Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
Nature ; 584(7821): 484, 2020 08.
Article in English | MEDLINE | ID: mdl-32699408

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

2.
Nature ; 581(7807): 159-163, 2020 05.
Article in English | MEDLINE | ID: mdl-32405021

ABSTRACT

The measurement sensitivity of quantum probes using N uncorrelated particles is restricted by the standard quantum limit1, which is proportional to [Formula: see text]. This limit, however, can be overcome by exploiting quantum entangled states, such as spin-squeezed states2. Here we report the measurement-based generation of a quantum state that exceeds the standard quantum limit for probing the collective spin of 1011 rubidium atoms contained in a macroscopic vapour cell. The state is prepared and verified by sequences of stroboscopic quantum non-demolition (QND) measurements. We then apply the theory of past quantum states3,4 to obtain spin state information from the outcomes of both earlier and later QND measurements. Rather than establishing a physically squeezed state in the laboratory, the past quantum state represents the combined system information from these prediction and retrodiction measurements. This information is equivalent to a noise reduction of 5.6 decibels and a metrologically relevant squeezing of 4.5 decibels relative to the coherent spin state. The past quantum state yields tighter constraints on the spin component than those obtained by conventional QND measurements. Our measurement uses 1,000 times more atoms than previous squeezing experiments5-10, with a corresponding angular variance of the squeezed collective spin of 4.6 × 10-13 radians squared. Although this work is rooted in the foundational theory of quantum measurements, it may find practical use in quantum metrology and quantum parameter estimation, as we demonstrate by applying our protocol to quantum enhanced atomic magnetometry.

3.
Phys Rev Lett ; 133(10): 103601, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39303266

ABSTRACT

Coherent manipulation of quantum states of light is key to photonic quantum information processing. In this Letter, we show that a passive two-level nonlinearity suffices to implement non-Gaussian quantum operations on propagating field modes. In particular, the collective light-matter interaction can efficiently extract a single photon from a multiphoton input wave packet to an orthogonal temporal mode. We accurately describe the single-photon subtraction process by elements of an intuitive quantum-trajectory model. By employing this process, quantum information protocols gain orders of magnitude improved efficiency over heralded schemes with linear optics. The reverse process can be used to add photons one by one to a single wave packet mode and compose arbitrarily large Fock states with a finite total success probability >96.7%.

4.
Phys Rev Lett ; 133(7): 073601, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39213549

ABSTRACT

In this Letter, we use quantum trajectory theory to simulate heterodyne detection of narrow bandwidth superradiant lasing from an incoherently excited atomic ensemble. To this end, we describe the system dynamics and account for stochastic measurement backaction by second-order mean-field theory. Our simulations show how heterodyne measurements break the phase symmetry, and initiate the atomic coherence with a random phase and a long temporal phase coherence. More importantly, our theory allows direct simulation of experimental procedures for extraction of spectral information which do not lend themselves to evaluation with the quantum regression theorem.

5.
Phys Rev Lett ; 128(9): 093602, 2022 Mar 04.
Article in English | MEDLINE | ID: mdl-35302803

ABSTRACT

One-dimensional (1D) subwavelength atom arrays display multiply excited subradiant eigenstates which are reminiscent of free fermions. So far, these states have been associated with subradiant states with decay rates ∝N^{-3}, with N the number of atoms, which fundamentally prevents detection of their fermionic features by optical means. In this Letter, we show that free-fermion states generally appear whenever the band of singly excited states has a quadratic dispersion relation at the band edge and, hence, may also be obtained with radiant and even superradiant states. 1D arrays have free-fermion multiply excited eigenstates that are typically either subradiant or (super)radiant, and we show that a simple transformation acts between the two families. Based on this correspondence, we propose different means for their preparation and analyze their experimental signature in optical detection.

6.
Phys Rev Lett ; 129(12): 120402, 2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36179166

ABSTRACT

We present a protocol for probing the state of a quantum system by its resonant coupling and entanglement with a meter system. By continuous measurement of a time evolving meter observable, we infer the evolution of the entangled systems and, ultimately, the state and dynamics of the system of interest. The photon number in a cavity field is thus resolved by simulated monitoring of the Rabi oscillations of a resonantly coupled two-level system, and we propose to regard this as a practical extension of quantum nondemolition measurements with applications in quantum metrology and quantum computing.

7.
Phys Rev Lett ; 128(1): 013604, 2022 Jan 07.
Article in English | MEDLINE | ID: mdl-35061453

ABSTRACT

We develop a stochastic mean-field theory to describe active frequency measurements of pulsed superradiant emission, studied in a recent experiment with strontium-87 atoms trapped in an optical lattice inside an optical cavity [M. Norcia et al., Phys. Rev. X 8, 021036 (2018)PRXHAE2160-330810.1103/PhysRevX.8.021036]. Our theory reveals the intriguing dynamics of atomic ensembles with multiple transition frequencies, and it reproduces the superradiant beats signal, noisy power spectra, and frequency uncertainty in remarkable agreement with the experiments. Moreover, using longer superradiant pulses of similar strength and shortening the experimental duty cycle, we predict a short-term frequency uncertainty 7×10^{-17}/sqrt[τ/s], which makes active frequency measurements with superradiant transitions comparable with the record performance of current frequency standards [M. Schioppo et al., Nat. Photonics 11, 48 (2017)NPAHBY1749-488510.1038/nphoton.2016.231]. Our theory combines cavity quantum electrodynamics and quantum measurement theory, and it can be readily applied to explore conditional quantum dynamics and describe frequency measurements for other processes such as steady-state superradiance and superradiant Raman lasing.

8.
Phys Rev Lett ; 128(25): 253601, 2022 Jun 24.
Article in English | MEDLINE | ID: mdl-35802426

ABSTRACT

Cavity quantum electrodynamics (CQED) effects, such as Rabi splitting, Rabi oscillations, and superradiance, have been demonstrated with nitrogen vacancy (NV) center spins in diamond coupled to microwave resonators at cryogenic temperature. In this Letter, we explore the possibility to realize strong collective coupling and CQED effects with ensembles of NV spins at room temperature. Our calculations show that thermal excitation of the individual NV spins leads to population of collective Dicke states with low symmetry and a reduced collective coupling to the microwave resonators. Optical pumping can be applied to counteract the thermal excitation of the NV centers and to prepare the spin ensemble in Dicke states with high symmetry. The resulting strong coupling with high-quality resonators enables the study of intriguing CQED effects across the weak-to-strong coupling regime, and may have applications in quantum sensing and quantum information processing.

9.
Phys Rev Lett ; 128(21): 213603, 2022 May 27.
Article in English | MEDLINE | ID: mdl-35687472

ABSTRACT

Sorting quantum fields into different modes according to their Fock-space quantum numbers is a highly desirable quantum operation. In this Letter, we show that a pair of two-level emitters, chirally coupled to a waveguide, may scatter single- and two-photon components of an input pulse into orthogonal temporal modes with a fidelity ≳0.9997. We develop a general theory to characterize and optimize this process and reveal that such a high fidelity is enabled by an interesting two-photon scattering dynamics: while the first emitter gives rise to a complex multimode field, the second emitter recombines the field amplitudes, and the net two-photon scattering induces a self-time reversal of the input pulse mode. The presented scheme can be employed to construct logic elements for propagating photons, such as a deterministic nonlinear-sign gate with a fidelity ≳0.9995.

10.
Nature ; 532(7598): 210-3, 2016 Apr 14.
Article in English | MEDLINE | ID: mdl-27075097

ABSTRACT

Humans routinely solve problems of immense computational complexity by intuitively forming simple, low-dimensional heuristic strategies. Citizen science (or crowd sourcing) is a way of exploiting this ability by presenting scientific research problems to non-experts. 'Gamification'--the application of game elements in a non-game context--is an effective tool with which to enable citizen scientists to provide solutions to research problems. The citizen science games Foldit, EteRNA and EyeWire have been used successfully to study protein and RNA folding and neuron mapping, but so far gamification has not been applied to problems in quantum physics. Here we report on Quantum Moves, an online platform gamifying optimization problems in quantum physics. We show that human players are able to find solutions to difficult problems associated with the task of quantum computing. Players succeed where purely numerical optimization fails, and analyses of their solutions provide insights into the problem of optimization of a more profound and general nature. Using player strategies, we have thus developed a few-parameter heuristic optimization method that efficiently outperforms the most prominent established numerical methods. The numerical complexity associated with time-optimal solutions increases for shorter process durations. To understand this better, we produced a low-dimensional rendering of the optimization landscape. This rendering reveals why traditional optimization methods fail near the quantum speed limit (that is, the shortest process duration with perfect fidelity). Combined analyses of optimization landscapes and heuristic solution strategies may benefit wider classes of optimization problems in quantum physics and beyond.


Subject(s)
Crowdsourcing , Games, Experimental , Intuition , Problem Solving , Quantum Theory , Video Games/psychology , Algorithms , Humans , Optical Tweezers
11.
Phys Rev Lett ; 126(12): 123602, 2021 Mar 26.
Article in English | MEDLINE | ID: mdl-33834832

ABSTRACT

We show that incoherent pumping of an optical lattice clock system with ultracold strontium-88 atoms produces laser light with a ≃10 Hz linewidth when the atoms are exposed to a magnetic field. This linewidth is orders of magnitude smaller than both the cavity linewidth and the incoherent atomic decay and excitation rates. The narrow lasing is due to an interplay of multiatom superradiant effects and the coupling of bright and dark atom-light dressed states by the magnetic field.

13.
Phys Rev Lett ; 125(25): 253601, 2020 Dec 18.
Article in English | MEDLINE | ID: mdl-33416345

ABSTRACT

The Hermitian part of the field-mediated dipole-dipole interaction in infinite periodic arrays of two-level atoms yields an energy band of the singly excited states. In this Letter, we show that a dispersion relation, ω_{k}-ω_{k_{ex}}∝(k-k_{ex})^{s}, near the band edge of the infinite system leads to the existence of subradiant states of finite one-dimensional arrays of N atoms with decay rates scaling as N^{-(s+1)}. This explains the recently discovered N^{-3} scaling and it leads to the prediction of power law scaling with higher power for special values of the lattice period. For the quantum optical implementation of the Su-Schrieffer-Heeger topological model in a dimerized emitter array, the band gap closing inherent to topological transitions changes the value of s in the dispersion relation and alters the decay rates of the subradiant states by many orders of magnitude.

14.
Phys Rev Lett ; 125(13): 137702, 2020 Sep 25.
Article in English | MEDLINE | ID: mdl-33034472

ABSTRACT

We show experimentally and describe theoretically how a conventional magnetic resonance Hahn echo sequence can lead to a self-stimulated pulse echo train when an inhomogeneously broadened spin ensemble is coupled to a resonator. Effective strong coupling between the subsystems assures that the first Hahn echo can act as a refocusing pulse on the spins, leading to self-stimulated secondary echoes. Within the framework of mean field theory, we show that this process can continue multiple times leading to a train of echoes. We introduce an analytical model that explains the shape of the first echo and numerical results that account well for the experimentally observed shape and strength of the echo train and provides insights into the collective effects involved.

15.
Phys Rev Lett ; 122(20): 203605, 2019 May 24.
Article in English | MEDLINE | ID: mdl-31172781

ABSTRACT

Recently, the subradiant states of one-dimensional two-level atom chains coupled to light modes were found to have decay rates obeying a universal scaling, and an unexpected fermionic character of the multiply excited subradiant states was discovered. In this Letter, we theoretically obtain the singly excited subradiant states, and by eliminating the superradiant modes, we demonstrate a relation between the multiply excited subradiant states and the Tonks-Girardeau limit of the Lieb-Liniger model which explains the fermionic behavior. In addition, we identify a new family of subradiant states with correlations different from the fermionic ansatz.

16.
Phys Rev Lett ; 123(12): 123604, 2019 Sep 20.
Article in English | MEDLINE | ID: mdl-31633961

ABSTRACT

We present a formalism that accounts for the interaction of a local quantum system, such as an atom or a cavity, with traveling pulses of quantized radiation. We assume Markovian coupling of the stationary system to the input and output fields and nondispersive asymptotic propagation of the pulses before and after the interaction. This permits derivation of a master equation where the input and output pulses are treated as single oscillator modes that both couple to the local system in a cascaded manner. As examples of our theory, we analyze reflection by an empty cavity with phase noise, stimulated atomic emission by a quantum light pulse, and formation of a Schrödinger-cat state by the dispersive interaction of a coherent pulse and a single atom in a cavity.

17.
Phys Rev Lett ; 121(12): 123605, 2018 Sep 21.
Article in English | MEDLINE | ID: mdl-30296151

ABSTRACT

We propose an efficient free-space scheme to create single photons in a well-defined spatiotemporal mode. To that end, we first prepare a single source atom in an excited Rydberg state. The source atom interacts with a large ensemble of ground-state atoms via a laser-mediated dipole-dipole exchange interaction. Using an adiabatic passage with a chirped laser pulse, we produce a spatially extended spin wave of a single Rydberg excitation in the ensemble, accompanied by the transition of the source atom to another Rydberg state. The collective atomic excitation can then be converted to a propagating optical photon via a coherent coupling field. In contrast to previous approaches, our single-photon source does not rely on the strong coupling of a single emitter to a resonant cavity, nor does it require the heralding of collective excitation or complete Rydberg blockade of multiple excitations in the atomic ensemble.

18.
Proc Natl Acad Sci U S A ; 112(13): 3866-73, 2015 Mar 31.
Article in English | MEDLINE | ID: mdl-25737558

ABSTRACT

An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field.

19.
Phys Rev Lett ; 117(18): 180501, 2016 Oct 28.
Article in English | MEDLINE | ID: mdl-27835003

ABSTRACT

We demonstrate deterministic generation of two distinct collective excitations in one atomic ensemble, and we realize the Hong-Ou-Mandel interference between them. Using Rydberg blockade we create single collective excitations in two different Zeeman levels, and we use stimulated Raman transitions to perform a beam-splitter operation between the excited atomic modes. By converting the atomic excitations into photons, the two-excitation interference is measured by photon coincidence detection with a visibility of 0.89(6). The Hong-Ou-Mandel interference witnesses an entangled NOON state of the collective atomic excitations, and we demonstrate its two times enhanced sensitivity to a magnetic field compared with a single excitation. Our work implements a minimal instance of boson sampling and paves the way for further multimode and multiexcitation studies with collective excitations of atomic ensembles.

20.
Nature ; 517(7533): 153-4, 2015 Jan 08.
Article in English | MEDLINE | ID: mdl-25567278
SELECTION OF CITATIONS
SEARCH DETAIL