Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Small ; 20(13): e2308688, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37946695

ABSTRACT

Lymph node metastasis (LNM) is a significant barrier to the prognosis of patients with gastric cancer (GC). Helicobacter pylori (H. pylori)-positive GC patients experience a higher rate of LNM than H. pylori-negative GC patients. However, the underlying mechanism remains unclear. Based on the findings of this study, H. pylori-positive GC patients have greater lymphangiogenesis and lymph node immunosuppression than H. pylori-negative GC patients. In addition, miR-1246 is overexpressed in the plasma small extracellular vesicles (sEVs) of H. pylori-positive GC patients, indicating a poor prognosis. Functionally, sEVs derived from GC cells infected with H. pylori deliver miR-1246 to lymphatic endothelial cells (LECs) and promote lymphangiogenesis and lymphatic remodeling. Mechanistically, miR-1246 suppresses GSK3ß expression and promotes ß-Catenin and downstream MMP7 expression in LECs. miR-1246 also stabilizes programmed death ligand-1 (PD-L1) by suppressing GSK3ß and induces the apoptosis of CD8+ T cells. Overall, miR-1246 in plasma sEVs may be a novel biomarker and therapeutic target in GC-LNM.


Subject(s)
Extracellular Vesicles , Helicobacter pylori , MicroRNAs , Stomach Neoplasms , Humans , Stomach Neoplasms/metabolism , Lymphangiogenesis , Endothelial Cells/metabolism , CD8-Positive T-Lymphocytes/metabolism , Glycogen Synthase Kinase 3 beta , MicroRNAs/genetics , Extracellular Vesicles/metabolism
2.
Gastric Cancer ; 27(2): 275-291, 2024 03.
Article in English | MEDLINE | ID: mdl-38252226

ABSTRACT

BACKGROUND: Peritoneal metastasis (PM), one of the most typical forms of metastasis in advanced gastric cancer (GC), indicates a poor prognosis. Exploring the potential molecular mechanism of PM is urgently necessary, as it has not been well studied. E3 ubiquitin ligase has been widely established to exert a biological function in various cancers, but its mechanism of action in GC with PM remains unknown. METHODS: The effect of MIB1 on PM of GC was confirmed in vitro and in vivo. Co-immunoprecipitation (Co-IP) and mass spectrometry demonstrated the association between MIB1 and DDX3X. Western blot, flow cytometry and immunofluorescence determined that DDX3X was ubiquitylated by MIB1 and promoted stemness. We further confirmed that METTL3 promoted the up-regulation of MIB1 by RNA immunoprecipitation (RIP), luciferase reporter assay and other experiments. RESULTS: We observed that the E3 ubiquitin ligase Mind bomb 1 (MIB1) was highly expressed in PMs, and patients with PM with high MIB1 expression showed a worse prognosis than those with low MIB1 expression. Mechanistically, our study demonstrated that the E3 ubiquitin ligase MIB1 promoted epithelial-mesenchymal transition (EMT) progression and stemness in GC cells by degrading DDX3X. In addition, METTL3 mediated m6A modification to stabilize MIB1, which required the m6A reader IGF2BP2. CONCLUSIONS: Our study elucidated the specific molecular mechanism by which MIB1 promotes PM of GC, and suggested that targeting the METTL3-MIB1-DDX3X axis may be a promising therapeutic strategy for GC with PM.


Subject(s)
Adenosine , Peritoneal Neoplasms , Stomach Neoplasms , Ubiquitin-Protein Ligases , Humans , Adenosine/analogs & derivatives , Cell Line, Tumor , DEAD-box RNA Helicases/metabolism , Methyltransferases/genetics , Methyltransferases/metabolism , RNA-Binding Proteins , Stomach Neoplasms/pathology , Ubiquitin-Protein Ligases/genetics
3.
J Nat Prod ; 85(4): 1147-1156, 2022 04 22.
Article in English | MEDLINE | ID: mdl-35255689

ABSTRACT

In order to improve the potential of celastrol against non-small-cell lung cancer cells, the privileged structure, thiazolidinedione, was introduced into its C-20 carboxylic group with acetylpiperazine as a linker, and the thiazolidinedione-conjugated compounds 10a-10t were prepared. The target compounds were evaluated for their cytotoxic activities against the A549 cell line, and the results showed that most of the compounds 10a-10t displayed improved potency over celastrol, and compound 10b exhibited significant activity against the A549 cell line, with an IC50 value of 0.08 µM, which was 13.8-fold more potent than celastrol (IC50 = 1.10 µM). The mechanistic studies suggested that 10b could induce A549 cell apoptosis, as evidenced by Hoechst 33342 staining and annexin V-FITC/propidium iodide dual staining assays. Western blot analysis suggested that compound 10b could upregulate Bax expression, downregulate Bcl-2 expression, and activate the mitochondria-mediated apoptotic pathway. Furthermore, compound 10b could effectively inhibit tumor growth when tested in an A549 cell xenograft mouse model. Collectively, compound 10b is worthy of further investigation to support the discovery of effective agents against non-small-cell lung cancer.


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , A549 Cells , Animals , Antineoplastic Agents/chemistry , Apoptosis , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , Cell Proliferation , Humans , Lung Neoplasms/pathology , Mice , Mitochondria , Molecular Structure , Pentacyclic Triterpenes , Thiazolidinediones
4.
Mol Cancer ; 20(1): 66, 2021 04 09.
Article in English | MEDLINE | ID: mdl-33836754

ABSTRACT

BACKGROUND: A novel type of noncoding RNA, circRNA has been reported to participate in the occurrence and development of diseases through many mechanisms. The MAPK pathway is a common signal transduction pathway involved in cell proliferation, inflammation and apoptosis and plays a particularly important role in cancers. However, the role of circRNAs related to the MAPK pathway in gastric cancer has not been explored. METHODS: A bioinformatics analysis was performed to profile and identify the circRNAs involved in the MAPK pathway in gastric cancer. The tumor-suppressive role of circMAPK1 was confirmed both in vitro and in vivo. Mass spectrometry, Western blot and immunofluorescence staining assays were used to validate the existence and expression of MAPK1-109aa. The molecular mechanism of circMAPK1 was investigated by mass spectrometry and immunoprecipitation analyses. RESULTS: In this study, we identified that circMAPK1 (hsa_circ_0004872) was downregulated in gastric cancer tissues compared with adjacent normal tissues. Importantly, lower circMAPK1 expression predicted poor survival in GC patients. CircMAPK1 inhibited the proliferation and invasion of gastric cancer cells in vitro and in vivo. Next, we found that circMAPK1 encoded a novel protein with 109 amino acids in length. Through a series of functional experiments, we confirmed that circMAPK1 exerted a tumor-suppressing effect via the encoded protein MAPK1-109aa. Mechanistically, the tumor suppressor MAPK1-109aa inhibited the phosphorylation of MAPK1 by competitively binding to MEK1, thereby suppressing the activation of MAPK1 and its downstream factors in MAPK pathway. CONCLUSIONS: Our study revealed that circMAPK1 inhibits the malignant biological behavior of gastric cancer cells through its encoded protein MAPK1-109aa. More importantly, circMAPK1 is a favorable predictor for gastric cancer patients and may provide a new therapeutic target in the treatment of gastric cancer.


Subject(s)
Biomarkers, Tumor , MAP Kinase Signaling System , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 1/metabolism , RNA, Circular/genetics , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Adult , Aged , Amino Acid Sequence , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Disease Susceptibility , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Male , Middle Aged , Mitogen-Activated Protein Kinase 1/chemistry , Neoplasm Metastasis , Neoplasm Staging , Phosphorylation , Stomach Neoplasms/pathology , Tumor Burden
5.
Scand J Gastroenterol ; 55(6): 687-693, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32449434

ABSTRACT

Objectives: The PHD Finger Protein 19 (PHF19), as a sub-component of polycomb repressive complex 2 (PRC2), has been identified to be associated with various biological processes. Aberrant expression of PHF19 has implicated in several cancer types. This study aims to investigate its function and clinical significance in gastric cancer for the first time.Methods: The expression of PHF19 was evaluated by quantitative real-time PCR (qRT-PCR) and immunohistochemistry. PHF19 was silenced by small interference RNAs and lentiviral particles in gastric cancer cells. Then cell growth was measured by CCK-8 assays, colony formation and in a mouse model. Transwell and wound healing assays were performed to detect cell migration. Western blot analysis was used to explore the downstream signaling factors in PHF19-silenced cells, xenograft tumors and gastric cancer samples.Results: PHF19 was frequently upregulated in gastric cancer tissues compared with adjacent normal stomach tissues and this upregulation was correlated with tumor cell differentiation and poor outcome of gastric cancer patients. Functionally, the silencing of PHF19 in gastric cancer cells led to decreased cell growth and migration. Stable knockdown of PHF19 inhibited the tumorigenicity of gastric cancer cells in nude mice model. Western blot results demonstrated that phosphorylated AKT and ERK were reduced upon PHF19 downregulation, implying the two signaling pathways possibly mediate the oncogenic roles of PHF19.Conclusions: We identified PHF19 as an oncogene candidate and provided a new potential drug target for gastric cancer.


Subject(s)
DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Neoplastic , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Adult , Aged , Animals , Cell Line, Tumor , Cell Movement/drug effects , Cell Movement/genetics , Cell Proliferation/drug effects , Cell Proliferation/genetics , Down-Regulation , Female , Humans , Male , Mice , Mice, Nude , Middle Aged , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Signal Transduction , Stomach Neoplasms/pathology , Survival Analysis , Xenograft Model Antitumor Assays
6.
Mol Cancer ; 18(1): 20, 2019 02 04.
Article in English | MEDLINE | ID: mdl-30717751

ABSTRACT

BACKGROUND: CircRNA has emerged as a new non-coding RNA that plays crucial roles in tumour initiation and development. 'MiRNA sponge' is the most reported role played by circRNAs in many tumours. The AKT/mTOR axis is a classic signalling pathway in cancers that sustains energy homeostasis through energy production activities, such as the Warburg effect, and blocks catabolic activities, such as autophagy. Additionally, the AKT/mTOR axis exerts a positive effect on EMT, which promotes tumour metastasis. METHODS: We detected higher circNRIP1 expression in gastric cancer by performing RNA-seq analysis. We verified the tumour promotor role of circNRIP1 in gastric cancer cells through a series of biological function assays. We then used a pull-down assay and dual-luciferase reporter assay to identify the downstream miR-149-5p of circNRIP1. Western blot analysis and immunofluorescence assays were performed to demonstrate that the circNRIP1-miR-149-5p-AKT1/mTOR axis is responsible for the altered metabolism in GC cells and promotes GC development. We then adopted a co-culture system to trace circNRIP1 transmission via exosomal communication and RIP experiments to determine that quaking regulates circNRIP1 expression. Finally, we confirmed the tumour suppressor role of microRNA-133a-3p in vivo in PDX mouse models. RESULTS: We discovered that knockdown of circNRIP1 successfully blocked proliferation, migration, invasion and the expression level of AKT1 in GC cells. MiR-149-5p inhibition phenocopied the overexpression of circNRIP1 in GC cells, and overexpression of miR-149-5p blocked the malignant behaviours of circNRIP1. Moreover, it was proven that circNRIP1 can be transmitted by exosomal communication between GC cells, and exosomal circNRIP1 promoted tumour metastasis in vivo. We also demonstrated that quaking can promote circNRIP1 transcription. In the final step, the tumour promotor role of circNRIP1 was verified in PDX models. CONCLUSIONS: We proved that circNRIP1 sponges miR-149-5p to affect the expression level of AKT1 and eventually acts as a tumour promotor in GC.


Subject(s)
Adenocarcinoma/genetics , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , Proto-Oncogene Proteins c-akt/genetics , RNA/genetics , Stomach Neoplasms/genetics , TOR Serine-Threonine Kinases/genetics , Adenocarcinoma/metabolism , Adenocarcinoma/mortality , Adenocarcinoma/pathology , Aged , Animals , Cell Line, Tumor , Cell Movement , Cell Proliferation , Disease Progression , Exosomes/metabolism , Exosomes/pathology , Female , Heterografts , Humans , Lymphatic Metastasis , Male , Mice , MicroRNAs/metabolism , Middle Aged , Neoplasm Staging , Proto-Oncogene Proteins c-akt/metabolism , RNA/antagonists & inhibitors , RNA/metabolism , RNA, Circular , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Signal Transduction , Stomach Neoplasms/metabolism , Stomach Neoplasms/mortality , Stomach Neoplasms/pathology , Survival Analysis , TOR Serine-Threonine Kinases/metabolism
7.
Cancer Lett ; 581: 216510, 2024 01 28.
Article in English | MEDLINE | ID: mdl-38029830

ABSTRACT

Tripartite motif-containing protein 29 (TRIM29) is a member of TRIM family protein which has been reported to play a role in the progress of inflammatory and cancer diseases. However, its specific role in gastric cancer (GC) has yet to be fully understood. Here, we investigated the expression of TRIM29 in gastric cancer and its functions in the antitumor immunity. TRIM29 expression was lower in tumor tissues than that in paired normal tissues. Lower expression of TRIM29 was related to aberrant hypermethylation of CpG islands in TRIM29 gene. Comprehensive proteomics and immunoprecipitation analyses identified IGF2BP1 as TRIM29 interactors. TRIM29 interacted with IGF2BP1 and induced its ubiquitination at Lys440 and Lys450 site by K48-mediated linkage for protein degradation. IGF2BP1 promoted PD-L1 mRNA stability and expression in a 3'UTR and m6A-dependent manner. Functionally, TRIM29 enhanced antitumor T-cell immunity in gastric cancer dependent on the IGF2BP1/PD-L1 axis in vivo and in vitro. Clinical correlation analysis revealed that TRIM29 expression in patient samples was associated with CD8+ immune cell infiltration in the GC microenvironment and the overall survival rates of GC patients. Our findings revealed a crucial role of TRIM29 in regulating the antitumor T-cell immunity in GC. We also suggested that the TRIM29/IGF2BP1/PD-L1 axis could be used as a diagnostic and prognostic marker of gastric cancer and a promising target for GC immunotherapy.


Subject(s)
B7-H1 Antigen , Stomach Neoplasms , Humans , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Down-Regulation , Stomach Neoplasms/pathology , T-Lymphocytes/metabolism , Transcription Factors/genetics , Tumor Microenvironment
8.
Int J Biol Sci ; 20(9): 3656-3674, 2024.
Article in English | MEDLINE | ID: mdl-38993561

ABSTRACT

Ubiquitination plays a pivotal regulatory role in tumor progression. Among the components of the ubiquitin-proteasome system (UPS), ubiquitin-protein ligase E3 has emerged as a key molecule. Nevertheless, the biological functions of E3 ubiquitin ligases and their potential mechanisms orchestrating glycolysis in gastric cancer (GC) remain to be elucidated. In this study, we conducted a comprehensive transcriptomic analysis to identify the core E3 ubiquitin ligases in GC, followed by extensive validation of the expression patterns and clinical significance of Tripartite motif-containing 50 (TRIM50) both in vitro and in vivo. Remarkably, we found that TRIM50 was downregulated in GC tissues, associated with malignant progression and poor patient survival. Functionally, overexpression of TRIM50 suppressed GC cell proliferation and indirectly mitigated the invasion and migration of GC cells by inhibiting the M2 polarization of tumor-associated macrophages (TAMs). Mechanistically, TRIM50 inhibited the glycolytic pathway by ubiquitinating Phosphoglycerate Kinase 1 (PGK1), thereby directly suppressing GC cell proliferation. Simultaneously, the reduction in lactate led to diminished M2 polarization of TAMs, indirectly inhibiting the invasion and migration of GC cells. Notably, the downregulation of TRIM50 in GC was mediated by the METTL3/YTHDF2 axis in an m6A-dependent manner. In our study, we definitively identified TRIM50 as a tumor suppressor gene (TSG) that effectively inhibits glycolysis and the malignant progression of GC by ubiquitinating PGK1, thus offering novel insights and promising targets for the diagnosis and treatment of GC.


Subject(s)
Glycolysis , Phosphoglycerate Kinase , Stomach Neoplasms , Tripartite Motif Proteins , Ubiquitin-Protein Ligases , Ubiquitination , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Stomach Neoplasms/genetics , Humans , Phosphoglycerate Kinase/metabolism , Phosphoglycerate Kinase/genetics , Cell Line, Tumor , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Tripartite Motif Proteins/metabolism , Tripartite Motif Proteins/genetics , Cell Proliferation/genetics , Animals , Mice , Mice, Nude , Disease Progression , Cell Movement/genetics , Mice, Inbred BALB C , Gene Expression Regulation, Neoplastic , Methyltransferases/metabolism , Methyltransferases/genetics
9.
Cancer Lett ; 592: 216926, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38714291

ABSTRACT

Gastric cancer (GC) is one of the most common cancer worldwide. Neural invasion (NI) is considered as the symbiotic interaction between nerves and cancers, which strongly affects the prognosis of GC patients. Small extracellular vesicles (sEVs) play a key role in intercellular communication. However, whether sEVs mediate GC-NI remains unexplored. In this study, sEVs release inhibitor reduces the NI potential of GC cells. Muscarinic receptor M3 on GC-derived sEVs regulates their absorption by neuronal cells. The enrichment of sEV-circVAPA in NI-positive patients' serum is validated by serum high throughput sEV-circRNA sequencing and clinical samples. sEV-circVAPA promotes GC-NI in vitro and in vivo. Mechanistically, sEV-circVAPA decreases SLIT2 transcription by miR-548p/TGIF2 and inhibits SLIT2 translation via binding to eIF4G1, thereby downregulates SLIT2 expression in neuronal cells and finally induces GC-NI. Together, this work identifies the preferential absorption mechanism of GC-derived sEVs by neuronal cells and demonstrates a previously undefined role of GC-derived sEV-circRNA in GC-NI, which provides new insight into sEV-circRNA based diagnostic and therapeutic strategies for NI-positive GC patients.


Subject(s)
Extracellular Vesicles , Intercellular Signaling Peptides and Proteins , Neoplasm Invasiveness , Nerve Tissue Proteins , Neurons , Stomach Neoplasms , Animals , Female , Humans , Male , Mice , Cell Line, Tumor , Cell Proliferation , Extracellular Vesicles/metabolism , Gene Expression Regulation, Neoplastic , Intercellular Signaling Peptides and Proteins/metabolism , Intercellular Signaling Peptides and Proteins/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Stomach Neoplasms/pathology , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Middle Aged , Mice, Nude , Mice, Inbred BALB C
10.
Oncogene ; 42(24): 1980-1993, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37130916

ABSTRACT

Peritoneal metastasis (PM) is an important metastatic modality of gastric cancer (GC).It is associated with poor prognosis. The underlying molecular mechanism of PM remains elusive. 5-Methylcytosine (m5C), a posttranscriptional RNA modification, involves in the progression of many tumors. However, its role in GC peritoneal metastasis remains unclear. In our study, transcriptome results suggested that NSUN2 expression was significantly upregulated in PM. And patients with high NSUN2 expression of PM predicted a worse prognosis. Mechanistically, NSUN2 regulates ORAI2 mRNA stability by m5C modification, thereby promoting ORAI2 expression and further promoting peritoneal metastasis and colonization of GC. YBX1 acts as a "reader" by binding to the ORAI2 m5C modification site. Following the uptake of fatty acids from omental adipocytes by GC cells, the transcription factor E2F1 was upregulated, which further promoted the expression of NSUN2 through cis-element. Briefly, these results revealed that peritoneal adipocytes provide fatty acid for GC cells, thus contributing to the elevation of E2F1 and NSUN2 through AMPK pathway, and upregulated NSUN2 activates the key gene ORAI2 through m5C modification, thereby promoting peritoneal metastasis and colonization of gastric cancer.


Subject(s)
Peritoneal Neoplasms , Stomach Neoplasms , Humans , Stomach Neoplasms/pathology , Methyltransferases/metabolism , Peritoneal Neoplasms/genetics , Peritoneal Neoplasms/secondary , RNA Processing, Post-Transcriptional , ORAI2 Protein/genetics , ORAI2 Protein/metabolism
11.
J Exp Clin Cancer Res ; 42(1): 258, 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37789385

ABSTRACT

BACKGROUND: Liver metastasis (LM) is one of the most common distant metastases of gastric cancer (GC). However, the mechanisms underlying the LM of GC (GC-LM) remain poorly understood. This study aimed to identify the tumour-secreted protein associated with GC-LM and to investigate the mechanisms by which this secreted protein remodels the liver microenvironment to promote GC-LM. METHODS: Data-independent acquisition mass spectrometry (DIA-MS), mRNA expression microarray, quantitative real-time PCR, enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry (IHC) were performed to identify and validate the GC-secreted proteins associated with GC-LM. A modified intrasplenic injection mouse model of LM was used to evaluate the progression and tumour burden of LM in vivo. Flow cytometry, immunofluorescence (IF), western blots (WB) and IHC were performed to validate the pre-metastatic niche (PMN) formation in the pre-modelling mouse models. mRNA sequencing of PMA-treated THP-1 cells with or without lipopolysaccharide binding protein (LBP) treatment was used to identify the functional target genes of LBP in macrophages. Co-immunoprecipitation (Co-IP), WB, ELISA, IF and Transwell assays were performed to explore the underlying mechanism of LBP in inducing intrahepatic PMN formation. RESULTS: LBP was identified as a critical secreted protein associated with GC-LM and correlated with a worse prognosis in patients with GC. LBP activated the TLR4/NF-κB pathway to promote TGF-ß1 secretion in intrahepatic macrophages, which, in turn, activated hepatic satellite cells (HSCs) to direct intrahepatic fibrotic PMN formation. Additionally, TGF-ß1 enhanced the migration and invasion of incoming metastatic GC cells in the liver. Consequently, selective targeting of the TGF-ß/Smad signaling pathway with galunisertib demonstrated its efficacy in effectively preventing GC-LM in vivo. CONCLUSIONS: The results of this study provide compelling evidence that serological LBP can serve as a valuable diagnostic biomarker for the early detection of GC-LM. Mechanistically, GC-derived LBP mediates the crosstalk between primary GC cells and the intrahepatic microenvironment by promoting TGF-ß1 secretion in intrahepatic macrophages, which induces intrahepatic fibrotic PMN formation to promote GC-LM. Importantly, selectively targeting the TGF-ß/Smad signaling pathway with galunisertib represents a promising preventive and therapeutic strategy for GC-LM.


Subject(s)
Liver Neoplasms , Stomach Neoplasms , Animals , Humans , Mice , Liver Neoplasms/genetics , RNA, Messenger , Signal Transduction , Stomach Neoplasms/pathology , Transforming Growth Factor beta1/metabolism , Tumor Microenvironment
12.
Cell Death Dis ; 14(8): 520, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37582794

ABSTRACT

Abnormal 5-methylcytosine (m5C) methylation has been proved to be closely related to gastric carcinogenesis, progression, and prognosis. Dysregulated long noncoding RNAs (lncRNAs) participate in a variety of biological processes in cancer. However, to date, m5C-methylated lncRNAs are rarely researched in gastric cancer (GC). Here, we found that RNA cytosine-C(5)-methyltransferase (NSUN2) was upregulated in GC and high NSUN2 expression was associated with poor prognosis. NR_033928 was identified as an NSUN2-methylated and upregulated lncRNA in GC. Functionally, NR_033928 upregulated the expression of glutaminase (GLS) by interacting with IGF2BP3/HUR complex to promote GLS mRNA stability. Increased glutamine metabolite, α-KG, upregulated NR_033928 expression by enhancing its promoter 5-hydroxymethylcytosine (hm5C) demethylation. In conclusion, our results revealed that NSUN2-methylated NR_033928 promoted GC progression and might be a potential prognostic and therapeutic target for GC.


Subject(s)
RNA, Long Noncoding , Stomach Neoplasms , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Glutamine , Glutaminase/genetics , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Cell Proliferation/genetics
13.
Cell Cycle ; 22(20): 2288-2301, 2023 10.
Article in English | MEDLINE | ID: mdl-38009671

ABSTRACT

Mounting evidence indicates the potential involvement of ATP-citrate lyase (ACLY) in the modulation of various cancer types. Nevertheless, the precise biological significance of ACLY in gastric cancer (GC) remains elusive. This study sought to elucidate the biological function of ACLY and uncover its influence on peritoneal metastasis in GC. The expression of ACLY was assessed using both real-time quantitative PCR and western blot techniques. To investigate the impact of ACLY on the proliferation of gastric cancer (GC) cells, colony formation and 5-ethynyl-2'-deoxyuridine (EdU) assays were performed. The migratory and invasive abilities of GC were evaluated using wound healing and transwell assays. Additionally, a bioinformatics analysis was employed to predict the correlation between ACLY and HIF-1A. This interaction was subsequently confirmed through a chromatin immunoprecipitation (ChIP) assay. ACLY exhibited upregulation in gastric cancer (GC) as well as in peritoneal metastasis. Its overexpression was found to facilitate the proliferation and metastasis of GC cells in both in vitro and in vivo experiments. Moreover, ACLY was observed to play a role in promoting angiogenesis and epithelial-mesenchymal transition (EMT). Notably, under hypoxic conditions, HIF-1A levels were elevated, thereby acting as a transcription factor to upregulate ACLY expression. Under the regulatory influence of HIF-1A, ACLY exerts a significant impact on the progression of gastric cancer, thereby facilitating peritoneal metastasis.


Subject(s)
Peritoneal Neoplasms , Stomach Neoplasms , Humans , Stomach Neoplasms/pathology , ATP Citrate (pro-S)-Lyase/metabolism , Peritoneal Neoplasms/genetics , Cell Proliferation/genetics , Cell Transformation, Neoplastic , Epithelial-Mesenchymal Transition/genetics , Cell Line, Tumor
14.
Cell Death Dis ; 14(4): 260, 2023 04 10.
Article in English | MEDLINE | ID: mdl-37037818

ABSTRACT

Neural invasion (NI) is a vital pathological characteristic of gastric cancer (GC), which correlates with tumor recurrence and a worse prognosis. Long noncoding RNAs (lncRNAs) play critical roles in various biological processes. However, the involvement of lncRNAs in NI of GC (GC-NI) remains unclear. DIAPH2-AS1 was upregulated in NI-positive GC tissues, which was confirmed by qRT-PCR. The higher expression of DIAPH2-AS1 predicted NI and worse survival for GC patients. Both in vitro and in vivo experiments, including wound-healing assay, Transwell assay, DRG-GC cells co-culture model, the mouse sciatic nerve model, and the lung metastasis model, indicated that DIAPH2-AS1 promoted the migration, invasion, and NI potential of GC cells. Mechanistically, pulldown assay and RNA immunoprecipitation assay revealed that DIAPH2-AS1 interacted with NSUN2. Subsequent experiments indicated that DIAPH2-AS1 stabilized NSUN2 from ubiquitin-proteasomal degradation via masking the K577 and K579 of NSUN2. The protection of DIAPH2-AS1 on NSUN2 improved the stability of NTN1 mRNA via m5C modification, which finally induced GC-NI. Our work uncovered DIAPH2-AS1 as a novel oncogenic lncRNA in GC-NI and validated the DIAPH2-AS1-NSUN2-NTN1 axis as a potential therapeutic target for NI-positive GC.


Subject(s)
Methyltransferases , MicroRNAs , Netrin-1 , RNA, Long Noncoding , Stomach Neoplasms , Animals , Mice , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation , Gene Expression Regulation, Neoplastic/genetics , MicroRNAs/genetics , Neoplasm Recurrence, Local/genetics , RNA, Long Noncoding/genetics , Stomach Neoplasms/pathology , Netrin-1/genetics , Methyltransferases/genetics
15.
Clin Transl Med ; 12(1): e707, 2022 01.
Article in English | MEDLINE | ID: mdl-35061934

ABSTRACT

Gastric cancer (GC) ranks third in mortality among all cancers worldwide. Circular RNAs (circRNAs) play an important role in the occurrence and development of gastric cancer. Forkhead box P2 (FOXP2), as a transcription factor, is closely associated with the development of many types of tumours. However, the regulatory network between FOXP2 and circRNAs remains to be explored. In our study, circST3GAL6 was significantly downregulated in GC and was associated with poor prognosis in GC patients. Overexpression of circST3GAL6 inhibited the malignant behaviours of GC cells, which was mediated by inducing apoptosis and autophagy. In addition, we demonstrated that circST3GAL6 regulated FOXP2 through the mir-300 sponge. We further found that FOXP2 inhibited MET Proto-Oncogene (MET), which was the initiating factor that regulated the classic AKT/mTOR pathway of autophagy. In conclusion, our results suggested that circST3GAL6 played a tumour suppressive role in gastric cancer through miR-300/FOXP2 axis and regulated apoptosis and autophagy through FOXP2-mediated transcriptional inhibition of the MET axis, which may become a potential target for GC therapy.


Subject(s)
Autophagy/drug effects , Sialyltransferases/metabolism , Stomach Neoplasms/drug therapy , Animals , Cell Movement/drug effects , Cell Movement/genetics , Cell Proliferation/drug effects , Cell Proliferation/genetics , Disease Models, Animal , Forkhead Transcription Factors/drug effects , Mice , Neoplasms/drug therapy , Neoplasms/prevention & control , Proto-Oncogene Proteins c-met/drug effects , Sialyltransferases/pharmacology , Signal Transduction/drug effects , Signal Transduction/genetics , Stomach Neoplasms/prevention & control , TOR Serine-Threonine Kinases/drug effects , beta-Galactoside alpha-2,3-Sialyltransferase
16.
Clin Transl Med ; 12(1): e708, 2022 01.
Article in English | MEDLINE | ID: mdl-35075806

ABSTRACT

BACKGROUND: Chemotherapy can significantly improve the disease-free survival and overall survival of patients with advanced gastric cancer (GC). 5-fluorouracil (5-FU) is frequently applied in the clinic, acting as a first-line chemotherapy drug of advanced GC, which could be used alone or combining platinum drugs. However, its efficacy is significantly attenuated by chemoresistance, which is associated with patients' poor survival. Recently, there is evidence suggesting that dysregulation of autophagy may contribute to drug resistance in cancer, and circular RNAs (circRNAs) also take part in chemoresistance. However, whether circRNAs participate in 5-FU chemoresistance through autophagy remains largely unknown. METHODS: RNA sequencing technologies and bioinformatics analysis were performed in GC. Sanger sequencing, Actinomycin D assay and RNase R assay confirmed the circular structure of circular CPM (circCPM). Various cell line models and animal models were used to explore related functions in vitro and in vivo. Quantitative Real-time PCR (qRT-PCR), fluorescence in situ hybridization, ribonucleic acid; (RNA) pulldown assays, RNA binding protein immunoprecipitation assays and Luciferase reporter assays were applied to explore involved pathways. RESULTS: circCPM was up-regulated in 5-FU resistant GC cell lines and tissue. Moreover, high circCPM expression is positively associated with poor survival. Silencing circCPM greatly improved chemosensitivity in vitro and in vivo. Mechanistically, it directly binds to miR-21-3p in the cytoplasm and therefore increases the expression of PRKAA2, contributing to the activation of autophagy and chemoresistance. CONCLUSION: Our results reveal that circCPM has a crucial role in regulating GC autophagy and 5-FU resistance by targeting PRKAA2. It may function as a new theory basis for assessing the curative effect of GC and reversing 5-FU chemoresistance.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Stomach Neoplasms/genetics , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/pharmacology , Autophagy/genetics , GPI-Linked Proteins/agonists , GPI-Linked Proteins/metabolism , Humans , Kaplan-Meier Estimate , Metalloendopeptidases/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , MicroRNAs/therapeutic use
17.
Eur J Med Chem ; 234: 114254, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35290844

ABSTRACT

Three series of celastrol derivatives, namely, 6a-6i, 11a-11i and 15a-15i, were designed based on the scaffold hopping strategy. The derivatives were synthesized and biologically evaluated against five human tumor cell lines (i.e. A549, MCF-7, Bel7402, HT-29 and PC3) using MTT assay in vitro. Results showed that compound 11i exhibited apparent antiproliferative activity against the MCF-7 cell line with an IC50 value of 1.31 µM and could remarkably inhibit the colony formation of the MCF-7 cells. Transmission electron microscopy assay, monodansylcadaverine incorporation assay and the expression of LC3 A/B, p62 and Beclin-1 in MCF-7 cells suggested that the potent antiproliferative activity of compound 11i was mainly due to its autophagy-inducing effect. Moreover, compound 11i could arrest the MCF-7 cells in the G2/M phase by regulating the cell-cycle-related proteins Cdk-1 and Cyclin B1. In the zebrafish xenograft model, compound 11i could obviously inhibit the proliferation of the MCF-7 cells. Thus, compound 11i could serve as a promising lead compound for breast cancer therapy.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Animals , Antineoplastic Agents/chemistry , Apoptosis , Autophagy , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation , Drug Screening Assays, Antitumor , Female , Humans , MCF-7 Cells , Oxazoles/pharmacology , Pentacyclic Triterpenes , Pyrazines/pharmacology , Structure-Activity Relationship , Zebrafish/metabolism
18.
J Exp Clin Cancer Res ; 41(1): 296, 2022 Oct 10.
Article in English | MEDLINE | ID: mdl-36217165

ABSTRACT

BACKGROUND: Liver metastasis (LM) is a major obstacle to the prognosis of gastric cancer (GC) patients, but the molecular mechanism underlying gastric cancer liver metastasis (GC-LM) remains unknown. Exosomes have been identified as an important mediator of communication between tumor cells and the microenvironment. Therefore, we sought to investigate the effects of primary GC cells on the liver microenvironment and the role of exosomal microRNAs (exo-miRNA) in GC-LM. METHODS: Sequential differential centrifugation, transmission electron microscopy and NanoSight analysis were used to extract and characterize exosomes. MicroRNA sequencing in GC-derived exosomes and mRNA sequencing in PMA-treated THP-1 cells were used to identify differentially expressed miRNAs in exosomes and the functional targets of exosomal miR-519a-3p (exo-miR-519a-3p) in macrophages, respectively. Tracing and internalization of exosomes and transfer of exo-miR-519a-3p were observed by immunofluorescence. Tubule formation assays, aortic ring assays, and exosome-educated GC-LM model were used to investigate the roles of GC-derived exosomes and exo-miR-519a-3p in angiogenesis and GC-LM. Luciferase reporter assay, qRT-PCR, Western blot, ELISA, flow cytometry and immunofluorescence were used to investigate the regulatory mechanism of exo-miR-519a-3p at GC-LM. RESULTS: The expression level of miR-519a-3p in serum exosomes was significantly higher in GC-LM patients than in patients without LM, and high expression of exo-miR-519a-3p indicates a worse prognosis. GC-derived exosomes are mainly accumulated in the liver and internalized by intrahepatic macrophages. Mechanistically, exo-miR-519a-3p activates the MAPK/ERK pathway by targeting DUSP2, thereby causing M2-like polarization of macrophages. M2-like polarized macrophages accelerate GC-LM by inducing angiogenesis and promoting intrahepatic premetastatic niche formation. CONCLUSIONS: Our results indicate that exo-miR-519a-3p plays a critical role in mediating crosstalk between primary GC cells and intrahepatic macrophages and is a potential therapeutic target for GC-LM.


Subject(s)
Exosomes , Liver Neoplasms , MicroRNAs , Stomach Neoplasms , Cell Line, Tumor , Cell Proliferation , Exosomes/genetics , Exosomes/metabolism , Humans , Liver Neoplasms/metabolism , Macrophages/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Neovascularization, Pathologic/metabolism , RNA, Messenger/metabolism , Stomach Neoplasms/pathology , Tumor Microenvironment/genetics
19.
Cell Death Dis ; 13(3): 266, 2022 03 25.
Article in English | MEDLINE | ID: mdl-35338119

ABSTRACT

Circular RNAs (circRNAs) play vital regulatory roles in the progression of multiple cancers. In our study, transcriptome analysis and self-organizing maps (SOM) were applied to screen backbone circRNAs in gastric cancer (GC). Upon validation of the expression patterns of screened circRNAs, gain- and loss-of-function assays were performed in vitro and in vivo. Underlying mechanisms were investigated using RNA pull-down, luciferase reporter assay and RNA immunoprecipitation. The expression of circTHBS1 was significantly increased in GC and associated with poor prognosis. CircTHBS1 facilitated the malignant behavior and epithelial-to-mesenchymal transition of GC cells. Mechanistically, circTHBS1 sponged miR-204-5p to promote the expression of Inhibin Subunit Beta A (INHBA). Moreover, circTHBS1 could enhance the HuR-mediated mRNA stability of INHBA, which subsequently activated the TGF-ß pathway. Our research identified circTHBS1 as an oncogenic circRNA that enhances GC malignancy by elevating INHBA expression, providing new insight and a feasible target for the diagnosis and treatment of GC.


Subject(s)
MicroRNAs , Stomach Neoplasms , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic/genetics , Humans , Inhibin-beta Subunits , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular/genetics , RNA, Messenger/genetics , Stomach Neoplasms/pathology , Thrombospondin 1
20.
Cell Death Dis ; 12(11): 968, 2021 10 20.
Article in English | MEDLINE | ID: mdl-34671022

ABSTRACT

Gastric cancer (GC) ranks the third among global cancer-related mortality, especially in East Asia. Angiogenesis plays an important role in promoting tumor progression, and clinical trials have demonstrated that anti-angiogenesis therapy is effective in GC management. Natriuretic peptide receptor A (NPRA) functions significantly in promoting GC development and progression. Whether NPRA can promote angiogenesis of GC remains unclear. Tumor samples collection and immunohistochemical experiment showed that the expression of NPRA was positively correlated with the expression of CD31 and vessel density. In vivo and in vitro analysis showed that NPRA could promote GC-associated angiogenesis and tumor metastasis. Results of Co-IP/MS showed that NPRA could prevent HIF-1α from being degraded by binding to HIF-1α. Protection of HIF-1α improved VEGF levels and thus promoted angiogenesis. In summary, NPRA protected HIF-1α from proteolysis by binding to HIF-1α, increased the expression of HIF-1α, and promoted GC angiogenesis. This study has discovered a new mechanism for NPRA to promote gastric cancer development and a new regulatory mechanism for HIF-1α.


Subject(s)
Neovascularization, Pathologic/metabolism , Receptors, Atrial Natriuretic Factor/metabolism , Stomach Neoplasms/blood supply , Stomach Neoplasms/metabolism , Animals , Cell Line, Tumor , Cell Proliferation/genetics , Disease Models, Animal , Female , Gene Expression Regulation, Neoplastic , Gene Silencing , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Mice, Nude , Models, Biological , Neoplasm Staging , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/pathology , Prognosis , Proteolysis , Signal Transduction , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Up-Regulation/genetics , Vascular Endothelial Growth Factor A/metabolism , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL