Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 936
Filter
1.
Nature ; 618(7967): 1065-1071, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37198476

ABSTRACT

Eukaryotic cells can undergo different forms of programmed cell death, many of which culminate in plasma membrane rupture as the defining terminal event1-7. Plasma membrane rupture was long thought to be driven by osmotic pressure, but it has recently been shown to be in many cases an active process, mediated by the protein ninjurin-18 (NINJ1). Here we resolve the structure of NINJ1 and the mechanism by which it ruptures membranes. Super-resolution microscopy reveals that NINJ1 clusters into structurally diverse assemblies in the membranes of dying cells, in particular large, filamentous assemblies with branched morphology. A cryo-electron microscopy structure of NINJ1 filaments shows a tightly packed fence-like array of transmembrane α-helices. Filament directionality and stability is defined by two amphipathic α-helices that interlink adjacent filament subunits. The NINJ1 filament features a hydrophilic side and a hydrophobic side, and molecular dynamics simulations show that it can stably cap membrane edges. The function of the resulting supramolecular arrangement was validated by site-directed mutagenesis. Our data thus suggest that, during lytic cell death, the extracellular α-helices of NINJ1 insert into the plasma membrane to polymerize NINJ1 monomers into amphipathic filaments that rupture the plasma membrane. The membrane protein NINJ1 is therefore an interactive component of the eukaryotic cell membrane that functions as an in-built breaking point in response to activation of cell death.


Subject(s)
Cell Adhesion Molecules, Neuronal , Cell Death , Cell Membrane , Nerve Growth Factors , Animals , Humans , Mice , Cell Adhesion Molecules, Neuronal/chemistry , Cell Adhesion Molecules, Neuronal/genetics , Cell Adhesion Molecules, Neuronal/metabolism , Cell Adhesion Molecules, Neuronal/ultrastructure , Cell Membrane/metabolism , Cell Membrane/pathology , Cell Membrane/ultrastructure , Cryoelectron Microscopy , Nerve Growth Factors/chemistry , Nerve Growth Factors/genetics , Nerve Growth Factors/metabolism , Nerve Growth Factors/ultrastructure , Mutagenesis, Site-Directed , Biopolymers/chemistry , Biopolymers/genetics , Biopolymers/metabolism
2.
EMBO J ; 42(17): e112847, 2023 09 04.
Article in English | MEDLINE | ID: mdl-37365982

ABSTRACT

The paralogs CUL4A and CUL4B assemble cullin-RING E3 ubiquitin ligase (CRL) complexes regulating multiple chromatin-associated cellular functions. Although they are structurally similar, we found that the unique N-terminal extension of CUL4B is heavily phosphorylated during mitosis, and the phosphorylation pattern is perturbed in the CUL4B-P50L mutation causing X-linked intellectual disability (XLID). Phenotypic characterization and mutational analysis revealed that CUL4B phosphorylation is required for efficient progression through mitosis, controlling spindle positioning and cortical tension. While CUL4B phosphorylation triggers chromatin exclusion, it promotes binding to actin regulators and to two previously unrecognized CUL4B-specific substrate receptors (DCAFs), LIS1 and WDR1. Indeed, co-immunoprecipitation experiments and biochemical analysis revealed that LIS1 and WDR1 interact with DDB1, and their binding is enhanced by the phosphorylated N-terminal domain of CUL4B. Finally, a human forebrain organoid model demonstrated that CUL4B is required to develop stable ventricular structures that correlate with onset of forebrain differentiation. Together, our study uncovers previously unrecognized DCAFs relevant for mitosis and brain development that specifically bind CUL4B, but not the CUL4B-P50L patient mutant, by a phosphorylation-dependent mechanism.


Subject(s)
Mitosis , Ubiquitin-Protein Ligases , Humans , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Chromatin , Brain/metabolism , Cullin Proteins/genetics , Cullin Proteins/metabolism
3.
Gastroenterology ; 166(6): 1085-1099, 2024 06.
Article in English | MEDLINE | ID: mdl-38452824

ABSTRACT

BACKGROUND & AIMS: The enteric nervous system (ENS), the gut's intrinsic nervous system critical for gastrointestinal function and gut-brain communication, is believed to mainly originate from vagal neural crest cells (vNCCs) and partially from sacral NCCs (sNCCs). Resolving the exact origins of the ENS is critical for understanding congenital ENS diseases but has been confounded by the inability to distinguish between both NCC populations in situ. Here, we aimed to resolve the exact origins of the mammalian ENS. METHODS: We genetically engineered mouse embryos facilitating comparative lineage-tracing of either all (pan-) NCCs including vNCCs or caudal trunk and sNCCs (s/tNCCs) excluding vNCCs. This was combined with dual-lineage tracing and 3-dimensional reconstruction of pelvic plexus and hindgut to precisely pinpoint sNCC and vNCC contributions. We further used coculture assays to determine the specificity of cell migration from different neural tissues into the hindgut. RESULTS: Both pan-NCCs and s/tNCCs contributed to established NCC derivatives but only pan-NCCs contributed to the ENS. Dual-lineage tracing combined with 3-dimensional reconstruction revealed that s/tNCCs settle in complex patterns in pelvic plexus and hindgut-surrounding tissues, explaining previous confusion regarding their contributions. Coculture experiments revealed unspecific cell migration from autonomic, sensory, and neural tube explants into the hindgut. Lineage tracing of ENS precursors lastly provided complimentary evidence for an exclusive vNCC origin of the murine ENS. CONCLUSIONS: sNCCs do not contribute to the murine ENS, suggesting that the mammalian ENS exclusively originates from vNCCs. These results have immediate implications for comprehending (and devising treatments for) congenital ENS disorders, including Hirschsprung's disease.


Subject(s)
Cell Lineage , Cell Movement , Enteric Nervous System , Neural Crest , Animals , Neural Crest/cytology , Neural Crest/embryology , Enteric Nervous System/embryology , Mice , Coculture Techniques , Mice, Transgenic , Vagus Nerve/embryology , Sacrum/innervation
4.
Mol Psychiatry ; 29(2): 387-401, 2024 02.
Article in English | MEDLINE | ID: mdl-38177352

ABSTRACT

Applications of machine learning in the biomedical sciences are growing rapidly. This growth has been spurred by diverse cross-institutional and interdisciplinary collaborations, public availability of large datasets, an increase in the accessibility of analytic routines, and the availability of powerful computing resources. With this increased access and exposure to machine learning comes a responsibility for education and a deeper understanding of its bases and bounds, borne equally by data scientists seeking to ply their analytic wares in medical research and by biomedical scientists seeking to harness such methods to glean knowledge from data. This article provides an accessible and critical review of machine learning for a biomedically informed audience, as well as its applications in psychiatry. The review covers definitions and expositions of commonly used machine learning methods, and historical trends of their use in psychiatry. We also provide a set of standards, namely Guidelines for REporting Machine Learning Investigations in Neuropsychiatry (GREMLIN), for designing and reporting studies that use machine learning as a primary data-analysis approach. Lastly, we propose the establishment of the Machine Learning in Psychiatry (MLPsych) Consortium, enumerate its objectives, and identify areas of opportunity for future applications of machine learning in biological psychiatry. This review serves as a cautiously optimistic primer on machine learning for those on the precipice as they prepare to dive into the field, either as methodological practitioners or well-informed consumers.


Subject(s)
Biological Psychiatry , Machine Learning , Humans , Biological Psychiatry/methods , Psychiatry/methods , Biomedical Research/methods
5.
PLoS Biol ; 20(12): e3001923, 2022 12.
Article in English | MEDLINE | ID: mdl-36542664

ABSTRACT

The ability of terrestrial vertebrates to effectively move on land is integrally linked to the diversification of motor neurons into types that generate muscle force (alpha motor neurons) and types that modulate muscle proprioception, a task that in mammals is chiefly mediated by gamma motor neurons. The diversification of motor neurons into alpha and gamma types and their respective contributions to movement control have been firmly established in the past 7 decades, while recent studies identified gene expression signatures linked to both motor neuron types. However, the mechanisms that promote the specification of gamma motor neurons and/or their unique properties remained unaddressed. Here, we found that upon selective loss of the orphan nuclear receptors ERR2 and ERR3 (also known as ERRß, ERRγ or NR3B2, NR3B3, respectively) in motor neurons in mice, morphologically distinguishable gamma motor neurons are generated but do not acquire characteristic functional properties necessary for regulating muscle proprioception, thus disrupting gait and precision movements. Complementary gain-of-function experiments in chick suggest that ERR2 and ERR3 could operate via transcriptional activation of neural activity modulators to promote a gamma motor neuron biophysical signature of low firing thresholds and high firing rates. Our work identifies a mechanism specifying gamma motor neuron functional properties essential for the regulation of proprioceptive movement control.


Subject(s)
Motor Neurons, Gamma , Receptors, Estrogen , Animals , Mice , Motor Neurons, Gamma/physiology , Movement , Muscles , Proprioception , Receptors, Estrogen/metabolism
6.
Nature ; 571(7764): E5, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31243360

ABSTRACT

Change history: In Fig. 1b and c of this Letter, the inset times in the DIC and GFP microscopy images should be in minutes ('min') instead of seconds ('s'). This has not been corrected online.

7.
Annu Rev Genet ; 50: 211-234, 2016 Nov 23.
Article in English | MEDLINE | ID: mdl-27648643

ABSTRACT

Plants do not grow as axenic organisms in nature, but host a diverse community of microorganisms, termed the plant microbiota. There is an increasing awareness that the plant microbiota plays a role in plant growth and can provide protection from invading pathogens. Apart from intense research on crop plants, Arabidopsis is emerging as a valuable model system to investigate the drivers shaping stable bacterial communities on leaves and roots and as a tool to decipher the intricate relationship among the host and its colonizing microorganisms. Gnotobiotic experimental systems help establish causal relationships between plant and microbiota genotypes and phenotypes and test hypotheses on biotic and abiotic perturbations in a systematic way. We highlight major recent findings in plant microbiota research using comparative community profiling and omics analyses, and discuss these approaches in light of community establishment and beneficial traits like nutrient acquisition and plant health.


Subject(s)
Microbiota , Plants/microbiology , Adaptation, Biological , Arabidopsis/microbiology , Ecosystem , Microbial Consortia , Phylogeny , Plant Roots/microbiology
8.
J Org Chem ; 89(10): 7324-7329, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38712758

ABSTRACT

Despite the accessibility of numerous alkynes through coupling or substitution reactions, the synthesis of trialkyl-substituted alkynes is still a major challenge. Within this context, we reexplored the electrophilic alkynyl substitution between tertiary aliphatic chlorides and silylated alkynes. We were able to demonstrate that this approach is significantly more general than originally demonstrated by Capozzi and even tolerates several functional groups. Furthermore, we report diastereoselective reactions which in some instances gave excellent diastereoselectivity (dr >95:5).

9.
J Org Chem ; 89(12): 8668-8675, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38856090

ABSTRACT

In this report, we address the challenge of assigning diastereomers for methyl cyclohexanes, particularly those with quaternary centers, which remains nontrivial despite modern NMR techniques. By utilizing a HSQC NMR experiment to identify methyl-carbons coupled with a simple conformational analysis, we identified an effective and quite general method for assigning stereochemistry, even in cases where diastereomeric mixtures are inseparable.

10.
Chem Rev ; 122(21): 16294-16328, 2022 11 09.
Article in English | MEDLINE | ID: mdl-36179355

ABSTRACT

The bottom-up assembly of biological and chemical components opens exciting opportunities to engineer artificial vesicular systems for applications with previously unmet requirements. The modular combination of scaffolds and functional building blocks enables the engineering of complex systems with biomimetic or new-to-nature functionalities. Inspired by the compartmentalized organization of cells and organelles, lipid or polymer vesicles are widely used as model membrane systems to investigate the translocation of solutes and the transduction of signals by membrane proteins. The bottom-up assembly and functionalization of such artificial compartments enables full control over their composition and can thus provide specifically optimized environments for synthetic biological processes. This review aims to inspire future endeavors by providing a diverse toolbox of molecular modules, engineering methodologies, and different approaches to assemble artificial vesicular systems. Important technical and practical aspects are addressed and selected applications are presented, highlighting particular achievements and limitations of the bottom-up approach. Complementing the cutting-edge technological achievements, fundamental aspects are also discussed to cater to the inherently diverse background of the target audience, which results from the interdisciplinary nature of synthetic biology. The engineering of proteins as functional modules and the use of lipids and block copolymers as scaffold modules for the assembly of functionalized vesicular systems are explored in detail. Particular emphasis is placed on ensuring the controlled assembly of these components into increasingly complex vesicular systems. Finally, all descriptions are presented in the greater context of engineering valuable synthetic biological systems for applications in biocatalysis, biosensing, bioremediation, or targeted drug delivery.


Subject(s)
Polymers , Synthetic Biology , Membranes , Proteins
11.
Environ Sci Technol ; 58(22): 9624-9635, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38772914

ABSTRACT

Low-carbon technologies are essential for the aluminum industry to meet its climate targets despite increasing demand. However, the penetration of these technologies is often delayed due to the long lifetimes of the industrial assets currently in use. Existing models and scenarios for the aluminum sector omit this inertia and therefore potentially overestimate the realistic mitigation potential. Here, we introduce a technology-explicit dynamic material flow model for the global primary (smelters) and secondary (melting furnaces) aluminum production capacities. In business-as-usual scenarios, we project emissions from smelters and melting furnaces to rise from 710 Mt CO2-eq./a in 2020 to 920-1400 Mt CO2-eq./a in 2050. Rapid implementation of inert anodes in smelters can reduce emissions by 14% by 2050. However, a limitation of emissions compatible with a 2 °C scenario requires combined action: (1) an improvement of collection and recycling systems to absorb all the available postconsumer scrap, (2) a fast and wide deployment of low-carbon technologies, and (3) a rapid transition to low-carbon electricity sources. These measures need to be implemented even faster in scenarios with a stronger increase in aluminum demand. Lock-in effects are likely: building new capacity using conventional technologies will compromise climate mitigation efforts and would require premature retirement of industrial assets.


Subject(s)
Aluminum , Models, Theoretical , Carbon , Technology , Recycling
12.
Environ Sci Technol ; 58(19): 8336-8348, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38703133

ABSTRACT

The growing environmental consequences caused by plastic pollution highlight the need for a better understanding of plastic polymer cycles and their associated additives. We present a novel, comprehensive top-down method using inflow-driven dynamic probabilistic material flow analysis (DPMFA) to map the plastic cycle in coastal countries. For the first time, we covered the progressive leaching of microplastics to the environment during the use phase of products and modeled the presence of 232 plastic additives. We applied this methodology to Norway and proposed initial release pathways to different environmental compartments. 758 kt of plastics distributed among 13 different polymers was introduced to the Norwegian economy in 2020, 4.4 Mt was present in in-use stocks, and 632 kt was wasted, of which 15.2 kt (2.4%) was released to the environment with a similar share of macro- and microplastics and 4.8 kt ended up in the ocean. Our study shows tire wear rubber as a highly pollutive microplastic source, while most macroplastics originated from consumer packaging with LDPE, PP, and PET as dominant polymers. Additionally, 75 kt of plastic additives was potentially released to the environment alongside these polymers. We emphasize that upstream measures, such as consumption reduction and changes in product design, would result in the most positive impact for limiting plastic pollution.


Subject(s)
Plastics , Norway , Environmental Monitoring , Microplastics , Water Pollutants, Chemical
13.
Environ Sci Technol ; 58(2): 971-990, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38166114

ABSTRACT

Global resource extraction raises concerns about environmental pressures and the security of mineral supply. Strategies to address these concerns depend on robust information on natural resource endowments, and on suitable methods to monitor and model their changes over time. However, current mineral resources and reserves reporting and accounting workflows are poorly suited for addressing mineral depletion or answering questions about the long-term sustainable supply. Our integrative review finds that the lack of a robust theoretical concept and framework for mass-balance (MB)-consistent geological stock accounting hinders systematic industry-government data integration, resource governance, and strategy development. We evaluate the existing literature on geological stock accounting, identify shortcomings of current monitoring of mine production, and outline a conceptual framework for MB-consistent system integration based on material flow analysis (MFA). Our synthesis shows that recent developments in Earth observation, geoinformation management, and sustainability reporting act as catalysts that make MB-consistent geological stock accounting increasingly feasible. We propose first steps for its implementation and anticipate that our perspective as "resource realists" will facilitate the integration of geological and anthropogenic material systems, help secure future mineral supply, and support the global sustainability transition.


Subject(s)
Conservation of Natural Resources , Minerals , Conservation of Natural Resources/methods
14.
Clin Chem Lab Med ; 62(5): 900-910, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38038605

ABSTRACT

OBJECTIVES: A mass spectrometry (LC‒MS/MS)-based interlaboratory comparison study was performed for nine steroid analytes with five participating laboratories. The sample set contained 40 pooled samples of human serum generated from preanalyzed leftovers. To obtain a well-balanced distribution across reference intervals of each steroid, the leftovers first underwent a targeted mixing step. METHODS: All participants measured a sample set once using their own multianalyte protocols and calibrators. Four participants used in-house developed measurement platforms, including IVD-CE certified calibrators, which were used by three participants; the 5th lab used the whole LC‒MS kit from an IVD manufacturer. All labs reported results for 17-hydroxyprogesterone, androstenedione, cortisol, and testosterone, and four labs reported results for 11-deoxycortisol, corticosterone, cortisone, dehydroepiandrosterone sulfate (DHEAS), and progesterone. RESULTS: Good or acceptable overall comparability was found in Bland‒Altman and Passing‒Bablok analyses. Mean bias against the overall mean remained less than ±10 % except for DHEAS, androstenedione, and progesterone at one site and for cortisol and corticosterone at two sites (max. -18.9 % for androstenedione). The main analytical problems unraveled by this study included a bias not previously identified in proficiency testing, operator errors, non-supported matrix types and higher inaccuracy and imprecision at lower ends of measuring intervals. CONCLUSIONS: This study shows that intermethod comparison is essential for monitoring the validity of an assay and should serve as an example of how external quality assessment could work in addition to organized proficiency testing schemes.


Subject(s)
Hydrocortisone , Progesterone , Humans , Chromatography, Liquid/methods , Liquid Chromatography-Mass Spectrometry , Corticosterone , Androstenedione , Tandem Mass Spectrometry/methods , Steroids , Testosterone
15.
Compr Psychiatry ; 133: 152501, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38820645

ABSTRACT

Although the relationship between schizophrenia and disability is well established, the association between the symptoms of the disorder and functional domains remains unclear. The current study explored the nuances of the relationship between symptoms and domains of functioning in a sample of 1127 patients with schizophrenia. We assessed the symptoms of schizophrenia with the Positive and Negative Syndrome Scale (PANSS) and psychosocial functioning with the mini-ICF-APP (mini-International Classification of Functioning Rating for Limitations of Activities and Participation in Psychological Disorders). The mean PANSS score was 94.28 (27.20), and the mean mini-ICF-APP score was 25.25 (8.96), both of which are indicative of severe symptom load and impairment. We were able to show a strong relationship and overlap between symptoms and disability in patients with schizophrenia. We identified several symptoms related to functional impairment. Deficits in judgment and abstract thinking contribute to impairment through poor adherence (to routines and compliance with rules) and difficulties in planning and organizing. We believe that in schizophrenia, symptoms and their interactions constitute a disorder beyond any single manifestation. Furthermore, we suggest that cognitive testing and cognitive treatment should become part of the standard of care for patients with schizophrenia.


Subject(s)
Schizophrenia , Schizophrenic Psychology , Humans , Schizophrenia/diagnosis , Female , Male , Adult , Middle Aged , Psychiatric Status Rating Scales , Activities of Daily Living/psychology , Psychosocial Functioning
16.
Pharmacopsychiatry ; 57(5): 232-244, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38917846

ABSTRACT

INTRODUCTION: Little is known about the interplay between genetics and epigenetics on antidepressant treatment (1) response and remission, (2) side effects, and (3) serum levels. This study explored the relationship among single nucleotide polymorphisms (SNPs), DNA methylation (DNAm), and mRNA levels of four pharmacokinetic genes, CYP2C19, CYP2D6, CYP3A4, and ABCB1, and its effect on these outcomes. METHODS: The Canadian Biomarker Integration Network for Depression-1 dataset consisted of 177 individuals with major depressive disorder treated for 8 weeks with escitalopram (ESC) followed by 8 weeks with ESC monotherapy or augmentation with aripiprazole. DNAm quantitative trait loci (mQTL), identified by SNP-CpG associations between 20 SNPs and 60 CpG sites in whole blood, were tested for associations with our outcomes, followed by causal inference tests (CITs) to identify methylation-mediated genetic effects. RESULTS: Eleven cis-SNP-CpG pairs (q<0.05) constituting four unique SNPs were identified. Although no significant associations were observed between mQTLs and response/remission, CYP2C19 rs4244285 was associated with treatment-related weight gain (q=0.027) and serum concentrations of ESCadj (q<0.001). Between weeks 2-4, 6.7% and 14.9% of those with *1/*1 (normal metabolizers) and *1/*2 (intermediate metabolizers) genotypes, respectively, reported ≥2 lbs of weight gain. In contrast, the *2/*2 genotype (poor metabolizers) did not report weight gain during this period and demonstrated the highest ESCadj concentrations. CITs did not indicate that these effects were epigenetically mediated. DISCUSSION: These results elucidate functional mechanisms underlying the established associations between CYP2C19 rs4244285 and ESC pharmacokinetics. This mQTL SNP as a marker for antidepressant-related weight gain needs to be further explored.


Subject(s)
Aripiprazole , DNA Methylation , Depressive Disorder, Major , Escitalopram , Polymorphism, Single Nucleotide , Humans , DNA Methylation/drug effects , Aripiprazole/therapeutic use , Aripiprazole/pharmacokinetics , Depressive Disorder, Major/drug therapy , Depressive Disorder, Major/genetics , Female , Male , Adult , Escitalopram/therapeutic use , Treatment Outcome , Middle Aged , Cytochrome P-450 CYP2C19/genetics , Quantitative Trait Loci , CpG Islands/genetics , Antidepressive Agents/therapeutic use , Antidepressive Agents/pharmacokinetics , Citalopram/therapeutic use , Citalopram/pharmacokinetics , Citalopram/blood
17.
Can J Psychiatry ; 69(3): 183-195, 2024 03.
Article in English | MEDLINE | ID: mdl-37796764

ABSTRACT

OBJECTIVES: Treatment-emergent sexual dysfunction is frequently reported by individuals with major depressive disorder (MDD) on antidepressants, which negatively impacts treatment adherence and efficacy. We investigated the association of polymorphisms in pharmacokinetic genes encoding cytochrome-P450 drug-metabolizing enzymes, CYP2C19 and CYP2D6, and the transmembrane efflux pump, P-glycoprotein (i.e., ABCB1), on treatment-emergent changes in sexual function (SF) and sexual satisfaction (SS) in the Canadian Biomarker Integration Network in Depression 1 (CAN-BIND-1) sample. METHODS: A total of 178 adults with MDD received treatment with escitalopram (ESC) from weeks 0-8 (Phase I). At week 8, nonresponders were augmented with aripiprazole (ARI) (i.e., ESC + ARI, n = 91), while responders continued ESC (i.e., ESC-Only, n = 80) from weeks 8-16 (Phase II). SF and SS were evaluated using the sex effects (SexFX) scale at weeks 0, 8, and 16. We assessed the primary outcomes, SF and SS change for weeks 0-8 and 8-16, using repeated measures mixed-effects models. RESULTS: In ESC-Only, CYP2C19 intermediate metabolizer (IM) + poor metabolizers (PMs) showed treatment-related improvements in sexual arousal, a subdomain of SF, from weeks 8-16, relative to CYP2C19 normal metabolizers (NMs) who showed a decline, F(2,54) = 8.00, p < 0.001, q = 0.048. Specifically, CYP2C19 IM + PMs reported less difficulty with having and sustaining vaginal lubrication in females and erection in males, compared to NMs. Furthermore, ESC-Only females with higher concentrations of ESC metabolite, S-desmethylcitalopram (S-DCT), and S-DCT/ESC ratio in serum demonstrated more decline in SF (r = -0.42, p = 0.004, q = 0.034) and SS (r = -0.43, p = 0.003, q = 0.034), respectively, which was not observed in males. ESC-Only females also demonstrated a trend for a correlation between S-DCT and sexual arousal change in the same direction (r = -0.39, p = 0.009, q = 0.052). CONCLUSIONS: CYP2C19 metabolizer phenotypes may be influencing changes in sexual arousal related to ESC monotherapy. Thus, preemptive genotyping of CYP2C19 may help to guide selection of treatment that circumvents selective serotonin reuptake inhibitor-related sexual dysfunction thereby improving outcomes for patients. Additionally, further research is warranted to clarify the role of S-DCT in the mechanisms underlying ESC-related changes in SF and SS. This CAN-BIND-1 study was registered on clinicaltrials.gov (Identifier: NCT01655706) on 27 July 2012.


Subject(s)
Cytochrome P-450 CYP2D6 , Depressive Disorder, Major , Adult , Male , Female , Humans , Cytochrome P-450 CYP2D6/genetics , Cytochrome P-450 CYP2D6/metabolism , Aripiprazole/adverse effects , Escitalopram , Citalopram/adverse effects , Depressive Disorder, Major/drug therapy , Depressive Disorder, Major/genetics , Cytochrome P-450 CYP2C19/genetics , Cytochrome P-450 CYP2C19/metabolism , Depression , Canada , Biomarkers , ATP Binding Cassette Transporter, Subfamily B
18.
Can J Psychiatry ; 69(9): 641-687, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38711351

ABSTRACT

BACKGROUND: The Canadian Network for Mood and Anxiety Treatments (CANMAT) last published clinical guidelines for the management of major depressive disorder (MDD) in 2016. Owing to advances in the field, an update was needed to incorporate new evidence and provide new and revised recommendations for the assessment and management of MDD in adults. METHODS: CANMAT convened a guidelines editorial group comprised of academic clinicians and patient partners. A systematic literature review was conducted, focusing on systematic reviews and meta-analyses published since the 2016 guidelines. Recommendations were organized by lines of treatment, which were informed by CANMAT-defined levels of evidence and supplemented by clinical support (consisting of expert consensus on safety, tolerability, and feasibility). Drafts were revised based on review by patient partners, expert peer review, and a defined expert consensus process. RESULTS: The updated guidelines comprise eight primary topics, in a question-and-answer format, that map a patient care journey from assessment to selection of evidence-based treatments, prevention of recurrence, and strategies for inadequate response. The guidelines adopt a personalized care approach that emphasizes shared decision-making that reflects the values, preferences, and treatment history of the patient with MDD. Tables provide new and updated recommendations for psychological, pharmacological, lifestyle, complementary and alternative medicine, digital health, and neuromodulation treatments. Caveats and limitations of the evidence are highlighted. CONCLUSIONS: The CANMAT 2023 updated guidelines provide evidence-informed recommendations for the management of MDD, in a clinician-friendly format. These updated guidelines emphasize a collaborative, personalized, and systematic management approach that will help optimize outcomes for adults with MDD.


Subject(s)
Depressive Disorder, Major , Adult , Humans , Canada , Depressive Disorder, Major/therapy , Practice Guidelines as Topic , Systematic Reviews as Topic , Meta-Analysis as Topic
19.
Arch Gynecol Obstet ; 309(1): 281-286, 2024 01.
Article in English | MEDLINE | ID: mdl-37644236

ABSTRACT

PURPOSE: Autologous breast reconstruction improves patient satisfaction and quality of life after mastectomy. In Germany, free flap surgery and implant-based reconstruction is usually separate between reconstructive surgery and gynecology. Cooperation between the specialist disciplines and implementation of microsurgery into breast surgeon training could enhance surgical treatment for breast cancer patients. This evaluation is intended to demonstrate the learning progress within a microsurgical training program and the complication rate in relation to microsurgical experience. METHODS: At the breast cancer center at Klinikum rechts der Isar, TU Munich, a three-stage training program for autologous breast reconstruction and microsurgery for gynecological breast surgeons was developed. Between 2019 and 2022, 74 women received autologous free flap breast reconstruction by a consistent team consisting of a gynecological surgeon in training and an expert microsurgeon. Peri- and postoperative data were collected to analyze the feasibility and safety of a microsurgical training in gynecology. RESULTS: Within the training, operative steps of free autologous breast reconstruction were increasingly taken over by the gynecological surgeon in training. The analysis showed a decrease in operating times with consistently low complication rates during the training. CONCLUSION: This study demonstrated that a training in free autologous breast reconstruction for gynecological surgeons is safely feasible through close cooperation between gynecological and reconstructive surgery.


Subject(s)
Breast Neoplasms , Gynecology , Mammaplasty , Surgeons , Humans , Female , Breast Neoplasms/surgery , Mastectomy , Quality of Life , Curriculum , Microsurgery , Retrospective Studies
20.
Nano Lett ; 23(2): 588-596, 2023 01 25.
Article in English | MEDLINE | ID: mdl-36607826

ABSTRACT

Microcantilevers are widely employed as mass sensors for biological samples, from single molecules to single cells. However, the accurate mass quantification of living adherent cells is impaired by the microcantilever's mass sensitivity and cell migration, both of which can lead to detect masses mismatching by ≫50%. Here, we design photothermally actuated microcantilevers to optimize the accuracy of cell mass measurements. By reducing the inertial mass of the microcantilever using a focused ion beam, we considerably increase its mass sensitivity, which is validated by finite element analysis and experimentally by gelatin microbeads. The improved microcantilevers allow us to instantly monitor at much improved accuracy the mass of both living HeLa cells and mouse fibroblasts adhering to different substrates. Finally, we show that the improved cantilever design favorably restricts cell migration and thus reduces the large measurement errors associated with this effect.


Subject(s)
HeLa Cells , Animals , Mice , Humans , Microspheres
SELECTION OF CITATIONS
SEARCH DETAIL