Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 120
Filter
1.
Nature ; 614(7947): 303-308, 2023 02.
Article in English | MEDLINE | ID: mdl-36697825

ABSTRACT

Flowering plants have evolved numerous intraspecific and interspecific prezygotic reproductive barriers to prevent production of unfavourable offspring1. Within a species, self-incompatibility (SI) is a widely utilized mechanism that rejects self-pollen2,3 to avoid inbreeding depression. Interspecific barriers restrain breeding between species and often follow the SI × self-compatible (SC) rule, that is, interspecific pollen is unilaterally incompatible (UI) on SI pistils but unilaterally compatible (UC) on SC pistils1,4-6. The molecular mechanisms underlying SI, UI, SC and UC and their interconnections in the Brassicaceae remain unclear. Here we demonstrate that the SI pollen determinant S-locus cysteine-rich protein/S-locus protein 11 (SCR/SP11)2,3 or a signal from UI pollen binds to the SI female determinant S-locus receptor kinase (SRK)2,3, recruits FERONIA (FER)7-9 and activates FER-mediated reactive oxygen species production in SI stigmas10,11 to reject incompatible pollen. For compatible responses, diverged pollen coat protein B-class12-14 from SC and UC pollen differentially trigger nitric oxide, nitrosate FER to suppress reactive oxygen species in SC stigmas to facilitate pollen growth in an intraspecies-preferential manner, maintaining species integrity. Our results show that SRK and FER integrate mechanisms underlying intraspecific and interspecific barriers and offer paths to achieve distant breeding in Brassicaceae crops.


Subject(s)
Brassicaceae , Flowers , Hybridization, Genetic , Plant Proteins , Pollination , Brassicaceae/genetics , Brassicaceae/metabolism , Inbreeding Depression , Nitric Oxide/metabolism , Phosphotransferases/metabolism , Plant Breeding , Plant Proteins/metabolism , Pollen/metabolism , Reactive Oxygen Species/metabolism , Species Specificity , Flowers/metabolism , Self-Fertilization
2.
Plant J ; 119(3): 1258-1271, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38804089

ABSTRACT

The successful interaction between pollen and stigma is a critical process for plant sexual reproduction, involving a series of intricate molecular and physiological events. After self-compatible pollination, a significant reduction in reactive oxygen species (ROS) production has been observed in stigmas, which is essential for pollen grain rehydration and subsequent pollen tube growth. Several scavenging enzymes tightly regulate ROS homeostasis. However, the potential role of these ROS-scavenging enzymes in the pollen-stigma interaction in Brassica napus remains unclear. Here, we showed that the activity of ascorbate peroxidase (APX), an enzyme that plays a crucial role in the detoxification of hydrogen peroxide (H2O2), was modulated depending on the compatibility of pollination in B. napus. We then identified stigma-expressed APX1s and generated pentuple mutants of APX1s using CRISPR/Cas9 technology. After compatible pollination, the BnaAPX1 pentuple mutants accumulated higher levels of H2O2 in the stigma, while the overexpression of BnaA09.APX1 resulted in lower levels of H2O2. Furthermore, the knockout of BnaAPX1 delayed the compatible response-mediated pollen rehydration and germination, which was consistent with the effects of a specific APX inhibitor, ρ-Aminophenol, on compatible pollination. In contrast, the overexpression of BnaA09.APX1 accelerated pollen rehydration and germination after both compatible and incompatible pollinations. However, delaying and promoting pollen rehydration and germination did not affect the seed set after compatible and incompatible pollination in APX1 pentuple mutants and overexpression lines, respectively. Our results demonstrate the fundamental role of BnaAPX1 in pollen rehydration and germination by regulating ROS homeostasis during the pollen-stigma interaction in B. napus.


Subject(s)
Ascorbate Peroxidases , Brassica napus , Plant Proteins , Ascorbate Peroxidases/metabolism , Ascorbate Peroxidases/genetics , Brassica napus/genetics , Brassica napus/physiology , Brassica napus/enzymology , Brassica napus/metabolism , Flowers/genetics , Flowers/physiology , Gene Expression Regulation, Plant , Germination , Homeostasis , Hydrogen Peroxide/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Pollen/genetics , Pollen/physiology , Pollen Tube/genetics , Pollen Tube/metabolism , Pollination , Reactive Oxygen Species/metabolism
3.
BMC Genomics ; 25(1): 799, 2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39182038

ABSTRACT

As a Brassica crop, Brassica napus typically has single flowers that contain four petals. The double-flower phenotype of rapeseed has been a desirable trait in China because of its potential commercial value in ornamental tourism. However, few double-flowered germplasms have been documented in B. napus, and knowledge of the underlying genes is limited. Here, B. napus D376 was characterized as a double-flowered strain that presented an average of 10.92 ± 1.40 petals and other normal floral organs. F1, F2 and BC1 populations were constructed by crossing D376 with a single-flowered line reciprocally. Genetic analysis revealed that the double-flower trait was a recessive trait controlled by multiple genes. To identify the key genes controlling the double-flower trait, bulk segregant analysis sequencing (BSA-seq) and RNA-seq analyses were conducted on F2 individual bulks with opposite extreme phenotypes. Through BSA-seq, one candidate interval was mapped at the region of chromosome C05: 14.56-16.17 Mb. GO and KEGG enrichment analyses revealed that the DEGs were significantly enriched in carbohydrate metabolic processes, notably starch and sucrose metabolism. Interestingly, five and thirty-six DEGs associated with floral development were significantly up- and down-regulated, respectively, in the double-flowered plants. A combined analysis of BSA-seq and RNA-seq data revealed that five genes were candidates associated with the double flower trait, and BnaC05.ERS2 was the most promising gene. These findings provide novel insights into the breeding of double-flowered varieties and lay a theoretical foundation for unveiling the molecular mechanisms of floral development in B. napus.


Subject(s)
Brassica napus , Flowers , Phenotype , RNA-Seq , Brassica napus/genetics , Brassica napus/growth & development , Flowers/genetics , Flowers/growth & development , Genes, Plant , Gene Expression Regulation, Plant , Chromosome Mapping , Gene Expression Profiling
4.
New Phytol ; 241(4): 1690-1707, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38037276

ABSTRACT

Self-incompatibility plays a vital role in angiosperms, by preventing inbreeding depression and maintaining genetic diversity within populations. Following polyploidization, many angiosperm species transition from self-incompatibility to self-compatibility. Here, we investigated the S-locus in Brassicaceae and identified distinct origins for the sRNA loci, SMI and SMI2 (SCR Methylation Inducer 1 and 2), within the S-locus. The SMI loci were found to be widespread in Cruciferae, whereas the SMI2 loci were exclusive to Brassica species. Additionally, we discovered four major S-haplotypes (BnS-1, BnS-6, BnS-7, and BnS-1300) in rapeseed. Overexpression of BnSMI-1 in self-incompatible Brassica napus ('S-70S1300S6 ') resulted in a significant increase in DNA methylation in the promoter regions of BnSCR-6 and BnSCR-1300, leading to self-compatibility. Conversely, by overexpressing a point mutation of BnSmi-1 in the 'S-70S1300S6 ' line, we observed lower levels of DNA methylation in BnSCR-6 and BnSCR-1300 promoters. Furthermore, the overexpression of BnSMI2-1300 in the 'SI-326S7S6 ' line inhibited the expression of BnSCR-7 through transcriptional repression of the Smi2 sRNA from the BnS-1300 haplotype. Our study demonstrates that the self-compatibility of rapeseed is determined by S-locus sRNA-mediated silencing of SCR after polyploidization, which helps to further breed self-incompatible or self-compatible rapeseed lines, thereby facilitating the utilization of heterosis.


Subject(s)
Brassica napus , Brassica , RNA, Small Untranslated , Brassica napus/genetics , Brassica napus/metabolism , Plant Breeding , Brassica/genetics , Promoter Regions, Genetic/genetics , RNA, Small Untranslated/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism
5.
J Exp Bot ; 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38824403

ABSTRACT

Rapeseed (Brassica napus) is an important oilseed crop worldwide. Plant vascular tissues are responsible for material transport and provide mechanical support. The lateral roots (LRs) absorb sufficient water and nutrients. The genetic basis of vascular tissues and LRs development in rapeseed remains unknown. This study characterized an EMS-mutagenized rapeseed mutant, T16, which showed dwarf stature, reduced LRs, and leaf wilting. Scanning electron microscopy observations showed that the internode-cell shortened. Observations of the tissue sections revealed defects in the development of vascular bundles in the stems and petioles. Genetic analysis revealed that the phenotypes of T16 were controlled by a single semi-dominant nuclear gene. Map-based cloning and genetic complementarity confirmed that BnaA03.IAA13 is the functional gene, a G-to-A mutation in second exon changed the glycine at the 79th position to glutamic acid, disrupting the conserved degron motif VGWPP. Transcriptome analysis in roots and stems showed that auxin and cytokinin signaling pathways were disordered in T16. Evolutionary analysis showed that AUXIN/INDOLE-3-ACETIC ACID was conserved during plant evolution. The heterozygote of T16 significantly reduced the plant height while maintaining other agronomic traits. Our findings provide novel insights into the regulatory mechanisms of vascular tissues and LRs development, and provide a new germplasm resource for rapeseed breeding.

7.
J Integr Plant Biol ; 66(3): 484-509, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38456625

ABSTRACT

Brassica napus, commonly known as rapeseed or canola, is a major oil crop contributing over 13% to the stable supply of edible vegetable oil worldwide. Identification and understanding the gene functions in the B. napus genome is crucial for genomic breeding. A group of genes controlling agronomic traits have been successfully cloned through functional genomics studies in B. napus. In this review, we present an overview of the progress made in the functional genomics of B. napus, including the availability of germplasm resources, omics databases and cloned functional genes. Based on the current progress, we also highlight the main challenges and perspectives in this field. The advances in the functional genomics of B. napus contribute to a better understanding of the genetic basis underlying the complex agronomic traits in B. napus and will expedite the breeding of high quality, high resistance and high yield in B. napus varieties.


Subject(s)
Brassica napus , Brassica napus/genetics , Quantitative Trait Loci/genetics , Plant Breeding , Genomics , Phenotype
8.
Plant J ; 111(6): 1717-1731, 2022 09.
Article in English | MEDLINE | ID: mdl-35882961

ABSTRACT

Canola (Brassica napus) is an important oil crop worldwide. The seed-setting rate (SS) is a critical factor in determining its yield, and the development of pistils affects pollination and seed sets. However, research on seed-setting defects has been limited owing to difficulties in the identification of phenotypes, mutations, and complex genetic mechanisms. In this study, we found a stigma defect (sd) mutant in B. napus, which had no nectary. The SS of sd mutants in the field was approximately 93.4% lower than that of the wild type. Scanning and transmission electron microscopy imaging of sd mutants showed a low density of stigma papillary cells and stigma papillary cell vacuoles that disappeared 16 h after flowering. Genetic analysis of segregated populations showed that two recessive nuclear genes are responsible for the mutant phenotype of sd. Based on re-sequencing and map-based cloning, we reduced the candidate sites on ChrA07 (BnaSSA07) and ChrC06 (BnaSSC06) to 30 and 67 kb, including six and eight predicted genes, respectively. Gene analyses showed that a pair of CRABS CLAW (CRC) homeologous genes at BnaSSA07 and BnaSSC06 were associated with the development of carpel and nectary. BnaSSA07.CRC and BnaSSC06.CRC candidate genes were found to be expressed in flower organs only, with significant differences in their expression in the pistils of the near-isogenic lines. DNA sequencing showed transposon insertions in the upstream region and intron of the candidate gene BnaSSA07.crc. We also found that BnaSSC06.crc exists widely in the natural population and we give possible reasons for its widespread existence.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Brassica napus , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Brassica napus/genetics , Brassica napus/metabolism , Domestication , Flowers , Seeds/genetics , Seeds/metabolism , Transcription Factors/metabolism
9.
Plant Physiol ; 188(4): 2073-2084, 2022 03 28.
Article in English | MEDLINE | ID: mdl-35078230

ABSTRACT

Successful reproduction in the Brassicaceae is mediated by a complex series of interactions between the pollen and the pistil, and some species have an additional layer of regulation with the self-incompatibility trait. While the initial activation of the self-incompatibility pathway by the pollen S-locus protein 11/S locus cysteine-rich protein and the stigma S Receptor Kinase is well characterized, the downstream mechanisms causing self-pollen rejection are still not fully understood. In previous studies, we detected the presence of autophagic bodies with self-incompatible (SI) pollinations in Arabidopsis lyrata and transgenic Arabidopsis thaliana lines, but whether autophagy was essential for self-pollen rejection was unknown. Here, we investigated the requirement of autophagy in this response by crossing mutations in the essential AUTOPHAGY7 (ATG7) and ATG5 genes into two different transgenic SI A. thaliana lines in the Col-0 and C24 accessions. By using these previously characterized transgenic lines that express A. lyrata and Arabidopsis halleri self-incompatibility genes, we demonstrated that disrupting autophagy weakened their SI responses in the stigma. When the atg7 or atg5 mutations were present, an increased number of SI pollen was found to hydrate and form pollen tubes that successfully fertilized the SI pistils. Additionally, we confirmed the presence of GFP-ATG8a-labeled autophagosomes in the stigmatic papillae following SI pollinations. Together, these findings support the requirement of autophagy in the self-incompatibility response and add to the growing understanding of the intracellular mechanisms employed in the transgenic A. thaliana stigmas to reject self-pollen.


Subject(s)
Arabidopsis , Arabidopsis/genetics , Autophagy/genetics , Pollen/metabolism , Pollen Tube , Pollination/genetics
10.
Plant Physiol ; 190(4): 2757-2774, 2022 11 28.
Article in English | MEDLINE | ID: mdl-36130294

ABSTRACT

Sclerotinia sclerotiorum causes substantial damage and loss of yield in oilseed rape (Brassica napus). The molecular mechanisms of oilseed rape defense against Sclerotinia remain elusive. In this study, we found that in the early stages of B. napus infection a conserved mitogen-activated protein kinase (MAPK) cascade mediated by BnaA03.MKK5-BnaA06.MPK3/BnaC03.MPK3 module phosphorylates the substrate BnWRKY33, enhancing its transcriptional activity. The activated BnWRKY33 binds to its own promoter and triggers a transcriptional burst of BnWRKY33, thus helping plants effectively resist the pathogenic fungi by enhancing the expression of phytoalexin synthesis-related genes. The expression of BnWRKY33 is fine-tuned during defense. Ongoing Sclerotinia infection induces BnaA03.WRKY28 and BnaA09.VQ12 expression. BnaA09.VQ12 interacts physically with BnaA03.WRKY28 to form a protein complex, causing BnaA03.WRKY28 to outcompete BnWRKY33 and bind to the BnWRKY33 promoter. BnaA03.WRKY28 induction suppresses BnWRKY33 expression in the later stages of infection but promotes branch formation in the leaf axils by regulating the expression of branching-related genes such as BnBRC1. BnaA03.WRKY28 participates in the trade-off between defense and growth. These findings suggest that oilseed rape plants may modulate defense-response strength and develop alternative reproduction and survival strategies in the face of lethal pathogens.


Subject(s)
Ascomycota , Brassica napus , Brassica napus/genetics , Transcription Factors/genetics , Gene Expression Regulation
11.
J Exp Bot ; 74(17): 4994-5013, 2023 09 13.
Article in English | MEDLINE | ID: mdl-37246599

ABSTRACT

Cytokinins (CKs) are phytohormones that promote cell division and differentiation. However, the regulation of CK distribution and homeostasis in Brassica napus is poorly understood. Here, the endogenous CKs were first quantified by LC-ESI-MS/MS in rapeseed tissues and visualized by TCSn::GUS reporter lines. Interestingly, the cytokinin oxidase/dehydrogenase BnaCKX2 homologs were mainly expressed in reproductive organs. Subsequently, the quadruple mutants of the four BnaCKX2 homologs were generated. Endogenous CKs were increased in the seeds of the BnaCKX2 quadruple mutants, resulting in a significantly reduced seed size. In contrast, overexpression of BnaA9.CKX2 resulted in larger seeds, probably by delaying endosperm cellularization. Furthermore, the transcription factor BnaC6.WRKY10b, but not BnaC6.WRKY10a, positively regulated BnaA9.CKX2 expression by binding directly to its promoter region. Overexpression of BnaC6.WRKY10b rather than BnaC6.WRKY10a resulted in lower concentration of CKs and larger seeds by activating BnaA9.CKX2 expression, indicating that the functional differentiation of BnaWRKY10 homologs might have occurred during B. napus evolution or domestication. Notably, the haploid types of BnaA9.CKX2 were associated with 1000-seed weight in the natural B. napus population. Overall, the study reveals the distribution of CKs in B. napus tissues, and shows that BnaWRKY10-mediated BnaCKX2 expression is essential for seed size regulation, providing promising targets for oil crop improvement.


Subject(s)
Brassica napus , Brassica napus/genetics , Brassica napus/metabolism , Cytokinins/metabolism , Transcription Factors/metabolism , Tandem Mass Spectrometry , Seeds/metabolism , Oxidoreductases/genetics , Oxidoreductases/metabolism , Gene Expression Regulation, Plant
12.
Theor Appl Genet ; 136(7): 151, 2023 Jun 11.
Article in English | MEDLINE | ID: mdl-37302112

ABSTRACT

KEY MESSAGE: A candidate gene Bndm1 related to determinate inflorescence was mapped to a 128-kb interval on C02 in Brassica napus. Brassica napus plants with determinate inflorescence exhibit improved traits in field production, such as lower plant height, improved lodging resistance, and consistent maturity. Compared to plants with indeterminate inflorescence, such features are favorable for mechanized harvesting techniques. Here, using a natural mutant 6138 with determinate inflorescence, it is demonstrated that determinate inflorescence reduces plant height significantly without affecting thousand-grain weight and yield per plant. Determinacy was regulated by a single recessive gene, Bndm1. Using a combination of SNP arrays and map-based cloning, we mapped the locus of determinacy to a 128-kb region on C02. Based on sequence comparisons and the reported functions of candidate genes in this region, we predicted BnaC02.knu (a homolog of KNU in Arabidopsis) as a possible candidate gene of Bndm1 for controlling determinate inflorescence. We found a 623-bp deletion in a region upstream of the KNU promoter in the mutant. This deletion led to the significant overexpression of BnaC02.knu in the mutant compared to that in the ZS11 line. The correlation between this deletion and determinate inflorescence was examined in natural populations. The results indicated that the deletion affected the normal transcription of BnaC02.knu in the plants with determinate inflorescence and played an important role in maintaining flower development. This study presents as a new material for optimizing plant architecture and breeding novel canola varieties suitable for mechanized production. Moreover, our findings provide a theoretical basis for analyzing the molecular mechanisms underlying the formation of determinate inflorescence in B. napus.


Subject(s)
Arabidopsis , Brassica napus , Chromosome Mapping/methods , Inflorescence/genetics , Brassica napus/genetics , Plant Breeding , Phenotype , Arabidopsis/genetics , Gene Expression Regulation, Plant
13.
Mol Breed ; 43(4): 27, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37313529

ABSTRACT

Pollen tube (PT) growth towards the micropyle is critical for successful double fertilization. However, the mechanism of micropyle-directed PT growth is still unclear in Brassica napus. In this study, two aspartate proteases, BnaAP36s and BnaAP39s, were identified in B. napus. BnaAP36s and BnaAP39s were localized to the plasma membrane. The homologues of BnaAP36 and BnaAP39 were highly expressed in flower organs, especially in the anther. Sextuple and double mutants of BnaAP36s and BnaAP39s were then generated using CRISPR/Cas9 technology. Compared to WT, the seed-set of cr-bnaap36 and cr-bnaap39 mutants was reduced by 50% and 60%, respectively. The reduction in seed-set was also found when cr-bnaap36 and cr-bnaap39 were used as the female parent in a reciprocal cross assay. Like WT, cr-bnaap36 and cr-bnaap39 pollen were able to germinate and the relative PTs were able to elongate in style. Approximately 36% and 33% of cr-bnaap36 and cr-bnaap39 PTs, respectively, failed to grow towards the micropyle, indicating that BnaAP36s and BnaAP39s are essential for micropyle-directed PT growth. Furthermore, Alexander's staining showed that 10% of cr-bnaap39 pollen grains were aborted, but not cr-bnaap36, suggesting that BnaAP39s may also affect microspore development. These results suggest that BnaAP36s and BnaAP39s play a critical role in the growth of micropyle-directed PTs in B. napus. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01377-1.

14.
Genomics ; 114(6): 110505, 2022 11.
Article in English | MEDLINE | ID: mdl-36265744

ABSTRACT

Interspecific hybridization is the intrinsic forces behind genome evolution. Long non-coding RNAs (lncRNAs) are important for plant biological processes regulation. However, it is unclear that these non-coding fractions are impacted by interspecific hybridization. Here we examined the profiles of lncRNAs by comparing them with coding genes in Brassica napus, three accessions of Brassica rapa, and their F1 hybrids. 6206 high-confidential lncRNAs were identified in F 1 hybrids and their parentals, and the lncRNAs transcriptome in the F1 hybrids was reprogrammed by the genome shock. Notably, genome-wide unbalanced of lncRNAs were observed between An and Ar subgenomes, ELD (Expression Level Dominance) was biased toward the An -genome in F1 hybrids, and ELD of non-conserved lncRNAs was more than conserved lncRNAs. Our findings demonstrate that the reprogramed lncRNAs acts as important role in enhancing plant plasticity, leading to the acquisition of desirable traits in polyploid Brassica species.


Subject(s)
Brassica , RNA, Long Noncoding , Brassica/genetics , RNA, Long Noncoding/genetics
15.
BMC Plant Biol ; 22(1): 283, 2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35676627

ABSTRACT

BACKGROUND: Heterosis is an important biological phenomenon in which the hybrids exceed the parents in many traits. However, the molecular mechanism underlying seedling heterosis remains unclear. RESULTS: In the present study, we analyzed the leaf transcriptomes of strong hybrids (AM, HM) and weak hybrids (CM, HW) and their parents (A, C, H, M, and W) at two periods. Phenotypically, hybrids had obvious biomass heterosis at the seedling stage, with statistically significant differences between the strong and weak hybrids. The transcriptomic analysis demonstrated that the number of differentially expressed genes (DEGs) between parents was the highest. Further analysis showed that most DEGs were biased toward parental expression. The biological processes of the two periods were significantly enriched in the plant hormone signal transduction and photosynthetic pathways. In the plant hormone signaling pathway, DEG expression was high in hybrids, with expression differences between strong and weak hybrids. In addition, DEGs related to cell size were identified. Similar changes were observed during photosynthesis. The enhanced leaf area of hybrids generated an increase in photosynthetic products, which was consistent with the phenotype of the biomass. Weighted gene co-expression network analysis of different hybrids and parents revealed that hub genes in vigorous hybrid were mainly enriched in the plant hormone signal transduction and regulation of plant hormones. CONCLUSION: Plant hormone signaling and photosynthesis pathways, as well as differential expression of plant cell size-related genes, jointly regulate the dynamic changes between strong and weak hybrids and the generation of seedling-stage heterosis. This study may elucidate the molecular mechanism underlying early biomass heterosis and help enhance canola yield.


Subject(s)
Brassica napus , Hybrid Vigor , Biomass , Brassica napus/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant , Hybrid Vigor/genetics , Hybridization, Genetic , Plant Growth Regulators , Seedlings/genetics , Transcriptome
16.
J Exp Bot ; 73(8): 2336-2353, 2022 04 18.
Article in English | MEDLINE | ID: mdl-35139197

ABSTRACT

Interspecific hybridization drives the evolution of angiosperms and can be used to introduce novel alleles for important traits or to activate heterosis in crop breeding. Hybridization brings together gene expression networks from two different species, potentially causing global alterations of gene expression in the F1 plants which is called 'transcriptome shock'. Here, we explored such a transcriptome shock in allotriploid Brassica hybrids. We generated interspecific F1 allotriploid hybrids between the allotetraploid species Brassica napus and three accessions of the diploid species Brassica rapa. RNA-seq of the F1 hybrids and the parental plants revealed that 26.34-30.89% of genes were differentially expressed between the parents. We also analyzed expression level dominance and homoeolog expression bias between the parents and the F1 hybrids. The expression-level dominance biases of the Ar, An, and Cn subgenomes was genotype and stage dependent, whereas significant homoeolog expression bias was observed among three subgenomes from different parents. Furthermore, more genes were involved in trans regulation than in cis regulation in allotriploid F1 hybrids. Our findings provide new insights into the transcriptomic responses of cross-species hybrids and hybrids showing heterosis, as well as a new method for promoting the breeding of desirable traits in polyploid Brassica species.


Subject(s)
Brassica napus , Brassica , Brassica/genetics , Brassica napus/genetics , Hybridization, Genetic , Plant Breeding , Polyploidy , Transcriptome
17.
J Exp Bot ; 73(19): 6630-6645, 2022 11 02.
Article in English | MEDLINE | ID: mdl-35857343

ABSTRACT

The molecular mechanisms underlying anthocyanin-based flower coloration remain unknown in Brassica napus. To identify the key genes and metabolites associated with apricot and pink flower colors, metabolome, BSA-seq, and RNA-seq analyses were conducted on apricot-, pink-, yellow-, and white-flowered F2B. napus. Yellow carotenoids and red anthocyanins were abundant in apricot petals, while colorless carotenoids and red anthocyanins accumulated in pink petals. Most carotenoid genes were not differentially regulated between apricot and yellow or between pink and white petals. Three regulator genes, BnaMYBL2, BnaA07.PAP2, and BnaTT8, and structural genes in anthocyanin biosynthesis were dramatically enhanced in apricot and pink petals in comparison with yellow and white petals. Map-based cloning revealed that BnaA07.PAP2 is responsible for anthocyanin-based flower color and encodes a nucleus-localized protein predominantly expressed in apricot and pink flowers. Two insertions in the promoter region are responsible for the transcriptional activation of BnaA07.PAP2 in flowers. Introducing the BnaA07.PAP2In-184-317 allele broadly activated the expression of anthocyanin-related genes and promoted anthocyanin accumulation in flowers, yielding color change from yellow to apricot. These findings illustrate the genetic basis of anthocyanin-based flower coloration and provide a valuable genetic resource for breeding varieties with novel flower colors in B. napus.


Subject(s)
Anthocyanins , Brassica napus , Anthocyanins/metabolism , Brassica napus/genetics , Brassica napus/metabolism , Gene Expression Regulation, Plant , Plant Proteins/metabolism , Plant Breeding , Flowers/metabolism , Carotenoids/metabolism , Pigmentation/genetics , Color
18.
Int J Mol Sci ; 23(23)2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36499273

ABSTRACT

Rapeseed (Brassica napus L.) is one of the most important oil crops in the world. The planting area and output of rapeseed are affected by the flowering time, which is a critical agronomic feature. COL9 controls growth and development in many different plant species as a member of the zinc finger transcription factor family. However, BnaCOL9 in rapeseed has not been documented. The aim of this study was to apply CRISPR/Cas9 technology to create an early-flowering germplasm resource to provide useful material for improving the early-maturing breeding of rapeseed. We identified four COL9 homologs in rapeseed that were distributed on chromosomes A05, C05, A03, and C03. We successfully created quadruple BnaCOL9 mutations in rapeseed using the CRISPR/Cas9 platform. The quadruple mutants of BnaCOL9 flowered earlier than the wild-type. On the other hand, the flowering time of the BnaCOL9 overexpression lines was delayed. An analysis of the expression patterns revealed that these genes were substantially expressed in the leaves and flowers. A subcellular localization experiment demonstrated that BnaCOL9 was in the nucleus. Furthermore, we discovered that two key flowering-related genes, BnaCO and BnaFT, were highly elevated in the BnaCOL9 mutants, but dramatically downregulated in the BnaCOL9 overexpression lines. Our findings demonstrate that BnaCOL9 is a significant flowering inhibitor in rapeseed and may be employed as a crucial gene for early-maturing breeding.


Subject(s)
Brassica napus , Brassica rapa , Brassica napus/genetics , CRISPR-Cas Systems , Plant Breeding , Mutagenesis , Flowers/genetics , Gene Expression Regulation, Plant
19.
Int J Mol Sci ; 23(13)2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35806247

ABSTRACT

As a desirable agricultural trait, multi-inflorescence (MI) fulfills the requirement of mechanized harvesting and yield increase in rapeseed (Brassica napus L.). However, the genetic mechanism underlying the multi-inflorescence trait remain poorly understood. We previously identified a difference of one pair of dominant genes between the two mapping parental materials. In this study, phenotype and expression analysis indicated that the imbalance of the CLAVATA (CLV)-WUSCHEL (WUS) feedback loop may contribute to the abnormal development of the shoot apical meristem (SAM). BnaMI was fine-mapped to a 55 kb genomic region combining with genotype and phenotype of 5768 BCF1 individuals using a traditional mapping approach. Through comparative and expression analyses, combined with the annotation in Arabidopsis, five genes in this interval were identified as candidate genes. The present findings may provide assistance in functional analysis of the mechanism associated with multi-inflorescence and yield increase in rapeseed.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Brassica napus , Brassica rapa , Arabidopsis Proteins/genetics , Brassica napus/genetics , Gene Expression Regulation, Plant , Inflorescence , Meristem
20.
Int J Mol Sci ; 23(5)2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35269615

ABSTRACT

Plant architecture involves important agronomic traits affecting crop yield, resistance to lodging, and fitness for mechanical harvesting in Brassica napus. Breeding high-yield varieties with plant architecture suitable for mechanical harvesting is the main goal of rapeseed breeders. Here, we report an accession of B. napus (4942C-5), which has a dwarf and compact plant architecture in contrast to cultivated varieties. A BC8 population was constructed by crossing a normal plant architecture line, 8008, with the recurrent parent 4942C-5. To investigate the molecular mechanisms underlying plant architecture, we performed phytohormone profiling, bulk segregant analysis sequencing (BSA-Seq), and RNA sequencing (RNA-Seq) in BC8 plants with contrasting plant architecture. Genetic analysis indicated the plant architecture traits of 4942C-5 were recessive traits controlled by multiple genes. The content of auxin (IAA), gibberellin (GA), and abscisic acid (ABA) differed significantly between plants with contrasting plant architecture in the BC8 population. Based on BSA-Seq analysis, we identified five candidate intervals on chromosome A01, namely those of 0 to 6.33 Mb, 6.45 to 6.48 Mb, 6.51 to 6.53 Mb, 6.77 to 6.79 Mb, and 7 to 7.01 Mb regions. The RNA-Seq analysis revealed a total of 4378 differentially expressed genes (DEGs), of which 2801 were up-regulated and 1577 were down-regulated. There, further analysis showed that genes involved in plant hormone biosynthesis and signal transduction, cell structure, and the phenylpropanoid pathway might play a pivotal role in the morphogenesis of plant architecture. Association analysis of BSA-Seq and RNA-Seq suggested that seven DEGs involved in plant hormone signal transduction and a WUSCHEL-related homeobox (WOX) gene (BnaA01g01910D) might be candidate genes responsible for the dwarf and compact phenotype in 4942C-5. These findings provide a foundation for elucidating the mechanisms underlying rapeseed plant architecture and should contribute to breed new varieties suitable for mechanization.


Subject(s)
Brassica napus , Brassica napus/genetics , Brassica napus/metabolism , Chromosome Mapping , Gene Expression Profiling , Gene Expression Regulation, Plant , Plant Breeding , Plant Growth Regulators/metabolism , RNA-Seq , Sequence Analysis, RNA
SELECTION OF CITATIONS
SEARCH DETAIL