperature beyond LCST, the structural relaxation times continue to decrease. The effect is accompanied by a transition from stretched to compressed exponential shape of the intensity autocorrelation function. Upon further heating, we find a sudden slowing down for the particles in their collapsed state. The q dependence of the relaxation time shows an anomalous change from τc ∝ q-3 to τc ∝ q-1. Small angle X-ray scattering data evidence a temperature-induced transition from repulsive to attractive forces. Our results indicate a temperature-induced phase transition from a colloidal liquid with polymer-driven dynamics toward a colloidal gel.

14.
Nanoscale ; 5(10): 4230-5, 2013 May 21.
Article in English | MEDLINE | ID: mdl-23545580

ABSTRACT

Semiconductor nanowire field-effect transistors (FETs) are interesting for fundamental studies of charge transport as well as possible applications in electronics. Here, we report low-voltage, low-hysteresis and ambipolar PbSe nanowire FETs using electrolyte-gating with ionic liquids and ion gels. We obtain balanced hole and electron mobilities at gate voltages below 1 V. Due to the large effective capacitance of the ionic liquids and thus high charge carrier densities electrolyte-gated nanowire FETs are much less affected by external doping and traps than nanowire FETs with traditional dielectrics such as SiO2. The observed current-voltage characteristics and on/off ratios indicate almost completely transparent Schottky barriers and efficient ambipolar charge injection into a low band gap one-dimensional semiconductor. Finally, we explore the possibility of applying these ambipolar nanowire FETs in complementary inverters for printed electronics.

15.
ACS Appl Mater Interfaces ; 5(5): 1656-62, 2013 Mar 13.
Article in English | MEDLINE | ID: mdl-23398625

ABSTRACT

High mobility, solution-processed field-effect transistors are important building blocks for flexible electronics. Here we demonstrate the alignment of semiconducting, colloidal ZnO nanorods by a simple solvent evaporation technique and achieve high electron mobilities in field-effect transistors at low operating voltages by electrolyte-gating with ionic liquids. The degree of alignment varies with nanorod length, concentration and solvent evaporation rate. We find a strong dependence of electron mobility on the degree of alignment but less on the length of the nanorods. Maximum field-effect mobilities reach up to 9 cm(2) V(-1) s(-1) for optimal alignment. Because of the low process temperature (150 °C), ZnO nanorod thin films are suitable for application on flexible polymer substrates.

16.
Nanoscale Res Lett ; 6(1): 79, 2011 Jan 12.
Article in English | MEDLINE | ID: mdl-21711581

ABSTRACT

Resonant Raman study reveals the noticeable effect of the ligand exchange on the nanocrystal (NC) surface onto the phonon spectra of colloidal CdTe NC of different size and composition. The oleic acid ligand exchange for pyridine ones was found to change noticeably the position and width of the longitudinal optical (LO) phonon mode, as well as its intensity ratio to overtones. The broad shoulder above the LO peak frequency was enhanced and sharpened after pyridine treatment, as well as with decreasing NC size. The low-frequency mode around 100 cm-1 which is commonly related with the disorder-activated acoustical phonons appears in smaller NCs but is not enhanced after pyridine treatment. Surprisingly, the feature at low-frequency shoulder of the LO peak, commonly assigned to the surface optical phonon mode, was not sensitive to ligand exchange and concomitant close packing of the NCs. An increased structural disorder on the NC surface, strain and modified electron-phonon coupling is discussed as the possible reason of the observed changes in the phonon spectrum of ligand-exchanged CdTe NCs.PACS: 63.20.-e, 78.30.-j, 78.67.-n, 78.67.Bf.

SELECTION OF CITATIONS
SEARCH DETAIL