Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.796
Filter
Add more filters

Publication year range
1.
Cell ; 161(7): 1644-55, 2015 Jun 18.
Article in English | MEDLINE | ID: mdl-26091041

ABSTRACT

Adult neural stem/progenitor (B1) cells within the walls of the lateral ventricles generate different types of neurons for the olfactory bulb (OB). The location of B1 cells determines the types of OB neurons they generate. Here we show that the majority of mouse B1 cell precursors are produced between embryonic days (E) 13.5 and 15.5 and remain largely quiescent until they become reactivated postnatally. Using a retroviral library carrying over 100,000 genetic tags, we found that B1 cells share a common progenitor with embryonic cells of the cortex, striatum, and septum, but this lineage relationship is lost before E15.5. The regional specification of B1 cells is evident as early as E11.5 and is spatially linked to the production of neurons that populate different areas of the forebrain. This study reveals an early embryonic regional specification of postnatal neural stem cells and the lineage relationship between them and embryonic progenitor cells.


Subject(s)
Adult Stem Cells/cytology , Cell Lineage , Embryo, Mammalian/cytology , Neural Stem Cells/cytology , Olfactory Bulb/cytology , Adult Stem Cells/classification , Animals , Mice , Neural Stem Cells/classification , Prosencephalon/cytology
2.
Nature ; 620(7972): 192-199, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37495690

ABSTRACT

Sympathetic activation during cold exposure increases adipocyte thermogenesis via the expression of mitochondrial protein uncoupling protein 1 (UCP1)1. The propensity of adipocytes to express UCP1 is under a critical influence of the adipose microenvironment and varies between sexes and among various fat depots2-7. Here we report that mammary gland ductal epithelial cells in the adipose niche regulate cold-induced adipocyte UCP1 expression in female mouse subcutaneous white adipose tissue (scWAT). Single-cell RNA sequencing shows that glandular luminal epithelium subtypes express transcripts that encode secretory factors controlling adipocyte UCP1 expression under cold conditions. We term these luminal epithelium secretory factors 'mammokines'. Using 3D visualization of whole-tissue immunofluorescence, we reveal sympathetic nerve-ductal contact points. We show that mammary ducts activated by sympathetic nerves limit adipocyte UCP1 expression via the mammokine lipocalin 2. In vivo and ex vivo ablation of mammary duct epithelium enhance the cold-induced adipocyte thermogenic gene programme in scWAT. Since the mammary duct network extends throughout most of the scWAT in female mice, females show markedly less scWAT UCP1 expression, fat oxidation, energy expenditure and subcutaneous fat mass loss compared with male mice, implicating sex-specific roles of mammokines in adipose thermogenesis. These results reveal a role of sympathetic nerve-activated glandular epithelium in adipocyte UCP1 expression and suggest that mammary duct luminal epithelium has an important role in controlling glandular adiposity.


Subject(s)
Adipocytes , Adipose Tissue, White , Epithelium , Mammary Glands, Animal , Thermogenesis , Animals , Female , Male , Mice , Adipocytes/metabolism , Adipose Tissue, White/cytology , Adipose Tissue, White/metabolism , Epithelium/innervation , Epithelium/metabolism , Uncoupling Protein 1/genetics , Uncoupling Protein 1/metabolism , Mammary Glands, Animal/cytology , Mammary Glands, Animal/innervation , Mammary Glands, Animal/physiology , Cold Temperature , Sympathetic Nervous System/physiology , Energy Metabolism , Oxidation-Reduction , Sex Characteristics
3.
Cell ; 143(7): 1136-48, 2010 Dec 23.
Article in English | MEDLINE | ID: mdl-21183076

ABSTRACT

Canonical Wnt signaling requires inhibition of Glycogen Synthase Kinase 3 (GSK3) activity, but the molecular mechanism by which this is achieved remains unclear. Here, we report that Wnt signaling triggers the sequestration of GSK3 from the cytosol into multivesicular bodies (MVBs), so that this enzyme becomes separated from its many cytosolic substrates. Endocytosed Wnt colocalized with GSK3 in acidic vesicles positive for endosomal markers. After Wnt addition, endogenous GSK3 activity decreased in the cytosol, and GSK3 became protected from protease treatment inside membrane-bounded organelles. Cryoimmunoelectron microscopy showed that these corresponded to MVBs. Two proteins essential for MVB formation, HRS/Vps27 and Vps4, were required for Wnt signaling. The sequestration of GSK3 extended the half-life of many other proteins in addition to ß-Catenin, including an artificial Wnt-regulated reporter protein containing GSK3 phosphorylation sites. We conclude that multivesicular endosomes are essential components of the Wnt signal-transduction pathway.


Subject(s)
Glycogen Synthase Kinase 3/metabolism , Multivesicular Bodies/metabolism , Signal Transduction , Wnt Proteins/metabolism , Animals , Cell Line , Embryo, Nonmammalian/metabolism , Humans , Mice , Multivesicular Bodies/ultrastructure , Phosphorylation , Protein Stability , Xenopus
4.
Traffic ; 23(6): 331-345, 2022 06.
Article in English | MEDLINE | ID: mdl-35426185

ABSTRACT

In the skin epidermis, melanin is produced and stored within melanosomes in melanocytes, and then transferred to keratinocytes. Different models have been proposed to explain the melanin transfer mechanism, which differ essentially in how melanin is transferred-either in a membrane-bound melanosome or as a melanosome core, that is, melanocore. Here, we investigated the endocytic route followed by melanocores and melanosomes during internalization by keratinocytes, by comparing the uptake of melanocores isolated from the supernatant of melanocyte cultures, with melanosomes isolated from melanocytes. We show that inhibition of actin dynamics impairs the uptake of both melanocores and melanosomes. Moreover, depletion of critical proteins involved in actin-dependent uptake mechanisms, namely Rac1, CtBP1/BARS, Cdc42 or RhoA, together with inhibition of Rac1-dependent signaling pathways or macropinocytosis suggest that melanocores are internalized by phagocytosis, whereas melanosomes are internalized by macropinocytosis. Interestingly, we found that Rac1, Cdc42 and RhoA are differently activated by melanocore or melanosome stimulation, supporting the existence of two distinct routes of melanin internalization. Furthermore, we show that melanocore uptake induces protease-activated receptor-2 (PAR-2) internalization by keratinocytes to a higher extent than melanosomes. Because skin pigmentation was shown to be regulated by PAR-2 activation, our results further support the melanocore-based mechanism of melanin transfer and further refine this model, which can now be described as coupled melanocore exo/phagocytosis.


Subject(s)
Melanins , Receptor, PAR-2 , Actins/metabolism , Keratinocytes/metabolism , Melanins/metabolism , Melanocytes/metabolism , Melanosomes/metabolism , Phagocytosis/physiology , Receptor, PAR-2/metabolism
5.
Neurobiol Dis ; 193: 106437, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38367882

ABSTRACT

TDP-43 pathology is found in several neurodegenerative disorders, collectively referred to as "TDP-43 proteinopathies". Aggregates of TDP-43 are present in the brains and spinal cords of >97% of amyotrophic lateral sclerosis (ALS), and in brains of ∼50% of frontotemporal dementia (FTD) patients. While mutations in the TDP-43 gene (TARDBP) are usually associated with ALS, many clinical reports have linked these mutations to cognitive impairments and/or FTD, but also to other neurodegenerative disorders including Parkinsonism (PD) or progressive supranuclear palsy (PSP). TDP-43 is a ubiquitously expressed, highly conserved RNA-binding protein that is involved in many cellular processes, mainly RNA metabolism. To investigate systemic pathological mechanisms in TDP-43 proteinopathies, aiming to capture the pleiotropic effects of TDP-43 mutations, we have further characterised a mouse model carrying a point mutation (M323K) within the endogenous Tardbp gene. Homozygous mutant mice developed cognitive and behavioural deficits as early as 3 months of age. This was coupled with significant brain structural abnormalities, mainly in the cortex, hippocampus, and white matter fibres, together with progressive cortical interneuron degeneration and neuroinflammation. At the motor level, progressive phenotypes appeared around 6 months of age. Thus, cognitive phenotypes appeared to be of a developmental origin with a mild associated progressive neurodegeneration, while the motor and neuromuscular phenotypes seemed neurodegenerative, underlined by a progressive loss of upper and lower motor neurons as well as distal denervation. This is accompanied by progressive elevated TDP-43 protein and mRNA levels in cortex and spinal cord of homozygous mutant mice from 3 months of age, together with increased cytoplasmic TDP-43 mislocalisation in cortex, hippocampus, hypothalamus, and spinal cord at 12 months of age. In conclusion, we find that Tardbp M323K homozygous mutant mice model many aspects of human TDP-43 proteinopathies, evidencing a dual role for TDP-43 in brain morphogenesis as well as in the maintenance of the motor system, making them an ideal in vivo model system to study the complex biology of TDP-43.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , TDP-43 Proteinopathies , Animals , Child, Preschool , Humans , Mice , Amyotrophic Lateral Sclerosis/metabolism , Brain/metabolism , Cognition , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , TDP-43 Proteinopathies/genetics , TDP-43 Proteinopathies/pathology
6.
Appl Environ Microbiol ; : e0039724, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38975758

ABSTRACT

Beer brewing is a well-known process that still faces great challenges, such as the total consumption of sugars present in the fermentation media. Lager-style beer, a major worldwide beer type, is elaborated by Saccharomyces pastorianus (Sp) yeast, which must ferment high maltotriose content worts, but its consumption represents a notable problem, especially among Sp strains belonging to group I. Factors, such as fermentation conditions, presence of maltotriose transporters, transporter copy number variation, and genetic regulation variations contribute to this issue. We assess the factors affecting fermentation in two Sp yeast strains: SpIB1, with limited maltotriose uptake, and SpIB2, known for efficient maltotriose transport. Here, SpIB2 transported significantly more maltose (28%) and maltotriose (32%) compared with SpIB1. Furthermore, SpIB2 expressed all MAL transporters (ScMALx1, SeMALx1, ScAGT1, SeAGT1, MTT1, and MPHx) on the first day of fermentation, whereas SpIB1 only exhibited ScMalx1, ScAGT1, and MPH2/3 genes. Some SpIB2 transporters had polymorphic transmembrane domains (TMD) resembling MTT1, accompanied by higher expression of these transporters and its positive regulator genes, such as MAL63. These findings suggest that, in addition to the factors mentioned above, positive regulators of Mal transporters contribute significantly to phenotypic diversity in maltose and maltotriose consumption among the studied lager yeast strains.IMPORTANCEBeer, the third most popular beverage globally with a 90% market share in the alcoholic beverage industry, relies on Saccharomyces pastorianus (Sp) strains for lager beer production. These strains exhibit phenotypic diversity in maltotriose consumption, a crucial process for the acceptable organoleptic profile in lager beer. This diversity ranges from Sp group II strains with a notable maltotriose-consuming ability to Sp group I strains with limited capacity. Our study highlights that differential gene expression of maltose and maltotriose transporters and its upstream trans-elements, such as MAL gene-positive regulators, adds complexity to this variation. This insight can contribute to a more comprehensive analysis needed to the development of controlled and efficient biotechnological processes in the beer brewing industry.

7.
J Exp Bot ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38808567

ABSTRACT

Hydrogen sulfide regulates essential plant processes, including adaptation responses to stress situations, and the best characterized mechanism of action of sulfide consists of the posttranslational modification of persulfidation. In this study, we reveal the first persulfidation proteome described in rice including 3443 different persulfidated proteins that participate in a broad range of biological processes and metabolic pathways. In addition, comparative proteomics revealed specific proteins involved in sulfide signaling during drought responses. Several proteins involved in the maintenance of cellular redox homeostasis, the TCA cycle and energy-related pathways, and ion transmembrane transport and cellular water homeostasis, highlighting the aquaporin family, showed the highest differential levels of persulfidation. We revealed that water transport activity is regulated by sulfide which correlates to an increasing level of persulfidation of aquaporins. Our findings emphasize the impact of persulfidation on total ATP levels, fatty acid composition, ROS levels, antioxidant enzymatic activities, and relative water content. Interestingly, the persulfidation role on aquaporin transport activity as an adaptation response in rice differs from the current knowledge in Arabidopsis, which emphasizes the distinct role of sulfide improving rice tolerance to drought.

8.
Mol Psychiatry ; 28(11): 4823-4830, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37684322

ABSTRACT

Data on incidence, prevalence and burden of ADHD are crucial for clinicians, patients, and stakeholders. We present the incidence, prevalence, and burden of ADHD globally and across countries from 1990 to 2019 from the Global Burden of Disease (GBD) study. We also: (1) calculated the ADHD prevalence based on data actually collected as opposed to the prevalence estimated by the GBD with data imputation for countries without prevalence data; (2) discussed the GBD estimated ADHD burden in the light of recent meta-analytic evidence on ADHD-related mortality. In 2019, GBD estimated global age-standardized incidence and prevalence of ADHD across the lifespan at 0.061% (95%UI = 0.040-0.087) and 1.13% (95%UI = 0.831-1.494), respectively. ADHD accounted for 0.8% of the global mental disorder DALYs, with mortality set at zero by the GBD. From 1990 to 2019 there was a decrease of -8.75% in the global age-standardized prevalence and of -4.77% in the global age-standardized incidence. The largest increase in incidence, prevalence, and burden from 1990 to 2019 was observed in the USA; the largest decrease occurred in Finland. Incidence, prevalence, and DALYs remained approximately 2.5 times higher in males than females from 1990 to 2019. Incidence peaked at age 5-9 years, and prevalence and DALYs at age 10-14 years. Our re-analysis of data prior to 2013 showed a prevalence in children/adolescents two-fold higher (5.41%, 95% CI: 4.67-6.15%) compared to the corresponding GBD estimated prevalence (2.68%, 1.83-3.72%), with no significant differences between low- and middle- and high-income countries. We also found meta-analytic evidence of significantly increased ADHD-related mortality due to unnatural causes. While it provides the most detailed evidence on temporal trends, as well as on geographic and sex variations in incidence, prevalence, and burden of ADHD, the GBD may have underestimated the ADHD prevalence and burden. Given the influence of the GBD on research and policies, methodological issues should be addressed in its future editions.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Global Burden of Disease , Male , Child , Female , Adolescent , Humans , Child, Preschool , Incidence , Prevalence , Quality-Adjusted Life Years , Attention Deficit Disorder with Hyperactivity/epidemiology , Global Health
9.
Mol Pharm ; 21(3): 1436-1449, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38291705

ABSTRACT

Small interfering RNAs (siRNAs) have emerged as a powerful tool to manipulate gene expression in vitro. However, their potential therapeutic application encounters significant challenges, such as degradation in vivo, limited cellular uptake, and restricted biodistribution, among others. This study evaluates the siRNA delivery efficiency of three different lipid-substituted polyethylenimine (PEI)-based carriers, named Leu-Fect A-C, to different organs in vivo, including xenograft tumors, when injected into the bloodstream of mice. The siRNA analysis was undertaken by stem-loop RT-PCR, followed by qPCR or digital droplet PCR. Formulating siRNAs with a Leu-Fect series of carriers generated nanoparticles that effectively delivered the siRNAs into K652 and MV4-11 cells, both models of leukemia. The Leu-Fect carriers were able to successfully deliver BCR-Abl and FLT3 siRNAs into leukemia xenograft tumors in mice. All three carriers demonstrated significantly enhanced siRNA delivery into organs other than the liver, including the xenograft tumors. Preferential biodistribution of siRNAs was observed in the lungs and spleen. Among the delivery systems, Leu-Fect A exhibited the highest biodistribution into organs. In conclusion, lipid-substituted PEI-based delivery systems offer improvements in addressing pharmacokinetic challenges associated with siRNA-based therapies, thus opening avenues for their potential translation into clinical practice.


Subject(s)
Leukemia , Neoplasms , Humans , Mice , Animals , RNA, Small Interfering/genetics , Polyethyleneimine , Tissue Distribution , Leukemia/genetics , Leukemia/therapy , Lipids
10.
J Surg Oncol ; 129(7): 1341-1347, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38685749

ABSTRACT

BACKGROUND AND OBJECTIVE: Hypogonadism and frailty may impact postoperative outcomes for men undergoing radical nephrectomy (RN). We aimed to determine the prevalence of hypogonadism in men undergoing RN and whether hypogonadism and frailty are associated with adverse postoperative outcomes. METHODS: We identified men undergoing RN between 2012 and 2021 using the IBM Marketscan database. Frailty was determined using the Hospital Frailty Risk Score (HFRS). Patients were considered to have hypogonadism if diagnosed <5 years before RN. Length of stay (LOS), complications, emergency department (ED) visits, and readmissions were evaluated between men with and without hypogonadism at the time of surgery. Subgroup analysis of men with hypogonadism was performed to determine the effect of testosterone replacement therapy (TRT) on clinical outcomes. RESULTS: Among 13 598 men who underwent RN, 972 (7.1%) had hypogonadism. Men with hypogonadism were more frail compared to men without hypogonadism (HFRS: median: 8.2, interquartile range [IQR]: 5.2-11.7 vs. median: 7.0, IQR: 4.3-10.7, p < 0.001) and had increased incidence of postoperative ileus (13.0% vs. 10.8%, p = 0.045), acute kidney injury (25.5% vs. 21.6% p = 0.005), and cardiac arrest (1.2% vs. 0.6%, p = 0.034). Hypogonadism was not associated with LOS, 90-day ED visit or readmission. However, high-risk frailty was associated with increased risk of 90-day ED visit (hazard ratio [HR]: 2.1, 95% confidence interval [95% CI]: 1.9-2.4, p < 0.001) and 90-day inpatient readmission (HR: 2.6, 95% CI: 2.2-3.1, p < 0.001), compared to low-risk frailty patients. Among men with hypogonadism, TRT was not associated with any postoperative outcomes. CONCLUSIONS: Hypogonadism and frailty should be considered in the preoperative evaluation for men undergoing RN as risk factors for adverse postoperative outcomes.


Subject(s)
Frailty , Hypogonadism , Nephrectomy , Postoperative Complications , Humans , Male , Hypogonadism/epidemiology , Frailty/epidemiology , Frailty/complications , Postoperative Complications/epidemiology , Postoperative Complications/etiology , Middle Aged , Nephrectomy/adverse effects , Aged , Kidney Neoplasms/surgery , Follow-Up Studies , Retrospective Studies , Length of Stay/statistics & numerical data , Testosterone/therapeutic use , Prognosis , Risk Factors
11.
Nanotechnology ; 35(16)2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38176066

ABSTRACT

Despite the remarkable theoretical applications of silicene, its synthesis remains a complex task, with epitaxial growth being one of the main routes involving depositing evaporated Si atoms onto a suitable substrate. Additionally, the requirement for a substrate to maintain the silicene stability poses several difficulties in accurately determining the growth mechanisms and the resulting structures, leading to conflicting results in the literature. In this study, large-scale molecular dynamics simulations are performed to uncover the growth mechanisms and characteristics of epitaxially grown silicene sheets on Au(111) and Au(110) substrates, considering different temperatures and Si deposition rates. The growth process has been found to initiate with the nucleation of several independent islands homogeneously distributed on the substrate surface, which gradually merge to form a complete silicene sheet. The results consistently demonstrate the presence of a buckled silicene structure, although this characteristic is notably reduced when using an Au(111) substrate. Furthermore, the analysis also focuses on the quality and growth mode of the silicene sheets, considering the influence of temperature and deposition rate. The findings reveal a prevalence of the Frank-van der Merwe growth mode, along with diverse forms of defects throughout the sheets.

12.
Compr Psychiatry ; 133: 152506, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38833896

ABSTRACT

BACKGROUND: Trichotillomania (TTM) and excoriation disorder (ED) are impairing obsessive-compulsive related disorders that are common in the general population and for which there are no clear first-line medications, highlighting the need to better understand the underlying biology of these disorders to inform treatments. Given the importance of genetics in obsessive-compulsive disorder (OCD), evaluating genetic factors underlying TTM and ED may advance knowledge about the pathophysiology of these body-focused repetitive behaviors. AIM: In this systematic review, we summarize the available evidence on the genetics of TTM and ED and highlight gaps in the field warranting further research. METHOD: We systematically searched Embase, PsycInfo, PubMed, Medline, Scopus, and Web of Science for original studies in genetic epidemiology (family or twin studies) and molecular genetics (candidate gene and genome-wide) published up to June 2023. RESULTS: Of the 3536 records identified, 109 studies were included in this review. These studies indicated that genetic factors play an important role in the development of TTM and ED, some of which may be shared across the OCD spectrum, but there are no known high-confidence specific genetic risk factors for either TTM or ED. CONCLUSIONS: Our review underscores the need for additional genome-wide research conducted on the genetics of TTM and ED, for instance, genome-wide association and whole-genome/whole-exome DNA sequencing studies. Recent advances in genomics have led to the discovery of risk genes in several psychiatric disorders, including related conditions such as OCD, but to date, TTM and ED have remained understudied.


Subject(s)
Obsessive-Compulsive Disorder , Trichotillomania , Humans , Trichotillomania/genetics , Trichotillomania/epidemiology , Obsessive-Compulsive Disorder/genetics , Genome-Wide Association Study , Excoriation Disorder
13.
An Acad Bras Cienc ; 96(2): e20231250, 2024.
Article in English | MEDLINE | ID: mdl-38747800

ABSTRACT

Brachycephalic breeds of dogs, most of which show signs of the brachycephalic syndrome may have greater parasympathetic stimulation than other breeds, leading to higher values of heart rate variability and vagal tone index. The aim of this study was to establish a computerized electrocardiographic study and an assessment of the vagus sympathetic balance through heart rate variability and vagal tone index of five brachycephalic breeds compared to mesocephalic dogs. Sixty dogs were used, divided into groups made up of Boxers, English Bulldogs, French Bulldogs, Pugs, Shih-Tzu and no defined breed mesocephalic dogs. Statistical analysis was carried out using the Shapiro-Wilk test, Kruskal-Wallis and Dunn's test or ANOVA and Bonferroni (p<0.05). In the evaluation of vagal sympathetic balance among all the dogs, there was a negative correlation between heart rate and HRV 10RR (r = - 0.7678; p < 0.0001), HRV 20RR (r = - 0.8548, p < 0.0001) and VVTI (r = - 0.2770; p = 0.0321). It can therefore be concluded that the dog's breed and morphology did not alter its electrocardiographic parameters or heart rate variability. The vagal tone index, which in other studies differed in brachycephalic dogs, showed no difference when compared separately in brachycephalic breeds.


Subject(s)
Electrocardiography , Heart Rate , Vagus Nerve , Animals , Dogs , Heart Rate/physiology , Vagus Nerve/physiology , Male , Female , Craniosynostoses/veterinary , Craniosynostoses/physiopathology
14.
Pestic Biochem Physiol ; 198: 105721, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38225076

ABSTRACT

Developing new pesticides poses a significant challenge in designing next-generation natural insecticides that selectively target specific pharmacological sites while ensuring environmental friendliness. In this study, we aimed to address this challenge by formulating novel natural pesticides derived from secondary plant metabolites, which exhibited potent insecticide activity. Additionally, we tested their effect on mitochondrial enzyme activity and the proteomic profile of Ae. aegypti, a mosquito species responsible for transmitting diseases. Initially, 110 key compounds from essential oils were selected that have been reported with insecticidal properties; then, to ensure safety for mammals were performed in silico analyses for toxicity properties, identifying non-toxic candidates for further investigation. Subsequently, in vivo tests were conducted using these non-toxic compounds, focusing on the mosquito's larval stage. Based on the lethal concentration (LC), the most promising compounds as insecticidal were identified as S-limonene (LC50 = 6.4 ppm, LC95 = 17.2 ppm), R-limonene (LC50 = 9.86 ppm, LC95 = 27.7 ppm), citronellal (LC50 = 40.5 ppm, LC95 = 68.6 ppm), R-carvone (LC50 = 61.4 ppm, LC95 = 121 ppm), and S-carvone (LC50 = 62.5 ppm, LC95 = 114 ppm). Furthermore, we formulated a mixture of R-limonene, S-carvone, and citronellal with equal proportions of each compound based on their LC50. This mixture specifically targeted mitochondrial proteins and demonstrated a higher effect that showed by each compound separately, enhancing the insecticidal activity of each compound. Besides, the proteomic profile revealed the alteration in proteins involved in proliferation processes and detoxification mechanisms in Ae. aegypti. In summary, our study presents a formulation strategy for developing next-generation natural insecticides using secondary plant metabolites with the potential for reducing the adverse effects on humans and the development of chemical resistance in insects. Our findings also highlight the proteomic alteration induced by the formulated insecticide, showing insight into the mechanisms of action and potential targets for further exploration in vector control strategies.


Subject(s)
Acyclic Monoterpenes , Aedes , Aldehydes , Cyclohexane Monoterpenes , Insecticides , Animals , Humans , Insecticides/pharmacology , Insecticides/chemistry , Limonene/pharmacology , Mitochondrial Proteins/pharmacology , Proteomics , Mosquito Vectors , Larva , Plant Extracts/pharmacology , Mammals
15.
Chem Biodivers ; : e202400680, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748618

ABSTRACT

The study aimed to assess the chemical composition of Miconia ibaguensis leaves extracts and fractions obtained from the ethanolic extract (EE), along with evaluating their antifungal, antibacterial, antidiabetic, and antioxidant activities. The ethyl acetate fraction (EAF) exhibited potent antifungal activity against Candida spp (1.95 - 3.90 µg mL-1) and potent antioxidant activity in the DPPH (1.74 ± 0.07 µg mL-1), FRAP (654.01 ± 42.09 µmol ETrolox/gsample), and ORAC (3698.88 ± 37.28 µmol ETrolox/gsample) methods. The EE displayed inhibition against the α-amylase enzyme (8.42 ± 0.05 µg mL-1). Flavonoids, hydrolysable tannins, triterpenoids, and phenolic acids, identified in the EE and fractions via (-)-HPLC-ESI-MS/MS analysis, were found to contribute to the species' biological activity potentially. These findings suggest promising avenues for further research and potential applications in pharmacology and natural products, offering new possibilities in the fight against global health issues.

16.
Sensors (Basel) ; 24(5)2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38475198

ABSTRACT

An optical fiber pH sensor based on a long-period fiber grating (LPFG) is reported. Two oppositely charged polymers, polyethylenimine (PEI) and polyacrylic acid (PAA), were alternately deposited on the sensing structure through a layer-by-layer (LbL) electrostatic self-assembly technique. Since the polymers are pH sensitive, their refractive index (RI) varies when the pH of the solution changes due to swelling/deswelling phenomena. The fabricated multilayer coating retained a similar property, enabling its use in pH-sensing applications. The pH of the PAA dipping solution was tuned so that a coated LPFG achieved a pH sensitivity of (6.3 ± 0.2) nm/pH in the 5.92-9.23 pH range. Only two bilayers of PEI/PAA were used as an overlay, which reduces the fabrication time and increases the reproducibility of the sensor, and its reversibility and repeatability were demonstrated by tracking the resonance band position throughout multiple cycles between different pH solutions. With simulation work and experimental results from a low-finesse Fabry-Perot (FP) cavity on a fiber tip, the coating properties were estimated. When saturated at low pH, it has a thickness of 200 nm and 1.53 ± 0.01 RI, expanding up to 310 nm with a 1.35 ± 0.01 RI at higher pH values, mostly due to the structural changes in the PAA.

17.
Antimicrob Agents Chemother ; 67(11): e0058923, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37819090

ABSTRACT

Drug resistance to commercially available antimalarials is a major obstacle in malaria control and elimination, creating the need to find new antiparasitic compounds with novel mechanisms of action. The success of kinase inhibitors for oncological treatments has paved the way for the exploitation of protein kinases as drug targets in various diseases, including malaria. Casein kinases are ubiquitous serine/threonine kinases involved in a wide range of cellular processes such as mitotic checkpoint signaling, DNA damage response, and circadian rhythm. In Plasmodium, it is suggested that these protein kinases are essential for both asexual and sexual blood-stage parasites, reinforcing their potential as targets for multi-stage antimalarials. To identify new putative PfCK2α inhibitors, we utilized an in silico chemogenomic strategy involving virtual screening with docking simulations and quantitative structure-activity relationship predictions. Our investigation resulted in the discovery of a new quinazoline molecule (542), which exhibited potent activity against asexual blood stages and a high selectivity index (>100). Subsequently, we conducted chemical-genetic interaction analysis on yeasts with mutations in casein kinases. Our chemical-genetic interaction results are consistent with the hypothesis that 542 inhibits yeast Cka1, which has a hinge region with high similarity to PfCK2α. This finding is in agreement with our in silico results suggesting that 542 inhibits PfCK2α via hinge region interaction.


Subject(s)
Antimalarials , Malaria, Falciparum , Malaria , Plasmodium , Antimalarials/pharmacology , Casein Kinase II/antagonists & inhibitors , Malaria/drug therapy , Malaria/parasitology , Malaria, Falciparum/parasitology , Plasmodium/metabolism , Plasmodium falciparum
18.
New Phytol ; 238(4): 1431-1445, 2023 05.
Article in English | MEDLINE | ID: mdl-36840421

ABSTRACT

Hydrogen sulfide is a signaling molecule in plants that regulates essential biological processes through protein persulfidation. However, little is known about sulfide-mediated regulation in relation to photorespiration. Here, we performed label-free quantitative proteomic analysis and observed a high impact on protein persulfidation levels when plants grown under nonphotorespiratory conditions were transferred to air, with 98.7% of the identified proteins being more persulfidated under suppressed photorespiration. Interestingly, a higher level of reactive oxygen species (ROS) was detected under nonphotorespiratory conditions. Analysis of the effect of sulfide on aspects associated with non- or photorespiratory growth conditions has demonstrated that it protects plants grown under suppressed photorespiration. Thus, sulfide amends the imbalance of carbon/nitrogen and restores ATP levels to concentrations like those of air-grown plants; balances the high level of ROS in plants under nonphotorespiratory conditions to reach a cellular redox state similar to that in air-grown plants; and regulates stomatal closure, to decrease the high guard cell ROS levels and induce stomatal aperture. In this way, sulfide signals the CO2 -dependent stomata movement, in the opposite direction of the established abscisic acid-dependent movement. Our findings suggest that the high persulfidation level under suppressed photorespiration reveals an essential role of sulfide signaling under these conditions.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Hydrogen Sulfide , Arabidopsis/metabolism , Reactive Oxygen Species/metabolism , Proteomics , Arabidopsis Proteins/metabolism , Hydrogen Sulfide/metabolism , Sulfides/pharmacology , Sulfides/metabolism , Oxidative Stress , Plants/metabolism , Plant Stomata/physiology
19.
J Med Virol ; 95(2): e28481, 2023 02.
Article in English | MEDLINE | ID: mdl-36609686

ABSTRACT

The main coronavirus disease 2019 (COVID-19) vaccine formulations used today are mainly based on the wild-type severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike glycoprotein as an antigen. However, new virus variants capable of escaping neutralization activity of serum antibodies elicited in vaccinated individuals have emerged. The Omicron (B.1.1.529) variant caused epidemics in regions of the world in which most of the population has been vaccinated. In this study, we aimed to understand what determines individual's susceptibility to Omicron in a scenario of extensive vaccination. For that purpose, we collected nasopharynx swab (n = 286) and blood samples (n = 239) from flu-like symptomatic patients, as well as their vaccination history against COVID-19. We computed the data regarding vaccine history, COVID-19 diagnosis, COVID-19 serology, and viral genome sequencing to evaluate their impact on the number of infections. As main results, we showed that vaccination in general did not reduce the number of individuals infected by Omicron, even with an increased immune response found among vaccinated, noninfected individuals. Nonetheless, we found that individuals who received the third vaccine dose showed significantly reduced susceptibility to Omicron infections. A relevant evidence that support this finding was the higher virus neutralization capacity of serum samples of most patients who received the third vaccine dose. In summary, this study shows that boosting immune responses after a third vaccine dose reduces susceptibility to COVID-19 caused by the Omicron variant. Results presented in this study are useful for future formulations of COVID-19 vaccination policies.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Testing , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
20.
Plant Physiol ; 189(4): 1961-1975, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35348790

ABSTRACT

Glucosinolates are antiherbivory chemical defense compounds in Arabidopsis (Arabidopsis thaliana). Specialist herbivores that feed on brassicaceous plants have evolved various mechanisms aimed at preventing the formation of toxic isothiocyanates. In contrast, generalist herbivores typically detoxify isothiocyanates through glutathione conjugation upon exposure. Here, we examined the response of an extreme generalist herbivore, the two-spotted spider mite Tetranychus urticae (Koch), to indole glucosinolates. Tetranychus urticae is a composite generalist whose individual populations have a restricted host range but have an ability to rapidly adapt to initially unfavorable plant hosts. Through comparative transcriptomic analysis of mite populations that have differential susceptibilities to Arabidopsis defenses, we identified ß-cyanoalanine synthase of T. urticae (TuCAS), which encodes an enzyme with dual cysteine and ß-cyanoalanine synthase activities. We combined Arabidopsis genetics, chemical complementation and mite reverse genetics to show that TuCAS is required for mite adaptation to Arabidopsis through its ß-cyanoalanine synthase activity. Consistent with the ß-cyanoalanine synthase role in detoxification of hydrogen cyanide (HCN), we discovered that upon mite herbivory, Arabidopsis plants release HCN. We further demonstrated that indole glucosinolates are sufficient for cyanide formation. Overall, our study uncovered Arabidopsis defenses that rely on indole glucosinolate-dependent cyanide for protection against mite herbivory. In response, Arabidopsis-adapted mites utilize the ß-cyanoalanine synthase activity of TuCAS to counter cyanide toxicity, highlighting the mite's ability to activate resistant traits that enable this extreme polyphagous herbivore to exploit cyanogenic host plants.


Subject(s)
Arabidopsis , Tetranychidae , Animals , Arabidopsis/genetics , Cyanides , Glucosinolates , Herbivory , Indoles , Isothiocyanates , Lyases , Plants , Tetranychidae/physiology
SELECTION OF CITATIONS
SEARCH DETAIL