Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
J Bacteriol ; 200(9)2018 05 01.
Article in English | MEDLINE | ID: mdl-29440253

ABSTRACT

The actinobacterium Corynebacterium matruchotii has been implicated in nucleation of oral microbial consortia leading to biofilm formation. Due to the lack of genetic tools, little is known about basic cellular processes, including protein secretion and folding, in this organism. We report here a survey of the C. matruchotii genome, which encodes a large number of exported proteins containing paired cysteine residues, and identified an oxidoreductase that is highly homologous to the Corynebacterium diphtheriae thiol-disulfide oxidoreductase MdbA (MdbACd). Crystallization studies uncovered that the 1.2-Å resolution structure of C. matruchotii MdbA (MdbACm) possesses two conserved features found in actinobacterial MdbA enzymes, a thioredoxin-like fold and an extended α-helical domain. By reconstituting the disulfide bond-forming machine in vitro, we demonstrated that MdbACm catalyzes disulfide bond formation within the actinobacterial pilin FimA. A new gene deletion method supported that mdbA is essential in C. matruchotii Remarkably, heterologous expression of MdbACm in the C. diphtheriae ΔmdbA mutant rescued its known defects in cell growth and morphology, toxin production, and pilus assembly, and this thiol-disulfide oxidoreductase activity required the catalytic motif CXXC. Altogether, the results suggest that MdbACm is a major thiol-disulfide oxidoreductase, which likely mediates posttranslocational protein folding in C. matruchotii by a mechanism that is conserved in ActinobacteriaIMPORTANCE The actinobacterium Corynebacterium matruchotii has been implicated in the development of oral biofilms or dental plaque; however, little is known about the basic cellular processes in this organism. We report here a high-resolution structure of a C. matruchotii oxidoreductase that is highly homologous to the Corynebacterium diphtheriae thiol-disulfide oxidoreductase MdbA. By biochemical analysis, we demonstrated that C. matruchotii MdbA catalyzes disulfide bond formation in vitro Furthermore, a new gene deletion method revealed that deletion of mdbA is lethal in C. matruchotii Remarkably, C. matruchotii MdbA can replace C. diphtheriae MdbA to maintain normal cell growth and morphology, toxin production, and pilus assembly. Overall, our studies support the hypothesis that C. matruchotii utilizes MdbA as a major oxidoreductase to catalyze oxidative protein folding.


Subject(s)
Bacterial Proteins/chemistry , Corynebacterium/enzymology , Corynebacterium/genetics , Protein Disulfide Reductase (Glutathione)/chemistry , Bacterial Proteins/genetics , Biofilms , Catalysis , Corynebacterium diphtheriae/enzymology , Corynebacterium diphtheriae/genetics , Disulfides/chemistry , Fimbriae Proteins/chemistry , Fimbriae Proteins/genetics , Gene Deletion , Genome, Bacterial , Models, Molecular , Oxidation-Reduction , Oxidoreductases/chemistry , Oxidoreductases/genetics , Protein Disulfide Reductase (Glutathione)/genetics
2.
J Bacteriol ; 199(10)2017 05 15.
Article in English | MEDLINE | ID: mdl-28289087

ABSTRACT

Posttranslocational protein folding in the Gram-positive biofilm-forming actinobacterium Actinomyces oris is mediated by a membrane-bound thiol-disulfide oxidoreductase named MdbA, which catalyzes oxidative folding of nascent polypeptides transported by the Sec translocon. Reoxidation of MdbA involves a bacterial vitamin K epoxide reductase (VKOR)-like protein that contains four cysteine residues, C93/C101 and C175/C178, with the latter forming a canonical CXXC thioredoxin-like motif; however, the mechanism of VKOR-mediated reoxidation of MdbA is not known. We present here a topological view of the A. oris membrane-spanning protein VKOR with these four exoplasmic cysteine residues that participate in MdbA reoxidation. Like deletion of the VKOR gene, alanine replacement of individual cysteine residues abrogated polymicrobial interactions and biofilm formation, concomitant with the failure to form adhesive pili on the bacterial surface. Intriguingly, the mutation of the cysteine at position 101 to alanine (C101A mutation) resulted in a high-molecular-weight complex that was positive for MdbA and VKOR by immunoblotting and was absent in other alanine substitution mutants and the C93A C101A double mutation and after treatment with the reducing agent ß-mercaptoethanol. Consistent with this observation, affinity purification followed by immunoblotting confirmed this MdbA-VKOR complex in the C101A mutant. Furthermore, ectopic expression of the Mycobacterium tuberculosis VKOR analog in the A. oris VKOR deletion (ΔVKOR) mutant rescued its defects, in contrast to the expression of M. tuberculosis VKOR variants known to be nonfunctional in the disulfide relay that mediates reoxidation of the disulfide bond-forming catalyst DsbA in Escherichia coli Altogether, the results support a model of a disulfide relay, from its start with the pair C93/C101 to the C175-X-X-C178 motif, that is required for MdbA reoxidation and appears to be conserved in members of the class ActinobacteriaIMPORTANCE It has recently been shown in the high-GC Gram-positive bacteria (or Actinobacteria) Actinomyces oris and Corynebacterium diphtheriae that oxidative folding of nascent polypeptides transported by the Sec machinery is catalyzed by a membrane-anchored oxidoreductase named MdbA. In A. oris, reoxidation of MdbA requires a bacterial VKOR-like protein, and yet, how VKOR mediates MdbA reoxidation is unknown. We show here that the A. oris membrane-spanning protein VKOR employs two pairs of exoplasmic cysteine residues, including the canonical CXXC thioredoxinlike motif, to oxidize MdbA via a disulfide relay mechanism. This mechanism of disulfide relay is essential for pilus assembly, polymicrobial interactions, and biofilm formation and appears to be conserved in members of the class Actinobacteria, including Mycobacterium tuberculosis.


Subject(s)
Actinomyces/enzymology , Actinomyces/metabolism , Biofilms/growth & development , Protein Disulfide Reductase (Glutathione)/metabolism , Vitamin K Epoxide Reductases/metabolism , Actinomyces/genetics , Actinomyces/physiology , Alanine/genetics , Alanine/metabolism , Amino Acid Substitution , Cysteine/genetics , Cysteine/metabolism , DNA Mutational Analysis , Fimbriae, Bacterial/metabolism , Microscopy, Electron, Transmission , Models, Biological , Models, Molecular , Mutagenesis, Site-Directed , Mutant Proteins/genetics , Mutant Proteins/metabolism , Mycobacterium tuberculosis/enzymology , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Organelle Biogenesis , Oxidation-Reduction , Vitamin K Epoxide Reductases/genetics
3.
Infect Immun ; 83(1): 108-19, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25312953

ABSTRACT

Alcohol impairs the host immune system, rendering the host more vulnerable to infection. Therefore, alcoholics are at increased risk of acquiring serious bacterial infections caused by Streptococcus pneumoniae, including pneumonia. Nevertheless, how alcohol affects pneumococcal virulence remains unclear. Here, we showed that the S. pneumoniae type 2 D39 strain is ethanol tolerant and that alcohol upregulates alcohol dehydrogenase E (AdhE) and potentiates pneumolysin (Ply). Hemolytic activity, colonization, and virulence of S. pneumoniae, as well as host cell myeloperoxidase activity, proinflammatory cytokine secretion, and inflammation, were significantly attenuated in adhE mutant bacteria (ΔadhE strain) compared to D39 wild-type bacteria. Therefore, AdhE might act as a pneumococcal virulence factor. Moreover, in the presence of ethanol, S. pneumoniae AdhE produced acetaldehyde and NADH, which subsequently led Rex (redox-sensing transcriptional repressor) to dissociate from the adhE promoter. An increase in AdhE level under the ethanol condition conferred an increase in Ply and H2O2 levels. Consistently, S. pneumoniae D39 caused higher cytotoxicity to RAW 264.7 cells than the ΔadhE strain under the ethanol stress condition, and ethanol-fed mice (alcoholic mice) were more susceptible to infection with the D39 wild-type bacteria than with the ΔadhE strain. Taken together, these data indicate that AdhE increases Ply under the ethanol stress condition, thus potentiating pneumococcal virulence.


Subject(s)
Alcohol Dehydrogenase/metabolism , Ethanol/metabolism , Gene Expression Regulation, Enzymologic , Streptococcus pneumoniae/enzymology , Streptolysins/toxicity , Virulence Factors/metabolism , Alcohol Dehydrogenase/genetics , Animals , Bacterial Proteins/toxicity , Cell Survival , Drug Tolerance , Gene Deletion , Macrophages/microbiology , Macrophages/physiology , Male , Mice, Inbred ICR , Streptococcus pneumoniae/drug effects , Streptococcus pneumoniae/pathogenicity , Virulence , Virulence Factors/genetics
4.
J Infect Dis ; 210(11): 1745-54, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-24951825

ABSTRACT

BACKGROUND: Activating transcription factor-3 (ATF3) is known as a suppressor of cytokine production after exposure to lipopolysaccharide or during gram-negative bacterial infection. However, the mechanism by which ATF3 regulates innate immunity against gram-positive bacterial infection, particularly Streptococcus pneumoniae, remains unknown. METHODS: The wild-type and ATF3 knock-out (KO) mice were infected intranasally (i.n) or intraperitoneally with S. pneumoniae, and bacterial colonization or survival rate was determined. Pneumococcal pneumonia was induced by i.n infection, and ATF3 level was determined by Western blot. ATF3 KO cells or ATF3 siRNA transfection were used to determine expression of ATF3 downstream genes. Enzyme-linked immunosorbent assay was used to examine cytokines levels. RESULTS: ATF3 was highly expressed in various cell lines in vitro and in many organs in vivo. Pneumolysin was a novel inducer of ATF3. Pneumococcal infection induced ATF3, which subsequently stimulated production of cytokines (tumor necrosis factor [TNF]-α, interleukin [IL]-1ß, and interferon [IFN]-γ). ATF3-mediated cytokine induction protected the host from pneumococcal infection. In the pneumonia infection model, the bacterial clearance of wild-type mice was more efficient than those of ATF3 KO mice. CONCLUSIONS: Taken together, we can conclude that ATF3 regulates innate immunity positively upon pneumococcus infection by enhancing TNF-α, IL-1ß, and IFN-γ expression and modulating bacterial clearance.


Subject(s)
Activating Transcription Factor 3/genetics , Cytokines/biosynthesis , Disease Resistance/genetics , Pneumococcal Infections/genetics , Pneumococcal Infections/metabolism , Streptococcus pneumoniae , Activating Transcription Factor 3/metabolism , Animals , Bacterial Proteins/metabolism , Cell Line , Cytokines/genetics , Disease Models, Animal , Disease Resistance/immunology , Gene Expression Regulation , Genetic Predisposition to Disease , Mice , Mice, Knockout , Pneumococcal Infections/immunology , Pneumococcal Infections/microbiology , Pneumococcal Infections/mortality , Promoter Regions, Genetic , Protein Binding , Streptococcus pneumoniae/immunology , Streptococcus pneumoniae/metabolism , Streptolysins/metabolism , Tumor Necrosis Factor-alpha/biosynthesis
5.
Infect Immun ; 82(9): 3802-10, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24980975

ABSTRACT

Caseinolytic protease L (ClpL) is a member of the HSP100/Clp chaperone family, which is found mainly in Gram-positive bacteria. ClpL is highly expressed during infection for refolding of stress-induced denatured proteins, some of which are important for adherence. However, the role of ClpL in modulating pneumococcal virulence is poorly understood. Here, we show that ClpL impairs pneumococcal adherence to A549 lung cells by inducing and activating Rap1 and Rac1, thus increasing phosphorylation of cofilin (inactive form). Moreover, infection with a clpL mutant (ΔclpL) causes a greater degree of filopodium formation than D39 wild-type (WT) infection. Inhibition of Rap1 and Rac1 impairs filopodium formation and pneumococcal adherence. Therefore, ClpL can reduce pneumococcal adherence to A549 cells, likely via modulation of Rap1- and Rac1-mediated filopodium formation. These results demonstrate a potential role for ClpL in pneumococcal resistance to host cell adherence during infection. This study provides insight into further understanding the interactions between hosts and pathogens.


Subject(s)
Bacterial Adhesion/physiology , Bacterial Proteins/metabolism , Lung Neoplasms/metabolism , Pneumococcal Infections/metabolism , Serine Endopeptidases/metabolism , Streptococcus pneumoniae/metabolism , Telomere-Binding Proteins/metabolism , rac1 GTP-Binding Protein/metabolism , Actin Depolymerizing Factors/genetics , Actin Depolymerizing Factors/metabolism , Actins/genetics , Actins/metabolism , Bacterial Adhesion/genetics , Bacterial Proteins/genetics , Cell Line, Tumor , Endopeptidase Clp , Humans , Lung Neoplasms/genetics , Pneumococcal Infections/genetics , Pneumococcal Infections/microbiology , Serine Endopeptidases/genetics , Shelterin Complex , Streptococcus pneumoniae/genetics , Telomere-Binding Proteins/genetics , Virulence/genetics , rac1 GTP-Binding Protein/genetics
6.
mBio ; 13(3): e0302221, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35420473

ABSTRACT

Fusobacterium nucleatum, an anaerobic Gram-negative bacterium frequently found in the human oral cavity and some extra-oral sites, is implicated in several important diseases: periodontitis, adverse pregnancy outcomes, and colorectal cancer. To date, how this obligate anaerobe copes with oxidative stress and host immunity within multiple human tissues remains unknown. Here, we uncovered a critical role in this process of a multigene locus encoding a single, fused methionine sulfoxide reductase (MsrAB), a two-component signal transduction system (ModRS), and thioredoxin (Trx)- and cytochrome c (CcdA)-like proteins, which are induced when fusobacterial cells are exposed to hydrogen peroxide. Comparative transcriptome analysis revealed that the response regulator ModR regulates a large regulon that includes trx, ccdA, and many metabolic genes. Significantly, specific mutants of the msrAB locus, including msrAB, are sensitive to reactive oxygen species and defective in adherence/invasion of colorectal epithelial cells. Strikingly, the msrAB mutant is also defective in survival in macrophages, and it is severely attenuated in virulence in a mouse model of preterm birth, consistent with its failure to spread to the amniotic fluid and colonize the placenta. Clearly, the MsrAB system regulated by the two-component system ModRS represents a major oxidative stress defense pathway that protects fusobacteria against oxidative damage in immune cells and confers virulence by enabling attachment and invasion of multiple target tissues. IMPORTANCE F. nucleatum colonizes various human tissues, including oral cavity, placenta, and colon. How this obligate anaerobe withstands oxidative stress in host immune cells has not been described. We report here that F. nucleatum possesses a five-gene locus encoding a fused methionine sulfoxide reductase (MsrAB), a two-component signal transduction system (ModRS), and thioredoxin- and cytochrome c-like proteins. Regulated by ModRS, MsrAB is essential for resistance to reactive oxygen species, adherence/invasion of colorectal epithelial cells, and survival in macrophage. Unable to colonize placenta and spread to amniotic fluid, the msrAB mutant failed to induce preterm birth in a murine model.


Subject(s)
Colorectal Neoplasms , Premature Birth , Animals , Carrier Proteins , Cytochromes c , Female , Fusobacterium nucleatum/genetics , Humans , Infant, Newborn , Methionine Sulfoxide Reductases/genetics , Mice , Oxidative Stress , Pregnancy , Reactive Oxygen Species , Thioredoxins , Virulence
7.
Microorganisms ; 9(2)2021 Feb 14.
Article in English | MEDLINE | ID: mdl-33672886

ABSTRACT

Controlled RNA degradation is a crucial process in bacterial cell biology for maintaining proper transcriptome homeostasis and adaptation to changing environments. mRNA turnover in many Gram-positive bacteria involves a specialized ribonuclease called RNase J (RnJ). To date, however, nothing is known about this process in the diphtheria-causative pathogen Corynebacterium diphtheriae, nor is known the identity of this ribonuclease in this organism. Here, we report that C. diphtheriae DIP1463 encodes a predicted RnJ homolog, comprised of a conserved N-terminal ß-lactamase domain, followed by ß-CASP and C-terminal domains. A recombinant protein encompassing the ß-lactamase domain alone displays 5'-exoribonuclease activity, which is abolished by alanine-substitution of the conserved catalytic residues His186 and His188. Intriguingly, deletion of DIP1463/rnj in C. diphtheriae reduces bacterial growth and generates cell shape abnormality with markedly augmented cell width. Comparative RNA-seq analysis revealed that RnJ controls a large regulon encoding many factors predicted to be involved in biosynthesis, regulation, transport, and iron acquisition. One upregulated gene in the ∆rnj mutant is ftsH, coding for a membrane protease (FtsH) involved in cell division, whose overexpression in the wild-type strain also caused cell-width augmentation. Critically, the ∆rnj mutant is severely attenuated in virulence in a Caenorhabditis elegans model of infection, while the FtsH-overexpressing and toxin-less strains exhibit full virulence as the wild-type strain. Evidently, RNase J is a key ribonuclease in C. diphtheriae that post-transcriptionally influences the expression of numerous factors vital to corynebacterial cell physiology and virulence. Our findings have significant implications for basic biological processes and mechanisms of corynebacterial pathogenesis.

8.
Vaccine ; 37(1): 90-98, 2019 01 03.
Article in English | MEDLINE | ID: mdl-30467061

ABSTRACT

Streptococcus pneumoniae is a well-known pathogenic bacterium with a high mortality rate. Currently, a 23-valent pneumococcal polysaccharide vaccine (PPV23) and protein-conjugate vaccines (PCVs) are available on the market. However, both of these vaccines have limitations; specifically, PPV23 produces weak antibody responses in children younger than 2 years and PCVs only partially protect against secondary infection. Previously, we showed serotype-nonspecific protection by Δpep27 vaccine, but the reversion of Δpep27 to the wild type serotype during immunization cannot be excluded. To ensure the safety of the Δpep27 vaccine, comD, an important protein that activates competence, was inactivated, and the transformability of the double mutant (Δpep27ΔcomD) was determined. The transformation ability of this double mutant was successfully abolished. Δpep27ΔcomD immunization significantly increased the survival time after heterologous challenge(s), and diminished colonization levels independent of serotype, including a non-typeable strain (NCC1). Moreover, the double mutant was found to be highly safe in both normal and immunocompromised mice. In conclusion, this pneumococcal Δpep27ΔcomD vaccine appears to be a highly feasible and safe vaccine to prevent various types of pneumococcal infections.


Subject(s)
Bacterial Proteins/immunology , Mutation , Pneumococcal Infections/prevention & control , Pneumococcal Vaccines/immunology , Streptococcus pneumoniae/genetics , Administration, Intranasal , Animals , Antibodies, Bacterial/blood , Bacterial Proteins/genetics , Immunocompromised Host , Immunoglobulin G/blood , Male , Mice , Mice, SCID , Pneumococcal Infections/immunology , Pneumococcal Vaccines/administration & dosage , Serogroup , Streptococcus pneumoniae/immunology , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/immunology
9.
Exp Mol Med ; 50(9): 1-14, 2018 09 05.
Article in English | MEDLINE | ID: mdl-30185778

ABSTRACT

Streptococcus pneumoniae is a polysaccharide-encapsulated bacterium. The capsule thickens during blood invasion compared with the thinner capsules observed in asymptomatic nasopharyngeal colonization. However, the underlying mechanism regulating differential CPS expression remains unclear. CPS synthesis requires energy that is supplied by ATP. Previously, we demonstrated a correlation between ATP levels and adenylate kinase in S. pneumoniae (SpAdK). A dose-dependent induction of SpAdK in serum was also reported. To meet medical needs, this study aimed to elucidate the role of SpAdK in the regulation of CPS production. CPS levels in S. pneumoniae type 2 (D39) increased proportionally with SpAdK levels, but they were not related to pneumococcal autolysis. Moreover, increased SpAdK levels resulted in increased total tyrosine kinase Cps2D levels and phosphorylated Cps2D, which is a regulator of CPS synthesis in the D39 strain. Our results also indicated that the SpAdK and Cps2D proteins interact in the presence of Mg-ATP. In addition, in silico analysis uncovered the mechanism behind this protein-protein interaction, suggesting that SpAdK binds with the Cps2D dimer. This established the importance of the ATP-binding domain of Cps2D. Taken together, the biophysical interaction between SpAdK and Cps2D plays an important role in enhancing Cps2D phosphorylation, which results in increased CPS synthesis.


Subject(s)
Adenylate Kinase/metabolism , Bacterial Proteins/metabolism , Polysaccharides, Bacterial/metabolism , Streptococcus pneumoniae/metabolism , Bacterial Proteins/chemistry , Biophysical Phenomena , Computer Simulation , Phosphorylation , Protein Binding , Protein Domains
10.
mBio ; 9(2)2018 04 24.
Article in English | MEDLINE | ID: mdl-29691334

ABSTRACT

Fusobacterium nucleatum is a key member of the human oral biofilm. It is also implicated in preterm birth and colorectal cancer. To facilitate basic studies of fusobacterial virulence, we describe here a versatile transposon mutagenesis procedure and a pilot screen for mutants defective in biofilm formation. Out of 10 independent biofilm-defective mutants isolated, the affected genes included the homologs of the Escherichia coli cell division proteins FtsX and EnvC, the electron transport protein RnfA, and four proteins with unknown functions. Next, a facile new gene deletion method demonstrated that nonpolar, in-frame deletion of ftsX or envC produces viable bacteria that are highly filamentous due to defective cell division. Transmission electron and cryo-electron microscopy revealed that the ΔftsX and ΔenvC mutant cells remain joined with apparent constriction, and scanning electron microscopy (EM) uncovered a smooth cell surface without the microfolds present in wild-type cells. FtsX and EnvC proteins interact with each other as well as a common set of interacting partners, many with unknown function. Last, biofilm development is altered when cell division is blocked by MinC overproduction; however, unlike the phenotypes of ΔftsX and ΔenvC mutants, a weakly adherent biofilm is formed, and the wild-type rugged cell surface is maintained. Therefore, FtsX and EnvC may perform novel functions in Fusobacterium cell biology. This is the first report of an unbiased approach to uncover genetic determinants of fusobacterial biofilm development. It points to an intriguing link among cytokinesis, cell surface dynamics, and biofilm formation, whose molecular underpinnings remain to be elucidated.IMPORTANCE Little is known about the virulence mechanisms and associated factors in F. nucleatum, due mainly to the lack of convenient genetic tools for this organism. We employed two efficient genetic strategies to identify F. nucleatum biofilm-defective mutants, revealing FtsX and EnvC among seven biofilm-associated factors. Electron microscopy established cell division defects of the ΔftsX and ΔenvC mutants, accompanied with a smooth cell surface, unlike the microfold, rugged appearance of wild-type bacteria. Proteomic studies demonstrated that FtsX and EnvC interact with each other as well as a set of common and unique interacting proteins, many with unknown functions. Importantly, blocking cell division by MinC overproduction led to formation of a weakly adherent biofilm, without alteration of the wild-type cell surface. Thus, this work links cell division and surface dynamics to biofilm development and lays a foundation for future genetic and biochemical investigations of basic cellular processes in this clinically significant pathogen.


Subject(s)
Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biofilms/growth & development , Fusobacterium nucleatum/growth & development , Fusobacterium nucleatum/genetics , DNA Transposable Elements , Fusobacterium nucleatum/cytology , Gene Deletion , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Mutagenesis, Insertional/methods , Protein Interaction Maps
11.
Arch Pharm Res ; 40(8): 921-932, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28735462

ABSTRACT

Streptococcus pneumoniae (pneumococcus) is responsible for significant morbidity and mortality worldwide. It causes a variety of life-threatening infections such as pneumonia, bacteremia, and meningitis. In bacterial physiology, the metabolic pathway of branched-chain amino acids (BCAAs) plays an important role in virulence. Nonetheless, the function of IlvC, one of the enzymes involved in the biosynthesis of BCAAs, in S. pneumoniae remains unclear. Here, we demonstrated that downregulation of BCAA biosynthesis by ilvC ablation can diminish BCAA concentration and expression of pneumolysin (Ply) and LytA, and subsequently attenuate virulence. Infection with an ilvC mutant showed significantly reduced mortality and colonization in comparison with strain D39 (serotype 2, wild type), suggesting that ilvC can potentiate S. pneumoniae virulence due to adequate BCAA synthesis. Taken together, these results suggest that the function of ilvC in BCAA synthesis is essential for virulence factor and could play an important role in the pathogenesis of respiratory infections.


Subject(s)
Amino Acids, Branched-Chain/biosynthesis , Pneumococcal Infections/physiopathology , Streptococcus pneumoniae/pathogenicity , Streptolysins/metabolism , Animals , Bacterial Proteins/metabolism , Down-Regulation , Male , Mice , Pneumococcal Infections/microbiology , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/metabolism , Virulence , Virulence Factors/metabolism
12.
Mol Cells ; 40(12): 935-944, 2017 Dec 31.
Article in English | MEDLINE | ID: mdl-29281779

ABSTRACT

More than 50% of sepsis cases are associated with pneumonia. Sepsis is caused by infiltration of bacteria into the blood via inflammation, which is triggered by the release of cell wall components following lysis. However, the regulatory mechanism of lysis during infection is not well defined. Mice were infected with Streptococcus pneumoniae D39 wild-type (WT) and lipase mutant (ΔlipA) intranasally (pneumonia model) or intraperitoneally (sepsis model), and survival rate and pneumococcal colonization were determined. LipA and autolysin (LytA) levels were determined by qPCR and western blotting. S. pneumoniae Spd_1447 in the D39 (type 2) strain was identified as a lipase (LipA). In the sepsis model, but not in the pneumonia model, mice infected with the ΔlipA displayed higher mortality rates than did the D39 WT-infected mice. Treatment of pneumococci with serum induced LipA expression at both the mRNA and protein levels. In the presence of serum, the ΔlipA displayed faster lysis rates and higher LytA expression than the WT, both in vitro and in vivo. These results indicate that a pneumococcal lipase (LipA) represses autolysis via inhibition of LytA in a sepsis model.


Subject(s)
Bacterial Proteins/metabolism , Sepsis/microbiology , Streptococcus pneumoniae/enzymology , A549 Cells , Animals , Autolysis , Bacterial Proteins/biosynthesis , Bacterial Proteins/genetics , Blood Bactericidal Activity , Humans , Male , Mice , Mice, Inbred ICR , Pneumococcal Infections/microbiology , Pneumonia, Pneumococcal/microbiology , RAW 264.7 Cells , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Sepsis/pathology , Serum , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/pathogenicity , Virulence
13.
J Ginseng Res ; 39(1): 69-75, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25535479

ABSTRACT

BACKGROUND: Ginseng has been shown to exert antistress effects both in vitro and in vivo. However, the effects of ginseng on stress in brain cells are not well understood. This study investigated how Korean Red Ginseng (KRG) controls hydrogen peroxide-induced apoptosis via regulation of phosphatidylinositol-3 kinase (PI3K)/Akt and estrogen receptor (ER)-ß signaling. METHODS: Human neuroblastoma SK-N-SH cells were pretreated with KRG and subsequently exposed to H2O2. The ability of KRG to inhibit oxidative stress-induced apoptosis was assessed in MTT cytotoxicity assays. Apoptotic protein expression was examined by Western blot analysis. The roles of ER-ß, PI3K, and p-Akt signaling in KRG regulation of apoptosis were studied using small interfering RNAs and/or target antagonists. RESULTS: Pretreating SK-N-SH cells with KRG decreased expression of the proapoptotic proteins p-p53 and caspase-3, but increased expression of the antiapoptotic protein BCL2. KRG pretreatment was also associated with increased ER-ß, PI3K, and p-Akt expression. Conversely, ER-ß inhibition with small interfering RNA or inhibitor treatment increased p-p53 and caspase-3 levels, but decreased BCL2, PI3K, and p-Akt expression. Moreover, inhibition of PI3K/Akt signaling diminished p-p53 and caspase-3 levels, but increased BCL2 expression. CONCLUSION: Collectively, the data indicate that KRG represses oxidative stress-induced apoptosis by enhancing PI3K/Akt signaling via upregulation of ER-ß expression.

14.
Mol Cells ; 38(1): 58-64, 2015 Jan 31.
Article in English | MEDLINE | ID: mdl-25518930

ABSTRACT

Activating transcription factor-3 (ATF3) acts as a negative regulator of cytokine production during Gram-negative bacterial infection. A recent study reported that ATF3 provides protection from Streptococcus pneumoniae infection by activating cytokines. However, the mechanism by which S. pneumoniae induces ATF3 after infection is still unknown. In this study, we show that ATF3 was upregulated via Toll-like receptor (TLR) pathways in response to S. pneumoniae infection in vitro. Induction was mediated by TLR4 and TLR2, which are in the TLR family. The expression of ATF3 was induced by pneumolysin (PLY), a potent pneumococcal virulence factor, via the TLR4 pathway. Furthermore, ATF3 induction is mediated by p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK). Thus, this study reveals a potential role of PLY in modulating ATF3 expression, which is required for the regulation of immune responses against pneumococcal infection in macrophages.


Subject(s)
Activating Transcription Factor 3/metabolism , MAP Kinase Signaling System , Macrophages/immunology , Macrophages/microbiology , Streptolysins/immunology , Toll-Like Receptor 4/metabolism , Animals , Bacterial Proteins/immunology , Cell Line , In Vitro Techniques , Macrophages/cytology , Mice , Streptococcus pneumoniae/immunology , Streptococcus pneumoniae/metabolism , Toll-Like Receptor 2/metabolism , Up-Regulation
15.
Phytomedicine ; 22(11): 1055-61, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26407948

ABSTRACT

BACKGROUND: More than 50% of sepsis cases are caused by Streptococcus pneumoniae, and hospital mortality related to sepsis comprises 52% of all hospital deaths. Therefore, sepsis is a medical emergency, and any treatment against the agent that produces it, is welcome. PURPOSE: The role of Panax ginseng C.A. Meyer (Araliaceae) aqueous extract in bacterial infection in vivo is not well understood. Here, the protective effect of Korean red ginseng (KRG) extract against pneumococcal infection and sepsis was elucidated. STUDY DESIGN: In this study, mice were administrated KRG (25, 50, 100 mg/kg) for 15 days, and then infected with a lethal S. pneumoniae strain. Survival rate, body weight, and colonization were determined. METHODS: The RAW 264.7 macrophage cells were infected with S. pneumoniae and cell viability was assessed using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Inflammation was examined using an enzyme-linked immunosorbent assay (ELISA) and hematoxylin and eosin (HE) staining while gene expression was determined using western blotting. RESULTS: KRG-pre-treated mice (100 mg/kg of KRG) had significantly higher survival rates and body weights than those of the non-treated controls; KRG-pre-treated mice had lower bacterial number and morbidity than those of the non-treated controls. 100 mg/kg of KRG administration decreased cytokine levels including tumor necrosis factor (TNF)-α (897 and 623 pg/ml, control and KRG groups, respectively, P < 0.05) and interleukin (IL)-1ß (175 and 127 pg/ml, control and KRG groups, respectively, P = 0.051), nitric oxide level (149 and 81 nM, control and KRG groups, respectively, P < 0.05), and neutrophil infiltration 48 h post-infection, in vivo. In pneumococcal infection, KRG pre-treatment downregulated toll-like receptor (TLR) 4 and TNF-ɑ expressions in RAW 264.7 macrophage cells and increased cell survival by activating phosphoinositide 3-kinase (PI3K)/AKT signaling. CONCLUSION: Taken together, 100 mg/kg of KRG appeared to protect host cells from lethal pneumococcal sepsis by inhibiting inflammation as well as by enhancing bacterial clearance thereby reinforcing cell survival against pneumococcal infection.


Subject(s)
Panax/chemistry , Plant Extracts/pharmacology , Pneumococcal Infections/drug therapy , Sepsis/drug therapy , Animals , Cytokines/metabolism , Disease Models, Animal , Male , Mice , Mice, Inbred ICR , Phosphatidylinositol 3-Kinases/metabolism , RAW 264.7 Cells , Signal Transduction , Toll-Like Receptor 4/metabolism
16.
FEBS Open Bio ; 4: 672-82, 2014.
Article in English | MEDLINE | ID: mdl-25180151

ABSTRACT

Streptococcus pneumoniae (pneumococcus) infection causes more than 1.6 million deaths worldwide. Pneumococcal growth is a prerequisite for its virulence and requires an appropriate supply of cellular energy. Adenylate kinases constitute a major family of enzymes that regulate cellular ATP levels. Some bacterial adenylate kinases (AdKs) are known to be critical for growth, but the physiological effects of AdKs in pneumococci have been poorly understood at the molecular level. Here, by crystallographic and functional studies, we report that the catalytic activity of adenylate kinase from S . pneumoniae (SpAdK) serotype 2 D39 is essential for growth. We determined the crystal structure of SpAdK in two conformations: ligand-free open form and closed in complex with a two-substrate mimic inhibitor adenosine pentaphosphate (Ap5A). Crystallographic analysis of SpAdK reveals Arg-89 as a key active site residue. We generated a conditional expression mutant of pneumococcus in which the expression of the adk gene is tightly regulated by fucose. The expression level of adk correlates with growth rate. Expression of the wild-type adk gene in fucose-inducible strains rescued a growth defect, but expression of the Arg-89 mutation did not. SpAdK increased total cellular ATP levels. Furthermore, lack of functional SpAdK caused a growth defect in vivo. Taken together, our results demonstrate that SpAdK is essential for pneumococcal growth in vitro and in vivo.

SELECTION OF CITATIONS
SEARCH DETAIL