Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Ecotoxicology ; 32(9): 1152-1161, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37861860

ABSTRACT

Silver nanoparticles (AgNPs) are increasingly used in consumer products and subsequently arrive in wastewater systems, accumulating as silver sulphide (Ag2S) in the resulting biosolids, which are commonly spread onto agricultural fields as a fertiliser. Experiments were performed to investigate the effect of AgNPs, using the endogeic earthworm Aporrectodea caliginosa as a test organism. In an acute toxicity experiment, A. caliginosa were exposed to soil containing different concentrations of AgNPs (0, 1, 5, 10, 50, 100, 250, 500, 750, and 1000 mg kg-1 dry soil) and Ag2S (0, 10, 50, 100, 500, and 1000 mg kg-1 dry soil). Earthworm biomass and mortality were monitored. Earthworms exposed to 500, 750 and 1000 mg kg-1 fresh AgNPs had mortality rates of 20%, 60% and 70%, respectively. Changes in biomass were directly related to AgNP concentration. Exposure to Ag2S did not affect biomass or mortality. Further experiments used 0, 10, 50, 100 and 250 mg kg-1 AgNPs and 0, 50, 100, 500, and 1000 mg kg-1 Ag2S to evaluate sublethal effects on A. caliginosa. Avoidance behaviour in a linear gradient was evaluated after 14 days. Earthworms significantly preferred soil that was free of either AgNPs or Ag2S. The same concentrations were used to assess effects on cocoon production of A. caliginosa exposed to AgNPs and Ag2S. In the first 3 months of AgNP exposure, higher concentrations had a negative effect on cocoon production, but this effect diminished thereafter. Ag2S had no discernible effect on reproduction. Overall, introduction of AgNPs into the soil through the application of biosolids appears to be of low concern to the tested endogeic earthworm.


Subject(s)
Metal Nanoparticles , Oligochaeta , Soil Pollutants , Animals , Silver/toxicity , Metal Nanoparticles/toxicity , Biosolids , Soil , Soil Pollutants/toxicity , Soil Pollutants/analysis
2.
Ecotoxicol Environ Saf ; 124: 324-328, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26590693

ABSTRACT

Avoidance behaviour by earthworms is recognised as a valuable endpoint in soil quality assessment and has resulted in the development of a standardised test (ISO 17512-1, 2008) providing epigeic earthworms with a choice between test and control soils. This study sought to develop and evaluate an avoidance test utilising soil-dwelling earthworms in linear pollution gradients with Visible Implant Elastomer (VIE) tags used to identify individual organisms. Sequential experiments were established in laboratory-based mesocosms (0.6m×0.13m×0.1m) that determined the relative sensitivities (in terms of associated avoidance behaviour) of Octolasion cyaneum and Lumbricus rubellus at varying levels of polluted soil and also assessed the influence of introduction point on recorded movement within gradients. In an initial gradient (0%, 25%, 50%, 75%, 100% polluted soil), both species exhibited a clear avoidance response with all surviving earthworms retrieved (after 7 days) from the unpolluted soil. In a less polluted gradient (0%, 6.25%, 12.5%, 18.75%, 25%) L. rubellus were retrieved throughout the gradient while O. cyaneum were located within the 0% and 6.25% divisions, suggesting a species-specific response to polluted soil. Results also showed that the use of a linear pollution gradient system has the potential to assess earthworm avoidance behaviour and could provide a more ecologically relevant alternative to the ISO 17512: 2008 avoidance test. However, further work is required to establish the effectiveness of this procedure, specifically in initial chemical screening and assessment of single contaminant bioavailability, where uptake of pollutants by earthworms could be measured and directly related to the point of introduction and retrieval.


Subject(s)
Avoidance Learning/drug effects , Oligochaeta , Soil Pollutants/adverse effects , Animals , Environmental Pollution , Soil , Species Specificity
3.
Environ Sci Pollut Res Int ; 25(34): 33867-33881, 2018 Dec.
Article in English | MEDLINE | ID: mdl-29931645

ABSTRACT

Ecotoxicological tests with earthworms are widely used and are mandatory for the risk assessment of pesticides prior to registration and commercial use. The current model species for standardized tests is Eisenia fetida or Eisenia andrei. However, these species are absent from agricultural soils and often less sensitive to pesticides than other earthworm species found in mineral soils. To move towards a better assessment of pesticide effects on non-target organisms, there is a need to perform a posteriori tests using relevant species. The endogeic species Aporrectodea caliginosa (Savigny, 1826) is representative of cultivated fields in temperate regions and is suggested as a relevant model test species. After providing information on its taxonomy, biology, and ecology, we reviewed current knowledge concerning its sensitivity towards pesticides. Moreover, we highlighted research gaps and promising perspectives. Finally, advice and recommendations are given for the establishment of laboratory cultures and experiments using this soil-dwelling earthworm species.


Subject(s)
Environmental Monitoring/methods , Oligochaeta/drug effects , Pesticides/analysis , Research Design , Soil Pollutants/analysis , Agriculture , Animals , Ecotoxicology , Pesticides/toxicity , Risk Assessment , Soil/chemistry , Soil Pollutants/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL