Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Mol Psychiatry ; 28(3): 1248-1255, 2023 03.
Article in English | MEDLINE | ID: mdl-36476732

ABSTRACT

Attention-deficit/hyperactivity disorder (ADHD) persists in older age and is postulated as a risk factor for cognitive impairment and Alzheimer's Disease (AD). However, these findings rely primarily on electronic health records and can present biased estimates of disease prevalence. An obstacle to investigating age-related cognitive decline in ADHD is the absence of large-scale studies following patients with ADHD into older age. Alternatively, this study aimed to determine whether genetic liability for ADHD, as measured by a well-validated ADHD polygenic risk score (ADHD-PRS), is associated with cognitive decline and the development of AD pathophysiology in cognitively unimpaired (CU) older adults. We calculated a weighted ADHD-PRS in 212 CU individuals without a clinical diagnosis of ADHD (55-90 years). These individuals had baseline amyloid-ß (Aß) positron emission tomography, longitudinal cerebrospinal fluid (CSF) phosphorylated tau at threonine 181 (p-tau181), magnetic resonance imaging, and cognitive assessments for up to 6 years. Linear mixed-effects models were used to test the association of ADHD-PRS with cognition and AD biomarkers. Higher ADHD-PRS was associated with greater cognitive decline over 6 years. The combined effect between high ADHD-PRS and brain Aß deposition on cognitive deterioration was more significant than each individually. Additionally, higher ADHD-PRS was associated with increased CSF p-tau181 levels and frontoparietal atrophy in CU Aß-positive individuals. Our results suggest that genetic liability for ADHD is associated with cognitive deterioration and the development of AD pathophysiology. Findings were mostly observed in Aß-positive individuals, suggesting that the genetic liability for ADHD increases susceptibility to the harmful effects of Aß pathology.


Subject(s)
Alzheimer Disease , Attention Deficit Disorder with Hyperactivity , Cognitive Dysfunction , Humans , Aged , Alzheimer Disease/genetics , Amyloid beta-Peptides , Positron-Emission Tomography/methods , Risk Factors , tau Proteins , Biomarkers/cerebrospinal fluid
2.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Article in English | MEDLINE | ID: mdl-33879569

ABSTRACT

There are currently no disease-modifying treatments for Alzheimer's disease (AD), and an understanding of preclinical causal biomarkers to help target disease pathogenesis in the earliest phases remains elusive. Here, we investigated whether 19 metabolites previously associated with midlife cognition-a preclinical predictor of AD-translate to later clinical risk, using Mendelian randomization (MR) to tease out AD-specific causal relationships. Summary statistics from the largest genome-wide association studies (GWASs) for AD and metabolites were used to perform bidirectional univariable MR. Bayesian model averaging (BMA) was additionally performed to address high correlation between metabolites and identify metabolite combinations that may be on the AD causal pathway. Univariable MR indicated four extra-large high-density lipoproteins (XL.HDL) on the causal pathway to AD: free cholesterol (XL.HDL.FC: 95% CI = 0.78 to 0.94), total lipids (XL.HDL.L: 95% CI = 0.80 to 0.97), phospholipids (XL.HDL.PL: 95% CI = 0.81 to 0.97), and concentration of XL.HDL particles (95% CI = 0.79 to 0.96), significant at an adjusted P < 0.009. MR-BMA corroborated XL.HDL.FC to be among the top three causal metabolites, in addition to total cholesterol in XL.HDL (XL.HDL.C) and glycoprotein acetyls (GP). Both XL.HDL.C and GP demonstrated suggestive univariable evidence of causality (P < 0.05), and GP successfully replicated within an independent dataset. This study offers insight into the causal relationship between metabolites demonstrating association with midlife cognition and AD. It highlights GP in addition to several XL.HDLs-particularly XL.HDL.FC-as causal candidates warranting further investigation. As AD pathology is thought to develop decades prior to symptom onset, expanding on these findings could inform risk reduction strategies.


Subject(s)
Alzheimer Disease/genetics , Blood/metabolism , Cognition/physiology , Alzheimer Disease/diagnosis , Alzheimer Disease/etiology , Bayes Theorem , Biomarkers/blood , Causality , Cholesterol , Cholesterol, HDL/blood , Cholesterol, LDL/blood , Computational Biology/methods , Databases, Genetic , Genetic Predisposition to Disease/genetics , Genetic Variation/genetics , Genome-Wide Association Study , Humans , Mendelian Randomization Analysis/methods , Metabolomics/methods , Polymorphism, Single Nucleotide/genetics , Risk Factors , Triglycerides/blood
3.
EClinicalMedicine ; 73: 102645, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38841708

ABSTRACT

Background: There is uncertainty regarding how best to support patients with anorexia nervosa following inpatient or day care treatment. This study evaluated the impact of augmenting intensive treatment with a digital, guided, self-management intervention (ECHOMANTRA) for patients with anorexia nervosa and their carers. Methods: In this pragmatic multicentre randomised controlled trial and economic evaluation, patients with a diagnosis of anorexia nervosa or atypical anorexia nervosa, aged 16+ and attending one of the 31 inpatient or day-patient services in the UK were randomised with one of their carers to receive ECHOMANTRA plus treatment as usual (TAU), or TAU alone. ECHOMANTRA was hosted on a digital platform and included a workbook, recovery-oriented video-clips and online facilitated groups (patients only, carers only, joint patient-carer). Participants were randomised on a 1:1 ratio using a minimisation algorithm to stratify by site (N = 31) and severity (defined by BMI <15 and ≥ 15 kg/m2 at baseline). The primary outcome was patient depression, anxiety, and stress at 12 months. Primary and secondary outcomes were compared between trial arms on an intention-to-treat basis (ITT). This trial is registered with the ISRSTN registry, ISRCTN14644379. Findings: Between July 01, 2017 and July 20, 2020, 371 patient-carer dyads were enrolled and randomly assigned to ECHOMANTRA + TAU (N = 185) or TAU alone (N = 186). There were no significant differences between trial arms with regards to the primary outcome (completed by N = 143 patients in the TAU group, Mean = 61.7, SD = 29.4 and N = 109 patients in the ECHOMANTRA + TAU group, Mean = 58.3, SD = 26.9; estimated mean difference 0.48 points; 95% CI -5.36 to 6.33; p = 0.87). Differences on secondary outcomes were small and non-significant (standardised effect size estimates ≤0.25). Five patients died (2 from suicide and 3 from physical complications) over the course of the trial, and this was unrelated to their participation in the study. Interpretation: ECHOMANTRA added to TAU was not superior to TAU alone in reducing patient depression, anxiety, and stress symptoms. This may be explained by limited engagement with the intervention materials and changes in usual care practices since the beginning of the trial. Funding: National Institute for Health Research (NIHR), under its Health Technology Assessment Programme (HTA) Programme (Grant Reference Number 14/68/09). NIHR Maudsley Biomedical Research Centre (BRC), South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, and King's College London. NIHR Applied Research Collaboration South London (NIHR ARC South London) at King's College Hospital NHS Foundation Trust.

4.
Alzheimers Res Ther ; 15(1): 38, 2023 02 22.
Article in English | MEDLINE | ID: mdl-36814324

ABSTRACT

BACKGROUND: Identifying blood-based signatures of brain health and preclinical pathology may offer insights into early disease mechanisms and highlight avenues for intervention. Here, we systematically profiled associations between blood metabolites and whole-brain volume, hippocampal volume, and amyloid-ß status among participants of Insight 46-the neuroscience sub-study of the National Survey of Health and Development (NSHD). We additionally explored whether key metabolites were associated with polygenic risk for Alzheimer's disease (AD). METHODS: Following quality control, levels of 1019 metabolites-detected with liquid chromatography-mass spectrometry-were available for 1740 participants at age 60-64. Metabolite data were subsequently clustered into modules of co-expressed metabolites using weighted coexpression network analysis. Accompanying MRI and amyloid-PET imaging data were present for 437 participants (age 69-71). Regression analyses tested relationships between metabolite measures-modules and hub metabolites-and imaging outcomes. Hub metabolites were defined as metabolites that were highly connected within significant (pFDR < 0.05) modules or were identified as a hub in a previous analysis on cognitive function in the same cohort. Regression models included adjustments for age, sex, APOE genotype, lipid medication use, childhood cognitive ability, and social factors. Finally, associations were tested between AD polygenic risk scores (PRS), including and excluding the APOE region, and metabolites and modules that significantly associated (pFDR < 0.05) with an imaging outcome (N = 1638). RESULTS: In the fully adjusted model, three lipid modules were associated with a brain volume measure (pFDR < 0.05): one enriched in sphingolipids (hippocampal volume: ß = 0.14, 95% CI = [0.055,0.23]), one in several fatty acid pathways (whole-brain volume: ß = - 0.072, 95%CI = [- 0.12, - 0.026]), and another in diacylglycerols and phosphatidylethanolamines (whole-brain volume: ß = - 0.066, 95% CI = [- 0.11, - 0.020]). Twenty-two hub metabolites were associated (pFDR < 0.05) with an imaging outcome (whole-brain volume: 22; hippocampal volume: 4). Some nominal associations were reported for amyloid-ß, and with an AD PRS in our genetic analysis, but none survived multiple testing correction. CONCLUSIONS: Our findings highlight key metabolites, with functions in membrane integrity and cell signalling, that associated with structural brain measures in later life. Future research should focus on replicating this work and interrogating causality.


Subject(s)
Alzheimer Disease , Aged , Humans , Middle Aged , Alzheimer Disease/genetics , Amyloid beta-Peptides/metabolism , Apolipoproteins E/metabolism , Brain/metabolism , Lipids , Neuroimaging , Risk Factors
5.
Brain Commun ; 4(1): fcab291, 2022.
Article in English | MEDLINE | ID: mdl-35187482

ABSTRACT

Investigating associations between metabolites and late midlife cognitive function could reveal potential markers and mechanisms relevant to early dementia. Here, we systematically explored the metabolic correlates of cognitive outcomes measured across the seventh decade of life, while untangling influencing life course factors. Using levels of 1019 metabolites profiled by liquid chromatography-mass spectrometry (age 60-64), we evaluated relationships between metabolites and cognitive outcomes in the British 1946 Birth Cohort (N = 1740). We additionally conducted pathway and network analyses to allow for greater insight into potential mechanisms, and sequentially adjusted for life course factors across four models, including sex and blood collection (Model 1), Model 1 + body mass index and lipid medication (Model 2), Model 2 + social factors and childhood cognition (Model 3) and Model 3 + lifestyle influences (Model 4). After adjusting for multiple tests, 155 metabolites, 10 pathways and 5 network modules were associated with cognitive outcomes. Of the 155, 35 metabolites were highly connected in their network module (termed 'hub' metabolites), presenting as promising marker candidates. Notably, we report relationships between a module comprised of acylcarnitines and processing speed which remained robust to life course adjustment, revealing palmitoylcarnitine (C16) as a hub (Model 4: ß = -0.10, 95% confidence interval = -0.15 to -0.052, P = 5.99 × 10-5). Most associations were sensitive to adjustment for social factors and childhood cognition; in the final model, four metabolites remained after multiple testing correction, and 80 at P < 0.05. Two modules demonstrated associations that were partly or largely attenuated by life course factors: one enriched in modified nucleosides and amino acids (overall attenuation = 39.2-55.5%), and another in vitamin A and C metabolites (overall attenuation = 68.6-92.6%). Our other findings, including a module enriched in sphingolipid pathways, were entirely explained by life course factors, particularly childhood cognition and education. Using a large birth cohort study with information across the life course, we highlighted potential metabolic mechanisms associated with cognitive function in late midlife, suggesting marker candidates and life course relationships for further study.

6.
Biol Psychiatry Glob Open Sci ; 2(2): 167-179, 2022 Apr.
Article in English | MEDLINE | ID: mdl-36325159

ABSTRACT

Background: Education and cognition demonstrate consistent inverse associations with Alzheimer's disease (AD). The biological underpinnings, however, remain unclear. Blood metabolites reflect the end point of biological processes and are accessible and malleable. Identifying metabolites with etiological relevance to AD and disentangling how these relate to cognitive factors along the AD causal pathway could, therefore, offer unique insights into underlying causal mechanisms. Methods: Using data from the largest metabolomics genome-wide association study (N ≈ 24,925) and three independent AD cohorts (N = 4725), cross-trait polygenic scores were generated and meta-analyzed. Metabolites genetically associated with AD were taken forward for causal analyses. Bidirectional two-sample Mendelian randomization interrogated univariable causal relationships between 1) metabolites and AD; 2) education and cognition; 3) metabolites, education, and cognition; and 4) education, cognition, and AD. Mediating relationships were computed using multivariable Mendelian randomization. Results: Thirty-four metabolites were genetically associated with AD at p < .05. Of these, glutamine and free cholesterol in extra-large high-density lipoproteins demonstrated a protective causal effect (glutamine: 95% confidence interval [CI], 0.70 to 0.92; free cholesterol in extra-large high-density lipoproteins: 95% CI, 0.75 to 0.92). An AD-protective effect was also observed for education (95% CI, 0.61 to 0.85) and cognition (95% CI, 0.60 to 0.89), with bidirectional mediation evident. Cognition as a mediator of the education-AD relationship was stronger than vice versa, however. No evidence of mediation via any metabolite was found. Conclusions: Glutamine and free cholesterol in extra-large high-density lipoproteins show protective causal effects on AD. Education and cognition also demonstrate protection, though education's effect is almost entirely mediated by cognition. These insights provide key pieces of the AD causal puzzle, important for informing future multimodal work and progressing toward effective intervention strategies.

7.
J Alzheimers Dis ; 83(4): 1825-1839, 2021.
Article in English | MEDLINE | ID: mdl-34459398

ABSTRACT

BACKGROUND: Blood plasma proteins have been associated with Alzheimer's disease (AD), but understanding which proteins are on the causal pathway remains challenging. OBJECTIVE: Investigate the genetic overlap between candidate proteins and AD using polygenic risk scores (PRS) and interrogate their causal relationship using bi-directional Mendelian randomization (MR). METHODS: Following a literature review, 31 proteins were selected for PRS analysis. PRS were constructed for prioritized proteins with and without the apolipoprotein E region (APOE+/-PRS) and tested for association with AD status across three cohorts (n = 6,244). An AD PRS was also tested for association with protein levels in one cohort (n = 410). Proteins showing association with AD were taken forward for MR. RESULTS: For APOE ɛ3, apolipoprotein B-100, and C-reactive protein (CRP), protein APOE+ PRS were associated with AD below Bonferroni significance (pBonf, p < 0.00017). No protein APOE- PRS or AD PRS (APOE+/-) passed pBonf. However, vitamin D-binding protein (protein PRS APOE-, p = 0.009) and insulin-like growth factor-binding protein 2 (AD APOE- PRS p = 0.025, protein APOE- PRS p = 0.045) displayed suggestive signals and were selected for MR. In bi-directional MR, none of the five proteins demonstrated a causal association (p < 0.05) in either direction. CONCLUSION: Apolipoproteins and CRP PRS are associated with AD and provide a genetic signal linked to a specific, accessible risk factor. While evidence of causality was limited, this study was conducted in a moderate sample size and provides a framework for larger samples with greater statistical power.


Subject(s)
Alzheimer Disease , Apolipoproteins E/genetics , Blood Proteins/genetics , Mendelian Randomization Analysis , Multifactorial Inheritance/genetics , Aged , Alzheimer Disease/blood , Alzheimer Disease/genetics , Female , Genome-Wide Association Study , Humans , Male , Somatomedins
8.
Alzheimers Res Ther ; 13(1): 17, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33419453

ABSTRACT

BACKGROUND: Recent studies suggest that plasma phosphorylated tau181 (p-tau181) is a highly specific biomarker for Alzheimer's disease (AD)-related tau pathology. It has great potential for the diagnostic and prognostic evaluation of AD, since it identifies AD with the same accuracy as tau PET and CSF p-tau181 and predicts the development of AD dementia in cognitively unimpaired (CU) individuals and in those with mild cognitive impairment (MCI). Plasma p-tau181 may also be used as a biomarker in studies exploring disease pathogenesis, such as genetic or environmental risk factors for AD-type tau pathology. The aim of the present study was to investigate the relation between polygenic risk scores (PRSs) for AD and plasma p-tau181. METHODS: Data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) was used to examine the relation between AD PRSs, constructed based on findings in recent genome-wide association studies, and plasma p-tau181, using linear regression models. Analyses were performed in the total sample (n = 818), after stratification on diagnostic status (CU (n = 236), MCI (n = 434), AD dementia (n = 148)), and after stratification on Aß pathology status (Aß positives (n = 322), Aß negatives (n = 409)). RESULTS: Associations between plasma p-tau181 and APOE PRSs (p = 3e-18-7e-15) and non-APOE PRSs (p = 3e-4-0.03) were seen in the total sample. The APOE PRSs were associated with plasma p-tau181 in all diagnostic groups (CU, MCI, and AD dementia), while the non-APOE PRSs were associated only in the MCI group. The APOE PRSs showed similar results in amyloid-ß (Aß)-positive and negative individuals (p = 5e-5-1e-3), while the non-APOE PRSs were associated with plasma p-tau181 in Aß positives only (p = 0.02). CONCLUSIONS: Polygenic risk for AD including APOE was found to associate with plasma p-tau181 independent of diagnostic and Aß pathology status, while polygenic risk for AD beyond APOE was associated with plasma p-tau181 only in MCI and Aß-positive individuals. These results extend the knowledge about the relation between genetic risk for AD and p-tau181, and further support the usefulness of plasma p-tau181 as a biomarker of AD.


Subject(s)
Alzheimer Disease , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Amyloid beta-Peptides , Biomarkers , Genome-Wide Association Study , Humans , Neuroimaging , Risk Factors , tau Proteins
9.
Neurobiol Aging ; 106: 304.e1-304.e3, 2021 10.
Article in English | MEDLINE | ID: mdl-34119372

ABSTRACT

Plasma phosphorylated tau at threonine-181 (P-tau181) demonstrates promise as an accessible blood-based biomarker specific to Alzheimer's Disease (AD), with levels recently demonstrating high predictive accuracy for AD-relevant pathology. The genetic underpinnings of P-tau181 levels, however, remain elusive. This study presents the first genome-wide association study of plasma P-tau181 in a total sample of 1153 participants from 2 independent cohorts. No loci, other than those within the APOE genomic region (lead variant = rs429358, beta = 0.32, p =8.44 × 10-25) demonstrated association with P-tau181 at genome-wide significance (p < 5 × 10-08), though rs60872856 on chromosome 2 came close (beta = -0.28, p = 3.23 × 10-07, nearest gene=CYTIP). As the APOE ε4 allele is already a well-established genetic variant associated with AD, this study found no evidence of novel genetic associations relevant to plasma P-tau181, though presents rs60872856 on chromosome 2 as a candidate locus to be further evaluated in future larger size GWAS.


Subject(s)
Alzheimer Disease/diagnosis , Alzheimer Disease/genetics , Genome-Wide Association Study/methods , tau Proteins/blood , Biomarkers/blood , Chromosomes, Human, Pair 2/genetics , Cohort Studies , Female , Humans , Male , Negative Results , Phosphorylation
10.
Biomedicines ; 9(11)2021 Nov 03.
Article in English | MEDLINE | ID: mdl-34829839

ABSTRACT

BACKGROUND: physiological differences between males and females could contribute to the development of Alzheimer's Disease (AD). Here, we examined metabolic pathways that may lead to precision medicine initiatives. METHODS: We explored whether sex modifies the association of 540 plasma metabolites with AD endophenotypes including diagnosis, cerebrospinal fluid (CSF) biomarkers, brain imaging, and cognition using regression analyses for 695 participants (377 females), followed by sex-specific pathway overrepresentation analyses, APOE ε4 stratification and assessment of metabolites' discriminatory performance in AD. RESULTS: In females with AD, vanillylmandelate (tyrosine pathway) was increased and tryptophan betaine (tryptophan pathway) was decreased. The inclusion of these two metabolites (area under curve (AUC) = 0.83, standard error (SE) = 0.029) to a baseline model (covariates + CSF biomarkers, AUC = 0.92, SE = 0.019) resulted in a significantly higher AUC of 0.96 (SE = 0.012). Kynurenate was decreased in males with AD (AUC = 0.679, SE = 0.046). CONCLUSIONS: metabolic sex-specific differences were reported, covering neurotransmission and inflammation pathways with AD endophenotypes. Two metabolites, in pathways related to dopamine and serotonin, were associated to females, paving the way to personalised treatment.

11.
Transl Neurodegener ; 9(1): 36, 2020 09 21.
Article in English | MEDLINE | ID: mdl-32951606

ABSTRACT

BACKGROUND: There is an urgent need to understand the pathways and processes underlying Alzheimer's disease (AD) for early diagnosis and development of effective treatments. This study was aimed to investigate Alzheimer's dementia using an unsupervised lipid, protein and gene multi-omics integrative approach. METHODS: A lipidomics dataset comprising 185 AD patients, 40 mild cognitive impairment (MCI) individuals and 185 controls, and two proteomics datasets (295 AD, 159 MCI and 197 controls) were used for weighted gene co-expression network analyses (WGCNA). Correlations of modules created within each modality with clinical AD diagnosis, brain atrophy measures and disease progression, as well as their correlations with each other, were analyzed. Gene ontology enrichment analysis was employed to examine the biological processes and molecular and cellular functions of protein modules associated with AD phenotypes. Lipid species were annotated in the lipid modules associated with AD phenotypes. The associations between established AD risk loci and the lipid/protein modules that showed high correlation with AD phenotypes were also explored. RESULTS: Five of the 20 identified lipid modules and five of the 17 identified protein modules were correlated with clinical AD diagnosis, brain atrophy measures and disease progression. The lipid modules comprising phospholipids, triglycerides, sphingolipids and cholesterol esters were correlated with AD risk loci involved in immune response and lipid metabolism. The five protein modules involved in positive regulation of cytokine production, neutrophil-mediated immunity, and humoral immune responses were correlated with AD risk loci involved in immune and complement systems and in lipid metabolism (the APOE ε4 genotype). CONCLUSIONS: Modules of tightly regulated lipids and proteins, drivers in lipid homeostasis and innate immunity, are strongly associated with AD phenotypes.


Subject(s)
Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Gene Regulatory Networks/physiology , Immunity, Humoral/physiology , Lipidomics/methods , Proteomics/methods , Aged , Aged, 80 and over , Alzheimer Disease/diagnostic imaging , Cohort Studies , Databases, Genetic , Female , Follow-Up Studies , Humans , Longitudinal Studies , Male
SELECTION OF CITATIONS
SEARCH DETAIL