Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Nature ; 443(7108): 218-21, 2006 Sep 14.
Article in English | MEDLINE | ID: mdl-16957736

ABSTRACT

The insulin receptor is a phylogenetically ancient tyrosine kinase receptor found in organisms as primitive as cnidarians and insects. In higher organisms it is essential for glucose homeostasis, whereas the closely related insulin-like growth factor receptor (IGF-1R) is involved in normal growth and development. The insulin receptor is expressed in two isoforms, IR-A and IR-B; the former also functions as a high-affinity receptor for IGF-II and is implicated, along with IGF-1R, in malignant transformation. Here we present the crystal structure at 3.8 A resolution of the IR-A ectodomain dimer, complexed with four Fabs from the monoclonal antibodies 83-7 and 83-14 (ref. 4), grown in the presence of a fragment of an insulin mimetic peptide. The structure reveals the domain arrangement in the disulphide-linked ectodomain dimer, showing that the insulin receptor adopts a folded-over conformation that places the ligand-binding regions in juxtaposition. This arrangement is very different from previous models. It shows that the two L1 domains are on opposite sides of the dimer, too far apart to allow insulin to bind both L1 domains simultaneously as previously proposed. Instead, the structure implicates the carboxy-terminal surface of the first fibronectin type III domain as the second binding site involved in high-affinity binding.


Subject(s)
Protein Folding , Receptor, Insulin/chemistry , Receptor, Insulin/metabolism , Crystallography, X-Ray , Dimerization , Immunoglobulin Fab Fragments/immunology , Microscopy, Electron , Models, Molecular , Protein Structure, Quaternary , Protein Structure, Tertiary , Receptor, Insulin/immunology , Receptor, Insulin/ultrastructure
2.
Proc Natl Acad Sci U S A ; 104(31): 12737-42, 2007 Jul 31.
Article in English | MEDLINE | ID: mdl-17652170

ABSTRACT

Leukemia inhibitory factor (LIF) receptor is a cell surface receptor that mediates the actions of LIF and other IL-6 type cytokines through the formation of high-affinity signaling complexes with gp130. Here we present the crystal structure of a complex of mouse LIF receptor with human LIF at 4.0 A resolution. The structure is, to date, the largest cytokine receptor fragment determined by x-ray crystallography. The binding of LIF to its receptor via the central Ig-like domain is unlike other cytokine receptor complexes that bind ligand predominantly through their cytokine-binding modules. This structure, in combination with previous crystallographic studies, also provides a structural template to understand the formation and orientation of the high-affinity signaling complex between LIF, LIF receptor, and gp130.


Subject(s)
Immunoglobulins/chemistry , Immunoglobulins/metabolism , Leukemia Inhibitory Factor/chemistry , Leukemia Inhibitory Factor/metabolism , Receptors, OSM-LIF/chemistry , Receptors, OSM-LIF/metabolism , Animals , Crystallography, X-Ray , Cytokine Receptor gp130/chemistry , Cytokine Receptor gp130/metabolism , Humans , Immunoglobulins/genetics , Immunoglobulins/immunology , Interleukin-6/chemistry , Interleukin-6/metabolism , Leukemia Inhibitory Factor/genetics , Leukemia Inhibitory Factor/immunology , Ligands , Mice , Models, Molecular , Protein Binding , Protein Structure, Quaternary , Protein Structure, Tertiary , Receptors, OSM-LIF/genetics , Receptors, OSM-LIF/immunology , Signal Transduction
3.
Proc Natl Acad Sci U S A ; 103(33): 12429-34, 2006 Aug 15.
Article in English | MEDLINE | ID: mdl-16894147

ABSTRACT

The insulin receptor (IR) and the type-1 insulin-like growth factor receptor (IGF1R) are homologous multidomain proteins that bind insulin and IGF with differing specificity. Here we report the crystal structure of the first three domains (L1-CR-L2) of human IR at 2.3 A resolution and compare it with the previously determined structure of the corresponding fragment of IGF1R. The most important differences seen between the two receptors are in the two regions governing ligand specificity. The first is at the corner of the ligand-binding surface of the L1 domain, where the side chain of F39 in IR forms part of the ligand binding surface involving the second (central) beta-sheet. This is very different to the location of its counterpart in IGF1R, S35, which is not involved in ligand binding. The second major difference is in the sixth module of the CR domain, where IR contains a larger loop that protrudes further into the ligand-binding pocket. This module, which governs IGF1-binding specificity, shows negligible sequence identity, significantly more alpha-helix, an additional disulfide bond, and opposite electrostatic potential compared to that of the IGF1R.


Subject(s)
Insulin-Like Growth Factor I/chemistry , Protein Structure, Secondary , Protein Structure, Tertiary , Receptor, Insulin/chemistry , Amino Acid Sequence , Animals , CHO Cells , Cricetinae , Crystallography, X-Ray , Humans , Insulin-Like Growth Factor I/genetics , Insulin-Like Growth Factor I/metabolism , Ligands , Models, Molecular , Molecular Sequence Data , Mutation , Protein Binding , Receptor, IGF Type 1/chemistry , Receptor, IGF Type 1/genetics , Receptor, IGF Type 1/metabolism , Receptor, Insulin/genetics , Receptor, Insulin/metabolism , Sequence Alignment
4.
Mol Cell ; 11(2): 495-505, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12620236

ABSTRACT

ErbB2 does not bind ligand, yet appears to be the major signaling partner for other ErbB receptors by forming heteromeric complexes with ErbB1, ErbB3, or ErbB4. The crystal structure of residues 1-509 of ErbB2 at 2.5 A resolution reveals an activated conformation similar to that of the EGFR when complexed with ligand and very different from that seen in the unactivated forms of ErbB3 or EGFR. The structure explains the inability of ErbB2 to bind known ligands and suggests why ErbB2 fails to form homodimers. Together, the data suggest a model in which ErbB2 is already in the activated conformation and ready to interact with other ligand-activated ErbB receptors.


Subject(s)
Receptor, ErbB-2/chemistry , Receptor, ErbB-2/metabolism , Amino Acid Sequence , Animals , Base Sequence , Binding Sites , CHO Cells , Cricetinae , Crystallography, X-Ray , DNA, Complementary/genetics , ErbB Receptors/chemistry , ErbB Receptors/genetics , ErbB Receptors/metabolism , Humans , In Vitro Techniques , Ligands , Models, Molecular , Molecular Sequence Data , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Fragments/metabolism , Protein Conformation , Protein Structure, Tertiary , Receptor, ErbB-2/genetics , Receptor, ErbB-3/chemistry , Receptor, ErbB-3/genetics , Receptor, ErbB-3/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Homology, Amino Acid , Static Electricity
5.
Cell ; 110(6): 763-73, 2002 Sep 20.
Article in English | MEDLINE | ID: mdl-12297049

ABSTRACT

We report the crystal structure, at 2.5 A resolution, of a truncated human EGFR ectodomain bound to TGFalpha. TGFalpha interacts with both L1 and L2 domains of EGFR, making many main chain contacts with L1 and interacting with L2 via key conserved residues. The results indicate how EGFR family members can bind a family of highly variable ligands. In the 2:2 TGFalpha:sEGFR501 complex, each ligand interacts with only one receptor molecule. There are two types of dimers in the asymmetric unit: a head-to-head dimer involving contacts between the L1 and L2 domains and a back-to-back dimer dominated by interactions between the CR1 domains of each receptor. Based on sequence conservation, buried surface area, and mutagenesis experiments, the back-to-back dimer is favored to be biologically relevant.


Subject(s)
ErbB Receptors/chemistry , ErbB Receptors/metabolism , Models, Molecular , Transforming Growth Factor alpha/chemistry , Transforming Growth Factor alpha/metabolism , 3T3 Cells , Amino Acid Sequence , Amino Acid Substitution , Animals , Binding Sites , Cell Line , Conserved Sequence , Crystallization , Crystallography, X-Ray , Dimerization , Disulfides/chemistry , Humans , Ligands , Mice , Molecular Sequence Data , Molecular Structure , Mutation , Protein Structure, Secondary , Protein Structure, Tertiary , Sequence Alignment , Transforming Growth Factor alpha/genetics
SELECTION OF CITATIONS
SEARCH DETAIL