ABSTRACT
INTRODUCTION: Arthrogryposis multiplex congenita (AMC) refers to a clinical presentation of congenital contractures involving two or more body areas. More than 400 distinct conditions may lead to AMC, making the aetiological diagnosis challenging. The objective of this work was to set up evidence-based recommendations for the diagnosis of AMC by taking advantage of both data from our nation-wide cohort of children with AMC and from the literature. MATERIAL AND METHODS: We conducted a retrospective single-centre observational study. Patients had been evaluated at least once at a paediatric age in the AMC clinic of Grenoble University Hospital between 2007 and 2019. After gathering data about their diagnostic procedure, a literature review was performed for each paraclinical investigation to discuss their relevance. RESULTS: One hundred and twenty-five patients were included, 43% had Amyoplasia, 27% had distal arthrogryposis and 30% had other forms. A definitive aetiological diagnosis was available for 66% of cases. We recommend a two-time diagnostic process: first, non-invasive investigations that aim at classifying patients into one of the three groups, and second, selected investigations targeting a subset of patients. CONCLUSION: The aetiological management for patients with AMC remains arduous. This process will be facilitated by the increasing use of next-generation sequencing combined with detailed phenotyping. Invasive investigations should be avoided because of their limited yield.
Subject(s)
Arthrogryposis , Humans , Child , Arthrogryposis/diagnosis , Arthrogryposis/genetics , Retrospective Studies , High-Throughput Nucleotide Sequencing , Observational Studies as TopicABSTRACT
PURPOSE: Marfanoid habitus (MH) combined with intellectual disability (ID) (MHID) is a clinically and genetically heterogeneous presentation. The combination of array CGH and targeted sequencing of genes responsible for Marfan or Lujan-Fryns syndrome explain no more than 20% of subjects. METHODS: To further decipher the genetic basis of MHID, we performed exome sequencing on a combination of trio-based (33 subjects) or single probands (31 subjects), of which 61 were sporadic. RESULTS: We identified eight genes with de novo variants (DNVs) in at least two unrelated individuals (ARID1B, ATP1A1, DLG4, EHMT1, NFIX, NSD1, NUP205 and ZEB2). Using simulation models, we showed that five genes (DLG4, NFIX, EHMT1, ZEB2 and ATP1A1) met conservative Bonferroni genomewide significance for an excess of the observed de novo point variants. Overall, at least one pathogenic or likely pathogenic variant was identified in 54.7% of subjects (35/64). These variants fell within 27 genes previously associated with Mendelian disorders, including NSD1 and NFIX, which are known to be mutated in overgrowth syndromes. CONCLUSION: We demonstrated that DNVs were enriched in chromatin remodelling (p=2×10-4) and genes regulated by the fragile X mental retardation protein (p=3×10-8), highlighting overlapping genetic mechanisms between MHID and related neurodevelopmental disorders.
Subject(s)
Craniofacial Abnormalities/genetics , Histone-Lysine N-Methyltransferase/genetics , Intellectual Disability/genetics , Marfan Syndrome/genetics , Mental Retardation, X-Linked/genetics , NFI Transcription Factors/genetics , Adolescent , Adult , Child , Chromatin Assembly and Disassembly , Craniofacial Abnormalities/pathology , Exome/genetics , Female , Genetic Predisposition to Disease , Humans , Intellectual Disability/pathology , Male , Marfan Syndrome/pathology , Mental Retardation, X-Linked/pathology , Middle Aged , Mutation/genetics , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/pathology , Exome Sequencing , Young AdultABSTRACT
Many deletions of chromosome 17p13.1 have been described, but very few 17p13.1 duplications have been reported yet. Here, we describe the genotype and phenotype of a boy with a duplication of this region. The main clinical features are mild intellectual deficiency, growth retardation, and a typical Silver-Russell syndrome (SRS) appearance with small triangular face, prominent forehead, micrognathia, low-set ears, and clinodactyly. Array-CGH revealed a 586 kb duplication containing many genes with a high neuronal expression. Interestingly, this region covers the minimal critical region including all candidate genes suggested to explain the 17p13.1 microdeletion syndrome. In the neighboring region 17p13.3, deletions and duplications of the same region are each responsible of a specific phenotype. Future case descriptions will show if a similar mechanism applies to the region 17p13.1. The 17p13.1 region contains interesting putative candidate genes that might be involved in the SRS etiology. Additional data are needed to verify the significance of this aberration.
Subject(s)
Chromosome Duplication , Chromosomes, Human, Pair 17/genetics , Intellectual Disability/genetics , Silver-Russell Syndrome/genetics , Silver-Russell Syndrome/pathology , Adolescent , Comparative Genomic Hybridization , Genetic Association Studies , Humans , In Situ Hybridization, Fluorescence , MaleABSTRACT
The increasing use of array-CGH in malformation syndromes with intellectual disability could lead to the description of new contiguous gene syndrome by the analysis of the gene content of the microdeletion and reverse phenotyping. Thanks to a national and international call for collaboration by Achropuce and Decipher, we recruited four patients carrying de novo overlapping deletions of chromosome 9q33.3q34.11, including the STXBP1, the LMX1B and the ENG genes. We restrained the selection to these three genes because the effects of their haploinsufficency are well described in the literature and easily recognizable clinically. All deletions were detected by array-CGH and confirmed by FISH. The patients display common clinical features, including intellectual disability with epilepsy, owing to the presence of STXBP1 within the deletion, nail dysplasia and bone malformations, in particular patellar abnormalities attributed to LMX1B deletion, epistaxis and cutaneous-mucous telangiectasias explained by ENG haploinsufficiency and common facial dysmorphism. This systematic analysis of the genes comprised in the deletion allowed us to identify genes whose haploinsufficiency is expected to lead to disease manifestations and complications that require personalized follow-up, in particular for renal, eye, ear, vascular and neurological manifestations.
Subject(s)
Chromosome Deletion , Craniofacial Abnormalities/genetics , Endoglin/genetics , Epilepsy/genetics , Intellectual Disability/genetics , LIM-Homeodomain Proteins/genetics , Munc18 Proteins/genetics , Transcription Factors/genetics , Adolescent , Child , Chromosomes, Human, Pair 9/genetics , Craniofacial Abnormalities/diagnosis , Epilepsy/diagnosis , Female , Haploinsufficiency , Humans , Intellectual Disability/diagnosis , Male , Phenotype , SyndromeABSTRACT
Down syndrome (DS) is one of the most frequent congenital birth defects, and the most common genetic cause of mental retardation. In most cases, DS results from the presence of an extra copy of chromosome 21. DS has a complex phenotype, and a major goal of DS research is to identify genotype-phenotype correlations. Cases of partial trisomy 21 and other HSA21 rearrangements associated with DS features could identify genomic regions associated with specific phenotypes. We have developed a BAC array spanning HSA21q and used array comparative genome hybridization (aCGH) to enable high-resolution mapping of pathogenic partial aneuploidies and unbalanced translocations involving HSA21. We report the identification and mapping of 30 pathogenic chromosomal aberrations of HSA21 consisting of 19 partial trisomies and 11 partial monosomies for different segments of HSA21. The breakpoints have been mapped to within approximately 85 kb. The majority of the breakpoints (26 of 30) for the partial aneuploidies map within a 10-Mb region. Our data argue against a single DS critical region. We identify susceptibility regions for 25 phenotypes for DS and 27 regions for monosomy 21. However, most of these regions are still broad, and more cases are needed to narrow down the phenotypic maps to a reasonable number of candidate genomic elements per phenotype.