Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Vaccine ; 41(43): 6434-6443, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37770298

ABSTRACT

The SARS-CoV-2 pandemic has a huge impact on public health and global economy, meaning an enormous scientific, political, and social challenge. Studying how infection or vaccination triggers both cellular and humoral responses is essential to know the grade and length of protection generated in the population. Nowadays, scientists and authorities around the world are increasingly concerned about the arrival of new variants, which have a greater spread, due to the high mutation rate of this virus. The aim of this review is to summarize the different techniques available for the study of the immune responses after exposure or vaccination against SARS-CoV-2, showing their advantages and limitations, and proposing suitable combinations of different techniques to achieve extensive information in these studies. We wish that the information provided here will helps other scientists in their studies of the immune response against SARS-CoV-2 after vaccination with new vaccine candidates or infection with upcoming variants.


Subject(s)
COVID-19 , Physicians , Humans , SARS-CoV-2 , COVID-19/prevention & control , Pandemics/prevention & control , Public Health , Vaccination , Antibodies, Viral
2.
Methods Mol Biol ; 2673: 123-130, 2023.
Article in English | MEDLINE | ID: mdl-37258910

ABSTRACT

The advent of computational approaches has accelerated the identification of vaccine candidates like epitope peptides. However, epitope peptides are usually very poorly immunogenic and adequate platforms are required with adjuvant capacity to verity immunogenicity and antigenicity of vaccine subunits in vivo. Silicon microparticles are being developed as potential new adjuvants for vaccine delivery due to their physicochemical properties. This chapter explains the methodology to fabricate and functionalize mesoporous silicon microparticles (MSMPs) which can be loaded with antigens of different nature, such as viral peptides, proteins, or carbohydrates, and this strategy is particularly suitable for delivery of epitopes identified by computer.


Subject(s)
Silicon , Vaccines , Silicon/chemistry , Drug Delivery Systems/methods , Peptides , Adjuvants, Immunologic , Epitopes , Adjuvants, Pharmaceutic
3.
Front Immunol ; 14: 1111569, 2023.
Article in English | MEDLINE | ID: mdl-36817489

ABSTRACT

Background: Immunocompromised patients have an increased risk of developing severe COVID disease, as well as a tendency to suboptimal responses to vaccines. The objective of this study was to evaluate the specific cellular and humoral adaptive immune responses of a cohort of kidney transplant recipients (KTR) after 3 doses of mRNA-1273 vaccine and to determinate the main factors involved. Methods: Prospective observational study in 221 KTR (149 non infected), 55 healthy volunteers (HV) and 23 dialysis patients (DP). We evaluated anti-spike (by quantitative chemiluminescence immunoassay) and anti-nucleocapsid IgG (ELISA), percentage of TCD4+ and TCD8+ lymphocytes producing IFNγ against S-protein by intracellular flow cytometry after Spike-specific 15-mer peptide stimulation and serum neutralizing activity (competitive ELISA) at baseline and after vaccination. Results: Among COVID-19 naïve KTR, 54.2% developed cellular and humoral response after the third dose (vs 100% in DP and 91.7% in HV), 18% only showed cell-mediated response, 22.2% exclusively antibody response and 5.6% none. A correlation of neutralizing activity with both the IgG titer (r=0.485, p<0.001) and the percentage of S-protein-specific IFNγ-producing CD8-T cells (r=0.198, p=0.049) was observed. Factors related to the humoral response in naïve KTR were: lymphocytes count pre-vaccination >1000/mm3 [4.68 (1.72-12.73, p=0.003], eGFR>30 mL/min [7.34(2.72-19.84), p<0.001], mTOR inhibitors [6.40 (1.37-29.86), p=0.018]. Infected KTR developed a stronger serologic response than naïve patients (96.8 vs 75.2%, p<0.001). Conclusions: KTR presented poor cellular and humoral immune responses following vaccination with mRNA-1273. The immunosuppression degree and kidney function of these patients play an important role, but the only modifiable factor with a high impact on humoral immunogenicity after a booster dose was an immunosuppressive therapy including a mTOR inhibitor. Clinical trials are required to confirm these results.


Subject(s)
COVID-19 , Kidney Transplantation , Humans , Immunity, Humoral , 2019-nCoV Vaccine mRNA-1273 , MTOR Inhibitors , SARS-CoV-2 , Immunoglobulin G , TOR Serine-Threonine Kinases
SELECTION OF CITATIONS
SEARCH DETAIL