Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Language
Publication year range
1.
Small ; : e2404552, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39106240

ABSTRACT

Oxygen evolution reaction is the essential anodic reaction for water splitting. Designing tunable electronic structures to overcome its slow kinetics is an effective strategy. Herein, the molecular ammonium iron sulfate dodecahydrate is employed as the precursor to synthesize the C, N, S triatomic co-doped Fe(Al)OOH on Ni foam (C,N,S-Fe(Al)OOH-NF) with asymmetric electronic structure. Both in situ oxygen vacancies and their special electronic configuration enable the electron transfer between the d-p orbitals and get the increase of OER activity. Density functional theory calculation further indicates the effect of electronic structure on catalytic activity and stability at the oxygen vacancies. In alkaline solution, the catalyst C,N,S-Fe(Al)OOH-NF shows good catalytic activity and stability for water splitting. For OER, the overpotential of 10 mA cm-2 is 264 mV, the tafel slope is 46.4 mV dec-1, the HER overpotential of 10 mA cm-2 is 188 mV, the tafel slope is 59.3 mV dec-1. The stability of the catalyst can maintain ≈100 h. This work has extraordinary implications for understanding the mechanistic relationship between electronic structure and catalytic activity for designing friendly metal (oxy)hydroxide catalysts.

2.
Angew Chem Int Ed Engl ; 62(30): e202306193, 2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37269225

ABSTRACT

Polyoxometalates (POMs) are considered as promising catalysts with unique redox activity at the molecular level for energy storage. However, eco-friendly iron-oxo clusters with special metal coordination structures have rarely been reported for Li-ion storage. Herein, three novel redox-active tetranuclear iron-oxo clusters have been synthesized using the solvothermal method with different ratios of Fe3+ and SO4 2- . Further, they can serve as anode materials for Li-ion batteries. Among them, cluster H6 [Fe4 O2 (H2 O)2 (SO4 )7 ]⋅H2 O, the stable structure extended by SO4 2- with a unique 1D pore, displays a specific discharge capacity of 1784 mAh g-1 at 0.2 C and good cycle performance (at 0.2 C and 4 C). This is the first instance of inorganic iron-oxo clusters being used for Li-ion storage. Our findings present a new molecular model system with a well-defined structure and offer new design concepts for the practical application of studying the multi-electron redox activity of iron-oxo clusters.

3.
Angew Chem Int Ed Engl ; 61(38): e202202650, 2022 Sep 19.
Article in English | MEDLINE | ID: mdl-35381106

ABSTRACT

The oxygen reduction reaction (ORR) is a key energy conversion process, which is critical for the efficient operation of fuel cells and metal-air batteries. Here, we report the significant enhancement of the ORR-performance of commercial platinum-on-carbon electrocatalysts when operated in aqueous electrolyte solutions (pH 5.6), containing the polyoxoanion [Fe28 (µ3 -O)8 (L-(-)-tart)16 (CH3 COO)24 ]20- . Mechanistic studies provide initial insights into the performance-improving role of the iron oxide cluster during ORR. Technological deployment of the system is demonstrated by incorporation into a direct formate microfluidic fuel cell (DFMFC), where major performance increases are observed when compared with reference electrolytes. The study provides the first examples of iron oxide clusters in electrochemical energy conversion and storage.

5.
ACS Appl Mater Interfaces ; 14(47): 52877-52885, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36383757

ABSTRACT

Alkaline water splitting is a highly efficient and clean technology for hydrogen energy generation. However, in alkaline solutions, most catalysts suffer from extreme instability. Herein, a cross-nanostructured N, F, and CO32- codoped iron oxyhydroxide composite (N,F-FeO(OH)-CO3-NF) rich in oxygen defects is designed for water splitting in the alkaline solution. X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) calculations show that the introduction of F and CO32- can induce electron redistribution around the active center Fe, accelerate the four-electron transfer process, and optimize the d-band center, thereby improving the efficiency and stability of HER and OER. In a 1 M KOH solution, N,F-FeO(OH)-CO3-NF only needs the overpotential of 248 mV for OER and the overpotential of 199 mV for HER to reach the current density of 10 mA·cm-2. Meanwhile, it can reach 100 mA·cm-2 current density at 1.55 V vs RHE and maintains a current density of 10 mA·cm-2 for 120 h in a two-electrode electrolytic water device. Compared with bulk hydroxides, the heteroatom and anion codoped composite hydroxides are more stable and have dual functions in the electrolyte solution. This is of great significance for designing a new stable water-splitting electrocatalyst.

6.
Indian J Dermatol Venereol Leprol ; 88(6): 853-854, 2022.
Article in English | MEDLINE | ID: mdl-33969663
SELECTION OF CITATIONS
SEARCH DETAIL