Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 127
Filter
1.
J Sci Food Agric ; 104(10): 6196-6207, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38459922

ABSTRACT

BACKGROUND: Millet bran (MB), a byproduct of millet production, is rich in functional components but it is underutilized. In recent years, researchers have shown that fermentation can improve the biological activity of cereals and their byproducts. This study used Bacillus natto to ferment millet bran to improve its added value and broaden the application of MB. The bioactive component content, physicochemical properties, and functional activity of millet bran extract (MBE) from fermented millet bran were determined. RESULTS: After fermentation, the soluble dietary fiber (SDF) content increased by 92.0%, the ß-glucan content by 164.4%, the polypeptide content by 111.4%, the polyphenol content by 32.5%, the flavone content by 16.4%, and the total amino acid content by 95.4%. Scanning electron microscopy revealed that the microscopic morphology of MBE changed from complete and dense blocks to loosely porous shapes after fermentation. After fermentation, the solubility, water-holding capacity, and viscosity significantly increased and the particle size decreased. Moreover, the glucose adsorption capacity (2.1 mmol g-1), glucose dialysis retardation index (75.3%), and α-glucosidase inhibitory (71.4%, mixed reversible inhibition) activity of the fermented MBE (FMBE) were greater than those of the unfermented MBE (0.99 mmol g-1, 32.1%, and 35.1%, respectively). The FMBE presented better cholesterol and sodium cholate (SC) adsorption properties and the adsorption was considered inhomogeneous surface adsorption. CONCLUSION: Fermentation increased the bioactive component content and improved the physicochemical properties of MBE, thereby improving its hypoglycemic and hypolipidemic properties. This study not only resolves the problem of millet bran waste but also encourages the development of higher value-added application methods for millet bran. © 2024 Society of Chemical Industry.


Subject(s)
Dietary Fiber , Fermentation , Millets , Plant Extracts , Dietary Fiber/metabolism , Dietary Fiber/analysis , Millets/chemistry , Millets/metabolism , Plant Extracts/chemistry , Plant Extracts/metabolism , Bacillus subtilis/metabolism , beta-Glucans/metabolism , beta-Glucans/chemistry , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/metabolism , Glycoside Hydrolase Inhibitors/pharmacology , Polyphenols/chemistry , Polyphenols/metabolism , alpha-Glucosidases/metabolism , alpha-Glucosidases/chemistry
2.
BMC Genomics ; 24(1): 218, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37098460

ABSTRACT

BACKGROUND: Bacillomycin D-C16 can induce resistance in cherry tomato against pathogens; however, the underlying molecular mechanism is poorly understood. Here, the effect of Bacillomycin D-C16 on induction of disease resistance in cherry tomato was investigated using a transcriptomic analysis. RESULTS: Transcriptomic analysis revealed a series of obvious enrichment pathways. Bacillomycin D-C16 induced phenylpropanoid biosynthesis pathways and activated the synthesis of defense-related metabolites including phenolic acids and lignin. Moreover, Bacillomycin D-C16 triggered a defense response through both hormone signal transduction and plant-pathogen interactions pathways, and increased the transcription of several transcription factors (e.g., AP2/ERF, WRKY and MYB). These transcription factors might contribute to the further activated the expression of defense-related genes (PR1, PR10 and CHI) and stimulated the accumulation of H2O2. CONCLUSION: Bacillomycin D-C16 can induce resistance in cherry tomato by activating the phenylpropanoid biosynthesis pathway, hormone signal transduction pathway and plant-pathogen interactions pathway, thus activating comprehensive defense reaction against pathogen invasion. These results provided a new insight into the bio-preservation of cherry tomato by the Bacillomycin D-C16.


Subject(s)
Solanum lycopersicum , Solanum lycopersicum/genetics , Transcriptome , Disease Resistance/genetics , Hydrogen Peroxide , Hormones , Transcription Factors/genetics , Plant Diseases/genetics
3.
Crit Rev Food Sci Nutr ; : 1-17, 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37096553

ABSTRACT

Ovalbumin (OVA), the most abundant protein in egg whites, has been widely used in various industries. Currently, the structure of OVA has been clearly established, and the extraction of high-purified OVA has become feasible. However, the allergenicity of OVA is still a serious problem because it can cause severe allergic reactions and may even be life-threatening. The structure and allergenicity of the OVA can be altered by many processing methods. In this article, a detailed description on the structure and a comprehensive overview on the extraction protocols and the allergenicity of OVA was documented. Additionally, the information on assembly and potential applications of OVA was summarized and discussed in detail. Physical treatment, chemical modification, and microbial processing can be applied to alter the IgE-binding capacity of OVA by changing its structure and linear/sequential epitopes. Furthermore, research indicated that OVA could assemble with itself or other biomolecules into various forms (particles, fibers, gels, and nanosheets), which expanded its application in the food field. OVA also shows excellent application prospects, including food preservation, functional food ingredients and nutrient delivery. Therefore, OVA demonstrates significant investigation value as a food grade ingredient.

4.
Appl Microbiol Biotechnol ; 107(7-8): 2321-2333, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36843197

ABSTRACT

Acrylamide alleviation in food has represented as a critical issue due to its neurotoxic effect on human health. L-Asparaginase (ASNase, EC 3.5.1.1) is considered a potential additive for acrylamide alleviation in food. However, low thermal stability hinders the application of ASNase in thermal food processing. To obtain highly thermal stable ASNase for its industrial application, a consensus-guided approach combined with site-directed saturation mutation (SSM) was firstly reported to engineer the thermostability of Mycobacterium gordonae L-asparaginase (GmASNase). The key residues Gly97, Asn159, and Glu249 were identified for improving thermostability. The combinatorial triple mutant G97T/N159Y/E249Q (TYQ) displayed significantly superior thermostability with half-life values of 61.65 ± 8.69 min at 50 °C and 5.12 ± 1.66 min at 55 °C, whereas the wild-type was completely inactive at these conditions. Moreover, its Tm value increased by 8.59 °C from parent wild-type. Interestingly, TYQ still maintained excellent catalytic efficiency and specific activity. Further molecular dynamics and structure analysis revealed that the additional hydrogen bonds, increased hydrophobic interactions, and favorable electrostatic potential were essential for TYQ being in a more rigid state for thermostability enhancement. These results suggested that our strategy was an efficient engineering approach for improving fundamental properties of GmASNase and offering GmASNase as a potential agent for efficient acrylamide mitigation in food industry. KEY POINTS: • The thermostability of GmASNase was firstly improved by consensus-guided engineering. • The half-life and Tm value of triple mutant TYQ were significantly increased. • Insight on improved thermostability of TYQ was revealed by MD and structure analysis.


Subject(s)
Asparaginase , Mycobacterium , Humans , Asparaginase/chemistry , Enzyme Stability , Consensus , Mycobacterium/genetics , Acrylamides , Protein Engineering , Temperature
5.
Int J Mol Sci ; 24(9)2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37175648

ABSTRACT

Lipoxygenase (EC1.13.11.12, LOX) has been potentially used in the food industry for food quality improvement. However, the low activity, poor thermal stability, narrow range of pH stability, as well as undesirable isoenzymes and off-flavors, have hampered the application of current commercial LOX. In this study, a putative mini-lipoxygenase gene from cyanobacteria, Nostoc sphaeroides (NsLOX), was cloned and expressed in E. coli BL21. NsLOX displayed only 26.62% structural identity with the reported LOX from Cyanothece sp., indicating it as a novel LOX. The purified NsLOX showed the maximum activity at pH 8.0 and 15 °C, with superior stability at a pH range from 6.0 to 13.0, retaining about 40% activity at 40 °C for 90 min. Notably, NsLOX exhibited the highest specific activity of 78,080 U/mg towards linoleic acid (LA), and the kinetic parameters-Km, kcat, and kcat/Km-attain values of 19.46 µM, 9199.75 s-1, and 473.85 µM-1 s-1, respectively. Moreover, the activity of NsLOX was obviously activated by Ca2+, but it was completely inhibited by Zn2+ and Cu2+. Finally, NsLOX was supplied in steamed bread and contributed even better improved bread quality than the commercial LOX. These results suggest NsLOX as a promising substitute of current commercial LOX for application in the food industry.


Subject(s)
Bread , Lipoxygenase , Lipoxygenase/genetics , Escherichia coli/genetics , Quality Improvement
6.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 54(5): 959-964, 2023 Sep.
Article in Zh | MEDLINE | ID: mdl-37866953

ABSTRACT

Objective: To study the differences between the mRNA expression profile in angiotensin Ⅱ (Ang Ⅱ)-induced fibrotic cardiomyocytes and that of normal cardiomyocytes and the relevant signaling pathways. Methods: Six 8-week-old male Sprague-Dawley (SD) rats were randomly assigned to a control group and an Ang Ⅱ group, with 3 rats in each group. Rats in the control group were injected via caudal vein with 0.9% normal saline at 2 mg/kg per day, while rats in the Ang Ⅱ group were injected with Ang Ⅱ via caudal vein at 2 mg/kg per day. The medications were continuously administered in the two groups for 14 days. The degree of myocardial fibrosis was determined by Masson's Trichrome staining and the content of collagen Ⅰ was determined by immunohistochemistry. High throughput sequencing was performed to measure the mRNA expression of rat cardiomyocytes in the two groups and to screen for differentially-expressed mRNAs. The differentially-expressed mRNAs were analyzed by Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Results: Compared with those of the control group, the degree of myocardial fibrosis and the content of collagen Ⅰ in Ang Ⅱ group were significantly higher ( P<0.05). Through sequencing, 313 differentially-expressed mRNAs were identified, with 201 being up-regulated and 112 being down-regulated. Go and KEGG analyses showed that these differentially-expressed mRNA were involved in a variety of biological regulatory functions and pathways of myocardial fibrosis. Conclusion: Ang Ⅱ can cause myocardial fibrosis in rats. There are significant differences in mRNA expression between fibrotic cardiomyocytes and normal cardiomyocytes. The differentially expressed mRNAs may play an important role in biological processes, including immune response, cell remodeling, and extracellular matrix deposition.


Subject(s)
Atrial Fibrillation , Cardiomyopathies , Rats , Male , Animals , Rats, Sprague-Dawley , Angiotensin II/metabolism , Fibrosis , Cardiomyopathies/metabolism , Collagen , RNA, Messenger/genetics , RNA, Messenger/metabolism
7.
Mol Microbiol ; 116(1): 298-310, 2021 07.
Article in English | MEDLINE | ID: mdl-33660340

ABSTRACT

The synthesis of plantaricin in Lactobacillus plantarum is regulated by quorum sensing. However, the nature of the extra-cytoplasmic (EC) sensing domain of the histidine kinase (PlnB1) and the ability to recognize the auto-inducing peptide PlnA1 is not known. We demonstrate the key motif Ile-Ser-Met-Leu of auto-inducing peptide PlnA1 binds to the hydrophobic region Phe-Ala-Ser-Gln-Phe of EC loop 2 of PlnB1 via hydrophobic interactions and hydrogen bonding. Moreover, we identify a new inducer, acetate, that regulates the synthesis of plantaricin by binding to a positively charged region (Arg-Arg-Tyr-Ser-His-Lys) in loop 4 of PlnB1 via electrostatic interaction. The side chain of Phe143 on loop 4 determined the specificity and affinity of PlnB1 to recognize acetate. PlnA1 activates quorum sensing in log phase growth and acetate in stationary phase to maintain the synthesis of plantaricin under conditions of reduced growth. Acetate activation of PlnB was also evident in four types of PlnB present in different Lb. plantarum strains. Finally, we proposed a model to explain the developmental regulation of plantaricin synthesis by PlnA and acetate. These results have potential applications in improving food fermentation and bacteriocin production.


Subject(s)
Acetates/metabolism , Bacteriocins/metabolism , Lactobacillus plantarum/metabolism , Protein Precursors/metabolism , Quorum Sensing/physiology , Bacteriocins/biosynthesis , Binding Sites/physiology , Hydrophobic and Hydrophilic Interactions , Lactobacillus plantarum/genetics , Protein Binding/physiology , Protein Precursors/biosynthesis
8.
J Appl Microbiol ; 133(3): 1597-1609, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35689810

ABSTRACT

AIMS: A novel endolysin Salmcide-p1 was developed as a promising candidate of new preservative and a supplement to effective enzyme preparations against gram-negative bacterial contaminations. METHODS AND RESULTS: Salmcide-p1 was identified by complementing the genomic sequence of a virulent Salmonella phage fmb-p1. Salmcide-p1 of 112 µg ml-1 could quickly kill Salmonella incubated with 100 mmol l-1 EDTA, with no haemolytic activity. Meanwhile, Salmcide-p1 had a high activity of lysing Salmonella cell wall peptidoglycan. At different temperatures (4-75°C), pH (4-11) and NaCl concentration (10-200 mmol l-1 ), the relative activity of Salmcide-p1 was above 60%. At 4°C, the combination of Salmcide-p1 and EDTA-2Na could inhibit the number of Salmonella Typhimurium CMCC 50115 in skim milk to less than 4 log CFU ml-1 by 3 days, and the number of Shigella flexneri CMCC 51571 was lower than 4 log CFU ml-1 by 9 days. CONCLUSIONS: Salmcide-p1 had a wide bactericidal activity against gram-negative bacteria and showed a broader anti-Salmonella spectrum than the phage fmb-p1. The combination strategy of Salmcide-p1 and EDTA-2Na could significantly inhibit the growth of gram-negative bacteria inoculated in skim milk. SIGNIFICANCE AND IMPACT OF THE STUDY: Bacteriophage endolysin as an antibacterial agent is considered to be a new strategy against bacterial contamination.


Subject(s)
Bacteriophage P1 , Bacteriophages , Anti-Bacterial Agents/pharmacology , Bacteriophages/genetics , Edetic Acid/pharmacology , Endopeptidases/genetics , Endopeptidases/pharmacology , Gram-Negative Bacteria , Salmonella typhimurium/genetics
9.
Int J Mol Sci ; 23(17)2022 Aug 26.
Article in English | MEDLINE | ID: mdl-36077061

ABSTRACT

Low catalytic activity is a key factor limiting the widespread application of type II L-asparaginase (ASNase) in the food and pharmaceutical industries. In this study, smart libraries were constructed by semi-rational design to improve the catalytic activity of type II ASNase from Bacillus licheniformis. Mutants with greatly enhanced catalytic efficiency were screened by saturation mutations and combinatorial mutations. A quintuple mutant ILRAC was ultimately obtained with specific activity of 841.62 IU/mg and kcat/Km of 537.15 min-1·mM-1, which were 4.24-fold and 6.32-fold more than those of wild-type ASNase. The highest specific activity and kcat/Km were firstly reported in type II ASNase from Bacillus licheniformis. Additionally, enhanced pH stability and superior thermostability were both achieved in mutant ILRAC. Meanwhile, structural alignment and molecular dynamic simulation demonstrated that high structure stability and strong substrate binding were beneficial for the improved thermal stability and enzymatic activity of mutant ILRAC. This is the first time that enzymatic activity of type II ASNase from Bacillus licheniformis has been enhanced by the semi-rational approach, and results provide new insights into enzymatic modification of L-asparaginase for industrial applications.


Subject(s)
Asparaginase , Bacillus licheniformis , Asparaginase/chemistry , Asparaginase/genetics , Bacillus licheniformis/genetics , Bacillus licheniformis/metabolism , Catalysis , Molecular Dynamics Simulation
10.
Int J Mol Sci ; 23(12)2022 Jun 13.
Article in English | MEDLINE | ID: mdl-35743032

ABSTRACT

Type I L-asparaginase from Bacillus licheniformis Z-1 (BlAase) was efficiently produced and secreted in Bacillus subtilis RIK 1285, but its low yield made it unsuitable for industrial use. Thus, a combined method was used in this study to boost BlAase synthesis in B. subtilis. First, fifteen single strong promoters were chosen to replace the original promoter P43, with PyvyD achieving the greatest BlAase activity (436.28 U/mL). Second, dual-promoter systems were built using four promoters (PyvyD, P43, PaprE, and PspoVG) with relatively high BlAase expression levels to boost BlAase output, with the engine of promoter PaprE-PyvyD reaching 502.11 U/mL. The activity of BlAase was also increased (568.59 U/mL) by modifying key portions of the PaprE-PyvyD promoter. Third, when the ribosome binding site (RBS) sequence of promoter PyvyD was replaced, BlAase activity reached 790.1 U/mL, which was 2.27 times greater than the original promoter P43 strain. After 36 h of cultivation, the BlAase expression level in a 10 L fermenter reached 2163.09 U/mL, which was 6.2 times greater than the initial strain using promoter P43. Moreover, the application potential of BlAase on acrylamide migration in potato chips was evaluated. Results showed that 89.50% of acrylamide in fried potato chips could be removed when combined with blanching and BlAase treatment. These findings revealed that combining transcription and translation techniques are effective strategies to boost recombinant protein output, and BlAase can be a great candidate for controlling acrylamide in food processing.


Subject(s)
Asparaginase , Bacillus subtilis , Acrylamides , Asparaginase/genetics , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Food , Promoter Regions, Genetic , Recombinant Proteins/metabolism
11.
Molecules ; 27(11)2022 May 30.
Article in English | MEDLINE | ID: mdl-35684446

ABSTRACT

In this study, yeast, lactic acid bacteria, and acetic acid bacteria were isolated from traditional Chinese sourdough to enhance the organoleptic quality of whole wheat steamed bread. The Saccharomyces cerevisiae, Lactobacillus johnsonii, and Acetobacter pasteurianum showed superior fermentability and acid production capacity when compared with other strains from sourdough, which were mixed to produce the compound starter. It was found that the volume of whole wheat steamed bread leavened with compound starter increased by 12.8% when compared with that of the whole wheat steamed bread made by commercial dry yeast (DY-WB). A total of 38 volatile flavors were detected in the whole wheat steamed bread fermented by the compound starter (CS-WB), and the type of volatile flavors increased by 14 species when compared to the bread fermented by the dry yeast. In addition, some unique volatile flavor substances were detected in CS-WB, such as acetoin, 3-hydroxy-butanal, butyraldehyde, cuparene, etc. Moreover, the hardness and the chewiness of CS-WB decreased by 31.1 and 33.7% when compared with DY-WB, respectively, while the springiness increased by 10.8%. Overall, the formulated compound starter showed a desirable improvement in the whole wheat steamed bread and could be exploited as a new ingredient for steamed bread.


Subject(s)
Bread , Triticum , Acetic Acid , Bread/analysis , Fermentation , Saccharomyces cerevisiae , Steam , Triticum/microbiology
12.
Molecules ; 27(19)2022 Oct 07.
Article in English | MEDLINE | ID: mdl-36235209

ABSTRACT

To extend the application range of L-asparaginase in food pre-processing, the thermostability improvement of the enzyme is essential. Herein, two non-conserved cysteine residues with easily oxidized free sulfhydryl groups, Cys8 and Cys283, of Acinetobacter soli L-asparaginase (AsA) were screened out via consensus design. After saturation mutagenesis and combinatorial mutation, the mutant C8Y/C283Q with highly improved thermostability was obtained with a half-life of 361.6 min at 40 °C, an over 34-fold increase compared with that of the wild-type. Its melting temperature (Tm) value reaches 62.3 °C, which is 7.1 °C higher than that of the wild-type. Molecular dynamics simulation and structure analysis revealed the formation of new hydrogen bonds of Gln283 and the aromatic interaction of Tyr8 formed with adjacent residues, resulting in enhanced thermostability. The improvement in the thermostability of L-asparaginase could efficiently enhance its effect on acrylamide inhibition; the contents of acrylamide in potato chips were efficiently reduced by 86.50% after a mutant C8Y/C283Q treatment, which was significantly higher than the 59.05% reduction after the AsA wild-type treatment. In addition, the investigation of the mechanism behind the enhanced thermostability of AsA could further direct the modification of L-asparaginases for expanding their clinical and industrial applications.


Subject(s)
Asparaginase , Cysteine , Acinetobacter , Acrylamide , Asparaginase/chemistry , Asparaginase/genetics , Enzyme Stability , Kinetics , Temperature
13.
Appl Environ Microbiol ; 87(13): e0072021, 2021 06 11.
Article in English | MEDLINE | ID: mdl-33893120

ABSTRACT

Bacteriocins are useful for controlling the composition of microorganisms in fermented food. Bacteriocin synthesis is regulated by quorum sensing mediated by autoinducing peptides. In addition, short-chain fatty acids, especially acetic acid, reportedly regulate bacteriocin synthesis. Five histidine kinases that regulated the synthesis of bacteriocins were selected to verify their interactions with acetate. Acetate activated the kinase activity of PlnB, SppK, and HpK3 in vitro and increased the yield of their cognate bacteriocins plantaricin EF, sakacin A, and rhamnosin B in vivo. The antimicrobial activity against Staphylococcus aureus of the fermentation supernatants of Lactobacillus plantarum, Lactobacillus sakei, and Lactobacillus rhamnosus with addition of acetate increased to 298%, 198%, and 289%, respectively, compared with that in the absence of acetate. Our study elucidated the activation activity of acetate in bacteriocin synthesis, and it might provide a potential strategy to increase the production of bacteriocin produced by Lactobacillus. IMPORTANCE Bacteriocins produced by lactic acid bacteria (LAB) are particularly useful in food preservation and food safety. Bacteriocins might increase bacterial competitive advantage against the indigenous microbiota of the intestines; at the same time, bacteriocins could limit the growth of undesired microorganisms in yogurt and other dairy products. This study confirmed that three kinds of histidine kinases were activated by acetate and upregulated bacteriocin synthesis both in vitro and in vivo. The increasing yield of bacteriocins reduced the number of pathogens and increased the number of probiotics in milk. Bacteriocin synthesis activation by acetate may have a broad application in the preservation of dairy products and forage silage.


Subject(s)
Acetates/pharmacology , Anti-Bacterial Agents/biosynthesis , Bacteriocins/biosynthesis , Lactobacillus/drug effects , Quorum Sensing/drug effects , Fermentation , Fungal Proteins/genetics , Fungal Proteins/metabolism , Histidine Kinase/genetics , Histidine Kinase/metabolism , Lactobacillus/metabolism , Lactobacillus/physiology , Staphylococcus aureus/growth & development
14.
Appl Microbiol Biotechnol ; 105(7): 2713-2723, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33710357

ABSTRACT

Plantaricin EF, a kind of natural antibacterial substance, has shown inhibitory effect on most pathogen and spoilage microorganisms, which possessed great potential in food preservation. However, the lower production of plantaricin EF has limited its large-scale production and application. In this study, the effect of maltose on plantaricin EF production and its regulation mechanism in Lactobacillus plantarum 163 were investigated. Maltose significantly improved the biomass and plantaricin EF production, which increased by 3.35 and 3.99 times comparing to the control without maltose, respectively. The maximum production of plantaricin E and F in fed-batch fermentation were 10.55 mg/L and 22.94 mg/L, respectively. Besides, qPCR results showed that maltose remarkably improved transcription of plnA, plnB, plnD, plnE, plnF, plnG1 and plnH, and heighten transcription of lamR, lamK, hpk6 and rrp6. These results provided an effective method to enhance plantaricin EF production and revealed a possible regulatory mechanism from transcriptome results that hpk6, rrp6, lamK and lamR were relative to plantaricin EF production. Genes, hpk6 and rrp6, promote transcription of plnG1, whereas lamK and lamR enhance transcription of plnA, plnB and plnD, which increased plantaricin EF production. KEYPOINTS: • Maltose was proved to be effective in promoting the biosynthesis of plantaricin EF. • Maltose promoted the transcription of biosynthesis and secretion genes of plantaricin EF. • Up-regulation of genes lamR, lamK, hpk6 and rrp6 heightened the plantaricin EF production.


Subject(s)
Bacteriocins , Lactobacillus plantarum , Bacteriocins/genetics , Bacteriocins/metabolism , Fermentation , Lactobacillus plantarum/genetics , Lactobacillus plantarum/metabolism , Maltose
15.
Molecules ; 26(22)2021 Nov 16.
Article in English | MEDLINE | ID: mdl-34833997

ABSTRACT

The soft rot disease caused by Rhizopus stolonifer is an important disease in cherry tomato fruit. In this study, the effect of iturin A on soft rot of cherry tomato and its influence on the storage quality of cherry tomato fruit were investigated. The results showed that 512 µg/mL of iturin A could effectively inhibit the incidence of soft rot of cherry tomato fruit. It was found that iturin A could induce the activity of resistance-related enzymes including phenylalanine ammonia lyase (PAL), polyphenol oxidase (PPO), peroxidase (POD), glucanase (GLU), and chitinase (CHI), and active oxygen-related enzymes including ascorbate peroxidases (APX), superoxide dismutases (SOD), catalases (CAT), and glutathione reductase (GR) of cherry tomato fruit. In addition, iturin A treatment could slow down the weight loss of cherry tomato and soften the fruit. These results indicated that iturin A could retard the decay and improve the quality of cherry tomato fruit by both the inhibition growth of R. stolonifera and the inducing the resistance.


Subject(s)
Drug Resistance/drug effects , Fruit/metabolism , Peptides, Cyclic/pharmacology , Plant Diseases/microbiology , Plant Roots/metabolism , Solanum lycopersicum/metabolism , Fruit/microbiology , Gene Expression Regulation, Enzymologic/drug effects , Gene Expression Regulation, Plant/drug effects , Solanum lycopersicum/microbiology , Plant Proteins/biosynthesis , Plant Roots/microbiology , Rhizopus/growth & development
16.
Molecules ; 26(7)2021 Mar 26.
Article in English | MEDLINE | ID: mdl-33810551

ABSTRACT

Bacillus subtilis fmb60, which has broad-spectrum antimicrobial activities, was isolated from plant straw compost. A hybrid NRPS/PKS cluster was screened from the genome. Sixteen secondary metabolites produced by the gene cluster were isolated and identified using LC-HRMS and NMR. Three lipoamides D-F (1-3) and two amicoumacin derivatives, amicoumacins D, E (4, 5), were identified, and are reported here for the first time. Lipoamides D-F exhibited strong antibacterial activities against harmful foodborne bacteria, with the MIC ranging from 6.25 to 25 µg/mL. Amicoumacin E scavenged 38.8% of ABTS+ radicals at 1 mg/mL. Direct cloning and heterologous expression of the NRPS/PKS and ace gene cluster identified its importance for the biosynthesis of amicoumacins. This study demonstrated that there is a high potential for biocontrol utilization of B. subtilis fmb60, and genome mining for clusters of secondary metabolites of B. subtilis fmb60 has revealed a greater biosynthetic potential for the production of novel natural products than previously anticipated.


Subject(s)
Anti-Bacterial Agents , Antioxidants , Bacillus subtilis , Biological Products , Coumarins , Thioctic Acid/analogs & derivatives , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Antioxidants/chemistry , Antioxidants/metabolism , Bacillus subtilis/genetics , Bacillus subtilis/isolation & purification , Bacillus subtilis/metabolism , Biological Products/chemistry , Biological Products/metabolism , Composting , Coumarins/chemistry , Coumarins/metabolism , Genome, Bacterial , Multigene Family , Secondary Metabolism , Thioctic Acid/chemistry , Thioctic Acid/metabolism
17.
Appl Microbiol Biotechnol ; 104(8): 3529-3540, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32103313

ABSTRACT

Malassezia globosa is an opportunistic pathogen that causes various skin disorders, which disturbs people's life all the time, and conventional drugs are not completely satisfactory. Bacillomycin D (BD), an antifungal lipopeptide, could inhibit various fungi growth. However, the reports about its effect on M. globosa were not found yet. In this study, we showed that BD and BD-C16 (fatty acid chain had sixteen carbon atoms) completely inhibited growth of M. globosa at concentration of 64 µg/ml in 15 h, which was confirmed with the observation of irregular morphological change of M. globosa treated with BD. Significantly, the study on the working mechanism showed that BD induced cell death by changing cell membrane permeability and thus promoting the release of cellular contents, which may be mediated by the interaction between BD and ergosterol from membrane. Further study showed that BD reduced the overall content of cellular sterol, and interestingly, the expression of some genes involved in membrane and ergosterol synthesis were significantly upregulated, which was likely to be a feedback regulation. Besides, we found that BD had additive and synergistic effects with ketoconazole and amphotericin B, respectively, on inhibition of M. globosa, suggesting that combination use of BD with other commercial drugs could be a promising strategy to relieve skin disorders caused by M. globosa. KEY POINTS: • BD could efficiently inhibit the growth of M. globosa. • BD increases cell membrane permeability and thus promotes the release of cellular contents. • BD has additive or synergistic effect with other antifungal drugs.


Subject(s)
Antifungal Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Cell Membrane/drug effects , Malassezia/drug effects , Malassezia/growth & development , Ergosterol/pharmacology , Microbial Sensitivity Tests , Sorbitol/pharmacology
18.
Appl Microbiol Biotechnol ; 104(18): 7957-7970, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32803295

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA) has become a worrisome superbug, due to its wide distribution and multidrug resistance. To characterize effects of a newly identified plantaricin GZ1-27 on MRSA, transcriptomic and proteomic profiling of MRSA strain ATCC43300 was performed in response to sub-MIC (16 µg/mL) plantaricin GZ1-27 stress. In total, 1090 differentially expressed genes (padj < 0.05) and 418 differentially expressed proteins (fold change > 1.2, p < 0.05) were identified. Centralized protein expression clusters were predicted in biological functions (biofilm formation, DNA replication and repair, and heat-shock) and metabolic pathways (purine metabolism, amino acid metabolism, and biosynthesis of secondary metabolites). Moreover, a capacity of inhibition MRSA biofilm formation and killing biofilm cells were verified using crystal violet staining, scanning electron microscopy, and confocal laser-scanning microscopy. These findings yielded comprehensive new data regarding responses induced by plantaricin and could inform evidence-based methods to mitigate MRSA biofilm formation.


Subject(s)
Bacteriocins , Methicillin-Resistant Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Bacteriocins/genetics , Biofilms , Methicillin-Resistant Staphylococcus aureus/genetics , Microbial Sensitivity Tests , Proteomics , Transcriptome
19.
Appl Microbiol Biotechnol ; 103(18): 7663-7674, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31297555

ABSTRACT

The inhibitory effect of Bacillomycin D, a cyclic lipopeptide, on Rhizopus stolonifer colonization of cherry tomato was studied, and its possible mechanism of action was explored. Bacillomycin D showed a direct inhibitory effect on R. stolonifer spore germination and mycelial growth in vitro. It conferred both a direct inhibitory effect on R. stolonifer growth in cherry tomato in vivo and induced host resistance in cherry tomato. Moreover, Bacillomycin D treatment significantly increased the activities of plant defense-related enzymes, including chitinase (CHI), ß-1,3-glucanase (GLU), phenylalanine ammonia-lyase (PAL), and peroxidase (POD). Real-time PCR (RT-PCR) showed that defense-related genes involved in the salicylic acid defense signaling pathway and genes encoding pathogenesis-related proteins were up-regulated in Bacillomycin D treatment. Furthermore, Bacillomycin D-C16 resulted in direct inhibition and a remarkable induced resistance to R. stolonifer which was higher than as induced by Bacillomycin D-C14. Together, the data indicated that Bacillomycin D can control the growth of R. stolonifer through both the direct inhibition of the fungus and the activation of defense-related genes and enzymes in cherry tomato.


Subject(s)
Antimicrobial Cationic Peptides/pharmacology , Fruit/microbiology , Rhizopus/drug effects , Rhizopus/growth & development , Solanum lycopersicum/microbiology , Chitinases/metabolism , Fruit/enzymology , Glucan 1,3-beta-Glucosidase/metabolism , Solanum lycopersicum/enzymology , Peroxidase/metabolism , Phenylalanine Ammonia-Lyase/metabolism , Plant Diseases/microbiology , Spores, Fungal/drug effects , Spores, Fungal/growth & development
20.
J Food Sci Technol ; 56(12): 5396-5404, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31749487

ABSTRACT

In this study, to improve the thermal and mechanical properties of chitosan films, a chitosan/curdlan/carboxymethyl cellulose (CS/CD/CMC) ternary blended film was prepared and characterized. To prepare a uniform CS/CD/CMC ternary blended film, an effective method of blending CD with other materials was established as the following conditions: the ternary solution temperature was maintained at 60 °C, and the pH was controlled in the range from 12 to 4. Compared to the pure chitosan, the CS/CD/CMC blended films exhibited better mechanical properties, permeability, and thermal stability. In addition, visible light properties of the ternary blending film were improved. Scanning electron microscope and Fourier transform-infrared spectroscopy analyses indicated good compatibility among the CS, CD and CMC, which led to a corresponding improvement in the properties owing to interactions among the three components in the blending process. So, an effective method of blending CD with CS and CMC was established, and the blending film has good thermal and mechanical properties.

SELECTION OF CITATIONS
SEARCH DETAIL