Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
J Immunol ; 190(7): 3533-40, 2013 Apr 01.
Article in English | MEDLINE | ID: mdl-23436932

ABSTRACT

Sphingosine-1-phosphate (S1P) receptors are critical for lymphocyte egress from secondary lymphoid organs, and S1P receptor modulators suppress lymphocyte circulation. However, the role of S1P receptors on monocytes is less clear. To elucidate this, we systematically evaluated monocytes in rats and mice, both in naive and inflammatory conditions, with S1P receptor modulators FTY720 and BAF312. We demonstrate that S1P receptor modulators reduce circulating monocytes in a similar time course as lymphocytes. Furthermore, total monocyte numbers were increased in the spleen and bone marrow, suggesting that S1P receptor modulation restricts egress from hematopoietic organs. Monocytes treated ex vivo with FTY720 had reduced CD40 expression and TNF-α production, suggesting a direct effect on monocyte activation. Similar reductions in protein expression and cytokine production were also found in vivo. Suppression of experimental autoimmune encephalomyelitis in mice and rats by FTY720 correlated with reduced numbers of lymphocytes and monocytes. These effects on monocytes were independent of S1P3, as treatment with BAF312, a S1P1,4,5 modulator, led to similar results. These data reveal a novel role for S1P receptors on monocytes and offer additional insights on the mechanism of action of S1P receptor modulators in disease.


Subject(s)
Monocytes/drug effects , Monocytes/metabolism , Propylene Glycols/pharmacology , Receptors, Lysosphingolipid/metabolism , Sphingosine/analogs & derivatives , Animals , Bone Marrow/drug effects , Bone Marrow/metabolism , Cell Movement/immunology , Cytokines/biosynthesis , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Female , Fingolimod Hydrochloride , Killer Cells, Natural/metabolism , Leukocyte Count , Mice , Monocytes/immunology , Neutrophils/metabolism , Rats , Sphingosine/pharmacology , Spleen/drug effects , Spleen/metabolism
2.
PLoS One ; 9(6): e100883, 2014.
Article in English | MEDLINE | ID: mdl-24967665

ABSTRACT

GPBAR1 is a G protein-coupled receptor that is activated by certain bile acids and plays an important role in the regulation of bile acid synthesis, lipid metabolism, and energy homeostasis. Recent evidence suggests that GPBAR1 may also have important effects in reducing the inflammatory response through its expression on monocytes and macrophages. To further understand the role of GPBAR1 in inflammation, we generated a novel, selective, proprietary GPBAR1 agonist and tested its effectiveness at reducing monocyte and macrophage activation in vitro and in vivo. We have used this agonist, together with previously described agonists to study agonism of GPBAR1, and shown that they can all induce cAMP and reduce TLR activation-induced cytokine production in human monocytes and monocyte-derived macrophages in vitro. Additionally, through the usage of RNA sequencing (RNA-Seq), we identified a select set of genes that are regulated by GPBAR1 agonism during LPS activation. To further define the in vivo role of GPBAR1 in inflammation, we assessed GPBAR1 expression and found high levels on circulating mouse monocytes. Agonism of GPBAR1 reduced LPS-induced cytokine production in mouse monocytes ex vivo and serum cytokine levels in vivo. Agonism of GPBAR1 also had profound effects in the experimental autoimmune encephalomyelitis (EAE) mouse model of multiple sclerosis, where monocytes play an important role. Mice treated with the GPBAR1 agonist exhibited a significant reduction in the EAE clinical score which correlated with reduced monocyte and microglial activation and reduced trafficking of monocytes and T cells into the CNS. These data confirm the importance of GPBAR1 in controlling monocyte and macrophage activation in vivo and support the rationale for selective agonists of GPBAR1 in the treatment of inflammatory diseases.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Myeloid Cells/drug effects , Myeloid Cells/immunology , Receptors, G-Protein-Coupled/agonists , Animals , CHO Cells , Cluster Analysis , Cricetulus , Cyclic AMP , Cytokines/biosynthesis , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Female , Gene Expression Profiling , Humans , Inflammation Mediators/metabolism , Lipopolysaccharides/immunology , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Mice , Monocytes/drug effects , Monocytes/immunology , Monocytes/metabolism , Myeloid Cells/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism
3.
Biochemistry ; 43(37): 11658-71, 2004 Sep 21.
Article in English | MEDLINE | ID: mdl-15362850

ABSTRACT

A novel inhibitor of p38 mitogen-activated protein kinase (p38), CMPD1, identified by high-throughput screening, is characterized herein. Unlike the p38 inhibitors described previously, this inhibitor is substrate selective and noncompetitive with ATP. In steady-state kinetics experiments, CMPD1 was observed to prevent the p38alpha-dependent phosphorylation (K(i)(app) = 330 nM) of the splice variant of mitogen-activated protein kinase-activated protein kinase 2 (MK2a) that contains a docking domain for p38alpha and p38beta, but it did not prevent the phosphorylation of ATF-2 (K(i)(app) > 20 microM). In addition to kinetic studies, isothermal titration calorimetry and surface plasmon resonance experiments were performed to elucidate the mechanism of inhibition. While isothermal titration calorimetry analysis indicated that CMPD1 binds to p38alpha, CMPD1 was not observed to compete with ATP for p38alpha, nor was it able to interrupt the binding of p38alpha to MK2a observed by surface plasmon resonance. Therefore, deuterium exchange mass spectrometry (DXMS) was employed to study the p38alpha.CMPD1 inhibitory complex, to provide new insight into the mechanism of substrate selective inhibition. The DXMS data obtained for the p38alpha.CMPD1 complex were compared to the data obtained for the p38alpha.MK2a complex and a p38alpha.active site binding inhibitor complex. Alterations in the DXMS behavior of both p38alpha and MK2a were observed upon complex formation, including but not limited to the interaction between the carboxy-terminal docking domain of MK2a and its binding groove on p38alpha. Alterations in the D(2)O exchange of p38alpha produced by CMPD1 suggest that the substrate selective inhibitor binds in the vicinity of the active site of p38alpha, resulting in perturbations to regions containing nucleotide binding pocket residues, docking groove residues (E160 and D161), and a Mg(2+) ion cofactor binding residue (D168). Although the exact mechanism of substrate selective inhibition by this novel inhibitor has not yet been disclosed, the results suggest that CMPD1 binding in the active site region of p38alpha induces perturbations that may result in the suboptimal positioning of substrates and cofactors in the transition state, resulting in selective inhibition of p38alpha activity.


Subject(s)
Biphenyl Compounds/metabolism , Enzyme Inhibitors/metabolism , Mitogen-Activated Protein Kinases/antagonists & inhibitors , Protein Structure, Tertiary , Activating Transcription Factor 2 , Adenosine Triphosphate/metabolism , Amino Acid Sequence , Animals , Binding Sites , Biphenyl Compounds/chemistry , Calorimetry , Cyclic AMP Response Element-Binding Protein/metabolism , Enzyme Inhibitors/chemistry , Intracellular Signaling Peptides and Proteins , Mice , Mitogen-Activated Protein Kinase 14 , Mitogen-Activated Protein Kinases/metabolism , Models, Molecular , Molecular Sequence Data , Molecular Structure , Phosphorylation , Protein Binding , Protein Isoforms/chemistry , Protein Isoforms/metabolism , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Substrate Specificity , Surface Plasmon Resonance , Transcription Factors/metabolism
4.
Biochemistry ; 43(31): 9950-60, 2004 Aug 10.
Article in English | MEDLINE | ID: mdl-15287722

ABSTRACT

The p38 mitogen-activated protein kinase (p38) pathway is required for the production of proinflammatory cytokines (TNFalpha and IL-1) that mediate the chronic inflammatory phases of several autoimmune diseases. Potent p38 inhibitors, such as the slow tight-binding inhibitor BIRB 796, have recently been reported to block the production of TNFalpha and IL-1beta. Here we analyze downstream signaling complexes and molecular mechanisms, to provide new insight into the function of p38 signaling complexes and the development of novel inhibitors of the p38 pathway. Catalysis, signaling functions, and molecular interactions involving p38alpha and one of its downstream signaling partners, mitogen-activated protein kinase-activated protein kinase 2 (MK2), have been explored by steady-state kinetics, surface plasmon resonance, isothermal calorimetry, and stopped-flow fluorescence. Functional 1/1 signaling complexes (Kd = 1-100 nM) composed of activated and nonactivated forms of p38alpha and a splice variant of MK2 (MK2a) were characterized. Catalysis of MK2a phosphorylation and activation by p38alpha was observed to be efficient under conditions where substrate is saturating (kcat(app) = 0.05-0.3 s(-1)) and nonsaturating (kcat(app)/KM(app) = 1-3 x 10(6) M(-1) s(-1)). Specific interactions between the carboxy-terminal residues of MK2a (370-400) and p38alpha precipitate formation of a high-affinity complex (Kd = 20 nM); the p38alpha-dependent MK2a phosphorylation reaction was inhibited by the 30-amino acid docking domain peptide of MK2a (IC50 = 60 nM). The results indicate that the 30-amino acid docking domain peptide of MK2a is required for the formation of a tight, functional p38alpha.MK2a complex, and that perturbation of the tight-docking interaction between these signaling partners prevents the phosphorylation of MK2a. The thermodynamic and steady-state kinetic characterization of the p38alpha.MK2a signaling complex has led to a clear understanding of complex formation, catalysis, and function on the molecular level.


Subject(s)
MAP Kinase Signaling System , Mitogen-Activated Protein Kinases/chemistry , Mitogen-Activated Protein Kinases/physiology , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/physiology , Alternative Splicing , Animals , Calorimetry , Catalysis , Fluorescein-5-isothiocyanate/metabolism , Humans , Intracellular Signaling Peptides and Proteins , Isoenzymes/antagonists & inhibitors , Isoenzymes/chemistry , Isoenzymes/genetics , Isoenzymes/physiology , Kinetics , MAP Kinase Signaling System/genetics , Mice , Mitogen-Activated Protein Kinase 14 , Mitogen-Activated Protein Kinases/antagonists & inhibitors , Peptide Fragments/antagonists & inhibitors , Peptide Fragments/genetics , Peptide Fragments/physiology , Phosphorylation , Protein Binding , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/genetics , Protein Structure, Tertiary/genetics , Spectrometry, Fluorescence , Structure-Activity Relationship , Surface Plasmon Resonance , Thermodynamics , Ultracentrifugation
SELECTION OF CITATIONS
SEARCH DETAIL