Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
J Fluoresc ; 2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37665510

ABSTRACT

Herein, we report the extraction of natural pigment curcumin from curcuma longa and their linear and third-order nonlinear optical (NLO) characteristics. The characterization techniques viz., UV-Visible absorption, FT-IR, Micro Raman and Gas Chromatography Mass Spectrum (GC-MS) are used to study the spectral characteristics of curcumin. Third-order NLO features of curcumin are studied using Z‒scan technique with a semiconductor diode laser working at 405 nm wavelength. The natural pigment exhibits negative nonlinear index of refraction resulting from self-defocusing and positive coefficient of absorption is the consequence of reverse saturable absorption (RSA). The order of nonlinear index of refraction (n2) and nonlinear coefficient of absorption (ß) is measured to be 10-7 cm2/W and 10-2 cm/W, respectively. Third-order NLO susceptibility (χ(3)) and second-order hyperpolarizability (γ) of curcumin is measured to be 2.73 × 10‒7 esu and 1.67 × 10‒31 esu, respectively. A low optical limiting (OL) threshold of 0.71 mW is observed in the extracted pigment. The experimental results are supplemented by quantum mechanical calculations of the NLO parameters. The overall result finding is that curcumin extracted from curcuma longa has the potential to be novel optical candidates for photonics and optoelectronics applications.

2.
Environ Res ; 199: 111274, 2021 08.
Article in English | MEDLINE | ID: mdl-34000268

ABSTRACT

In this present investigation, an aqueous Basella alba leaves extract was used to synthesize AgNPs. The green synthesis approach is carried out in our work due to non-toxic, less cost, and ecofriendly methods. FTIR spectra are used to confirm the biomolecules present in B.alba leaves extract along with AgNPs and these compounds are responsible for Ag particle from micro to nanostructure. The FCC structure and crystalline nature of the AgNPs are analyzed with the help of XRD and TEM techniques respectively. DLS and Zeta potential techniques are carried out to find the size and stability of AgNPs respectively and UV is used to verify the presence of AgNPs in synthesized samples employing SPR peaks around 435 nm. The antioxidant studies expose eminent scavenging activity which ranges from 13.71% to maximum 67.88%. Green synthesized AgNPs possess well organized biological activities concerning antioxidant and antibacterial, which can be used in some biologically applications.


Subject(s)
Metal Nanoparticles , Silver , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Plant Extracts , Plant Leaves , Spectroscopy, Fourier Transform Infrared
3.
J Opt Soc Am A Opt Image Sci Vis ; 37(11): C111-C117, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-33175737

ABSTRACT

This contribution reports on the observation of a strong light localization of Anderson type in 1D systems consisting of ship-shaped carbon nanotubes. Such a localization of infrared (IR) light was observed using Fourier transform infrared spectroscopy under attenuated total reflection geometry within the spectral range of 2-20 µm. Such an IR light localization manifests itself in the form of a significant interference profile of the optical transmission over the full wavenumber range of 400-4000cm-1.

4.
J Opt Soc Am A Opt Image Sci Vis ; 37(11): C45-C49, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-33175730

ABSTRACT

This contribution reports, for what we believe is the first time, on VO2-based thin-film coatings on flexible Al substrates exhibiting a tunable positive emittance-switching Δε=(εH-εL)>0. More precisely, a layered stack of a-Si:H/SiO2/VO2 on flexible Al sheets presents minimum and maximum values of emissivity of about 0.18 and 0.57 at 40ºC and 83ºC, respectively, and hence allows an emittance-switching Δε of 0.39 and a relative variation Δε/ÎµΛ of ∼217%. Such variations fit with the potential applications of such coatings as smart radiation devices in small satellites and spacecraft.

5.
J Opt Soc Am A Opt Image Sci Vis ; 37(11): C73-C79, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-33175734

ABSTRACT

This contribution reports on the optical properties of biosynthesised Eu2O3 nanoparticles bioengineered for the first time by a green and cost effective method using aqueous fruit extracts of Hyphaene thebaica as an effective chelating and capping agent. The morphological, structural, and optical properties of the samples annealed at 500°C were confirmed by using a high-resolution transmission electron microscope (HR-TEM), x-ray diffraction analysis (XRD), UV-Vis spectrocopy, and photoluminescence spectrometer. The XRD results confirmed the characteristic body-centered cubic (bcc) structure of Eu2O3 nanoparticles with an average size of 20 nm. HR-TEM revealed square type morphology with an average size of ∼6nm. Electron dispersion energy dispersive x-ray spectroscopy spectrum confirmed the elemental single phase nature of pure Eu2O3. Furthuremore, the Fourier transformed infrared spectroscopy revealed the intrinsic characteristic peaks of Eu-O bond stretching vibrations. UV-Vis reflectance proved that Eu2O3 absorbs in a wide range of the solar spectrum from the VUV-UV region with a bandgap of 5.1 eV. The luminescence properties of such cubic structures were characterized by an intense red emission centered at 614 nm. It was observed that the biosynthesized Eu2O3 nanoparticles exhibit an efficient red-luminescence and hence a potential material as red phosphor.


Subject(s)
Luminescence , Nanoparticles/chemistry , Optical Phenomena , Arecaceae/chemistry , Color , Particle Size , Plant Extracts/chemistry
6.
J Nanosci Nanotechnol ; 19(2): 859-866, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30360163

ABSTRACT

Different mole ratios of (8:2, 6:4, 4:6 and 2:8) iron tungstate-tungsten trioxide (FeWO4-WO3) composite nanoparticles were synthesized by solid state method. The synthesized composite nanoparticles were characterized by powder X-ray diffraction analysis (XRD), field-emission scanning electron microscopy (FE-SEM) with energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM) studies. The crystalline nature and particle size of the samples were characterized by powder X-ray diffraction analysis (XRD). The morphology was confirmed by field-emission scanning electron microscopy (FE-SEM) analysis and transmission electron microscope (TEM). The energy dispersive X-ray spectroscopy (EDX) proved the purity of nanocomposites. Vibrating sample magnetometer reveals that the sample shows paramagnetic property based on the metal present in the prepared nanocomposites at room temperature. The magnetic property is due to the structural defects rather than the impurity phase. Magnetization saturation value (Ms = 398.7 emu/g) of FWWO-46 composite nanoparticles is high enough to be magnetically removed by applying a magnetic field. The composites were subjected to DC conductance measurement as a function of relative humidity in the range of 5-98%, achieved by different water vapour buffers thermostated at room temperature. The sensitivity factor, Sf (R5%/R98%) measured at 25 °C revealed that FWWO-46 shows the highest humidity sensitivity factor Sf = 3956, with a response and recovery time of 45 s and 100 s respectively. Photocatalytic degradation of methylene blue (MB) from aqueous solution has been carried out using FeWO4-WO3 composite nanoparticles as photocatalyst under Ultraviolet radiation.

7.
J Nanosci Nanotechnol ; 19(5): 2640-2648, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30501761

ABSTRACT

The purpose of this study is to minimize the negative impacts of synthetic procedures and to develop environmentally benign procedures for the synthesis of metallic nanoparticles. In the present study, Passiflora edulis f. flavicarpa (P. edulis) aqueous leaf extract mediated green synthesis of silver nanoparticles are described. The synthesized silver nanoparticles were characterized by UV-Vis Spectroscopy, Fluorescence Spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) Transmission Electron Microscopy (TEM) and Cyclic Voltammetry (CV). The silver nanoparticles (AgNPs) showed antibacterial activities against both gram positive (staphylococcus) and gram negative (Escherichia coli) bacteria. The efficacy of the synthesized silver nanoparticles (AgNPs) was demonstrated as catalyst in the photocatalytic degradation of Methyl Orange (MO) and Methylene Blue (MB) dyes which were measured spectrophotometrically. The study revealed that biosynthesized silver nanoparticles using Passiflora. edulis f. flavicarpa, plant extract was found to be very effective as antioxidant agent.


Subject(s)
Metal Nanoparticles , Passiflora , Anti-Bacterial Agents , Antioxidants/pharmacology , Green Chemistry Technology , Microscopy, Electron, Transmission , Plant Extracts/pharmacology , Silver/pharmacology , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
8.
J Nanosci Nanotechnol ; 19(7): 4026-4032, 2019 07 01.
Article in English | MEDLINE | ID: mdl-30764965

ABSTRACT

Research on CdSe/ZnS core-shell quantum dots (QDs) was synthesized by a chemical route using bio-conjugated organic amino acid (L-Cysteine). The structural, morphological, and optical properties of the nanocrystal powder samples were analyzed using various characterization techniques. The diameter of the resulting QDs was about 3 nm with uniform size distribution. The optical properties QDs exhibited an absorption and emission peak at 515 and 525 nm respectively, at room temperature. The QDs through emission in the spectral range at 516-535 nm is special for their application in green LEDs and white-light generation. The high optical properties performance of the QDs nanocomposites gained indicates that the materials are promising for (LED) applications.

9.
J Nanosci Nanotechnol ; 18(7): 4544-4550, 2018 Jul 01.
Article in English | MEDLINE | ID: mdl-29442630

ABSTRACT

A simple and reliable voltammetric sensor for simultaneous determination of Catechol (CT) and Hydroquinone (HQ) was developed by electrodepositing the gold nanoparticles on the surface of the Glassy Carbon Electrode (GCE). The cyclic voltammograms in a mixed solution of CT and HQ have shown that the oxidation peaks become well resolved and were separated by 110 mV, although the bare GCE gave a single broad oxidation peak. Moreover, the oxidation peak currents of both CT and HQ were remarkably increased three times in comparison with the bare GCE. This makes gold nanoparticles deposited GCE a suitable candidate for the determination of these isomers. In the presence of 1 mM HQ isomer, the oxidation peak currents of differential pulse voltammograms are proportional to the concentration of CT in the range of 21 µM to 323 µM with limit of detection 3.0 µM (S/N = 3). The proposed sensor has some important advantages such as low cost, ease of preparation, good stability and high reproducibility.

10.
J Nanosci Nanotechnol ; 18(8): 5441-5447, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-29458596

ABSTRACT

Nanoparticles of Li, Mg and Sr doped and undoped zinc oxide was prepared by simple precipitation method. The structural, optical, and magnetic properties of the samples were investigated by the Powder X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), Fourier Transform Infrared (FTIR) spectroscopy, Ultra-violet Visible spectroscopy (UV-vis) spectra, Photoluminescence (PL) and Vibrational Sample Magnetometer (VSM). The Powder X-ray diffraction data confirm the formation of hexagonal wurtzite structure of all doped and undoped ZnO. The SEM photograph reveals that the pores availability and particles size in the range of 10 nm-50 nm. FTIR and UV-Visible spectra results confirm the incorporation of the dopant into the ZnO lattice nanostructure. The UV-Visible spectra indicate that the shift of blue region (lower wavelength) due to bandgap widening. Photoluminescence intensity varies with doping due to the increase of oxygen vacancies in prepared ZnO. The pure ZnO exist paramagnetic while doped (Li, Mg and Sr) ZnO exist ferromagnetic property. The photocatalytic activity of the prepared sample also carried out in detail.

11.
J Nanosci Nanotechnol ; 18(5): 3511-3517, 2018 May 01.
Article in English | MEDLINE | ID: mdl-29442859

ABSTRACT

Nanoparticles of tin oxide (SnO2) powders were prepared by co-precipitation method at 500 °C, 700 °C and 900 °C temperature. The sintered SnO2 nanoparticles, structural, optical, magnetic, morphological properties and microbial activity have been studied. XRD studies reveals that sintered powder which exhibits tetragonal crystal structure and both crystallinity as well as crystal size increase with increase in temperature. The morphological studies reveal randomly arranged grains with compact nature grain size increases with sintering temperature. The compositional analyses of SnO2 nanoparticles have been studied using X-ray photoelectron spectroscopy analysis. The optical band gap values of SnO2 nanoparticles were calculated to be about 4.3 eV in the temperature 500 °C, comparing with that of the bulk SnO2 3.78 eV, by optical absorption measurement. Room temperature M-H curve for pure SnO2 nanoparticles exhibits ferromagnetic behaviour. The tin oxide nanoparticles are acted as potential candidate material for bacterial and fungal activity.


Subject(s)
Anti-Bacterial Agents/pharmacology , Nanoparticles/chemistry , Tin Compounds/pharmacology , Anti-Bacterial Agents/chemistry , Powders , Temperature , Tin Compounds/chemistry
12.
J Microsc ; 265(2): 214-221, 2017 02.
Article in English | MEDLINE | ID: mdl-27682151

ABSTRACT

Vanadium pentoxide V2 O5 thin films were grown at room temperature on ITO coated glass substrates by electrochemical deposition. The resulting films were annealed at 300, 400 and 500°C for 1 h in ambient environment. The effect of heat treatment on the films properties such as surface morphology, crystal structure, optical absorption and photoluminescence were investigated. The x-ray diffraction study showed that the films are well crystallized with temperatures. Strong reflection from plane (400) indicated the film's preferred growth orientation. The V2 O5 films are found to be highly transparent across the visible spectrum and the measured photoluminescence quenching suggested the film's potential application in OPV device fabrication.

13.
RSC Adv ; 14(39): 28298, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39239287

ABSTRACT

[This corrects the article DOI: 10.1039/D3RA02426A.].

14.
Sci Rep ; 14(1): 2432, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38287065

ABSTRACT

The present study reports synthesis of phenathroimidazole derivatives structures following donor-acceptor relation for high performance deep-blue light emitting diodes. Herein, methyl substituted benzodioxin-6-amine phenanthroimidazoles Cz-SBDPI and TPA-SBDPI derivatives that provide the blue light were designed and synthesized. These Cz-SBDPI and TPA-SBDPI show higher glass transition (Tg) temperatures of 199 and 194 °C and demonstrate enhanced thermal properties. Apart from enhanced thermal stability these compounds also exhibit superior photophysical, electrochemical and electroluminescent properties. The non-doped carbazole based device display improved electroluminescent performances than those of TPA-based devices. The strong orbital-coupling due to decreased energy barrier between Cz-SBDPI transitions result in deep blue emission with CIE-0.15, 0.06. For non-doped Cz-SBDPI device; high L (brightness):12,984 cd/m2; ηc (current efficiency): 5.9 cd/A; ηp (power efficiency): 5.7 lm/W and ηex (external quantum efficiency): 6.2% was observed. The results show that the D-A emitters can serve as simple but also as an effective approach to devise cheap electroluminescent materials that has high efficiency and can serve as OLED devices.

15.
Sci Rep ; 14(1): 2818, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38307893

ABSTRACT

Solar heat management & green air-conditioning are among the major technologies that could mitigate heat islands phenomenon while minimizing significantly the CO2 global foot-print within the building & automotive sectors. Chromogenic materials in general, and thermochromic smart coatings especially are promising candidates that consent a noteworthy dynamic solar radiation Infrared (NIR-IR) regulation and hence an efficient solar heat management especially with the expected increase of the global seasonal temperature. Within this contribution, two major challenging bottlenecks in vanadium oxide based smart coatings were addressed. It is validated for the first time that the NIR-IR modulation of the optical transmission (∆TTRANS = T(T〈TMIT) - T(T〉TMIT) of Vanadium oxide based smart coatings can be controlled & tuned. This upmost challenging bottle-neck controllability/tunability is confirmed via a genuine approach alongside to a simultaneous drastic reduction of the phase transition temperature TMIT from 68.8 °C to nearly room temperature. More precisely, a substantial thermochromism in multilayered V2O5/V/V2O5 stacks equivalent to that of standard pure VO2 thin films but with a far lower transition temperature, is reported. Such a multilayered V2O5/V/V2O5 thermochromic system exhibited a net control & tunability of the optical transmission modulation in the NIR-IR (∆TTRANS) via the nano-scaled thickness' control of the intermediate Vanadium layer. In addition, the control of ∆TTRANS is accompanied by a tremendous diminution of the thermochromic transition temperature from the elevated bulk value of 68.8 °C to the range of 27.5-37.5 ºC. The observed remarkable and reversible thermochromism in such multilayered nano-scaled system of V2O5/V/V2O5 is likely to be ascribed to a noteworthy interfacial diffusion, and an indirect doping by alkaline ions diffusing from the borosilicate substrate. It is hoped that the current findings would contribute in advancing thermochromic smart window technology and their applications for solar heat management in glass windows in general, skyscraper especially & in the automotive industry. If so, this would open a path to a sustainable green air-conditioning with zero-energy input.

16.
RSC Adv ; 13(25): 17212-17221, 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37304767

ABSTRACT

We performed a pressure-driven study of zinc pyrovanadate, Zn2V2O7, using the first-principles approach under the framework of density functional theory (DFT). Zn2V2O7 crystalizes in a monoclinic (α-phase) structure with the space group C2/c at ambient pressure. In comparison with the ambient phase, there are four different high-pressure phases, namely ß, γ, κ and δ, found at 0.7, 3.8, 4.8 and 5.3 GPa, respectively. The detailed crystallographic analysis as well as their structures is consistent with the theory and experiment reported in the literature. All phases including the ambient phase are mechanically stable, elastically anisotropic and malleable. The compressibility of the studied pyrovanadate is higher than that of the other meta- and pyrovanadates. The energy dispersion of these studied phases reveals that they are indirect band gap semiconductors with wide band gap energies. The band gap energies follow a reduced trend with pressure except the κ-phase. The effective masses for all of these studied phases were computed from their corresponding band structures. The values of energy gaps obtained from the band structures are almost similar to the optical band gap obtained from the optical absorption spectra, as estimated by the Wood-Tauc theory.

17.
Sci Rep ; 13(1): 2442, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36765188

ABSTRACT

This study describes a molecular dynamics computational modelling informed bioengineering of nano-scaled 2-D hydronium jarosite. More specifically, a phyto-engineering approach using green nano-chemistry and agro-waste in the form of avocado seed natural extract was utilized as a green, economic, and eco-friendly approach to synthesize this unique mineral at the nanoscale via the reduction of iron (II) sulphate heptahydrate. The nanoproduct which was found to exhibit a quasi-2D structure was characterized using a multi-technique approach to describe its morphological, optical, electrochemical, and magnetic properties. Radial distribution function and electrostatic potential maps revealed that flavone, a phenolic compound within the avocado seed natural extract, has a higher affinity of interaction with the nanoparticle's surface, whilst vanillic acid has a higher wetting tendency and thus a lower affinity for interacting with the hydronium jarosite nanoparticle surface compared to other phytoactive compounds. XRD and HRTEM results indicated that the nanoscale product was representative of crystalline rhombohedral hydronium jarosite in the form of quasi-triangular nanosheets decorated on the edges with nanoparticles of approximately 5.4 nm diameter that exhibited significant electrochemical and electroconductive behaviours. Magnetic studies further showed a diamagnetic behaviour based on the relationship of the inverse susceptibility of the nanomaterial with temperature sweep.

18.
Sci Rep ; 13(1): 16783, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37798317

ABSTRACT

This contribution reports, for the first time, on an entirely green bio-engineering approach for the biosynthesis of single phase crystalline 1-D nano-scaled calcite CaCO3. This was validated using H2O as the universal solvent and natural extract of Hyphaene thebaica fruit as an effective chelating agent. In this room temperature green process, CaCl2 and CO2 are used as the unique source of Ca and CO3 respectively in view of forming nano-scaled CaCO3 with a significant shape anisotropy and an elevated surface to volume ratio. In terms of novelty, and relatively to the reported scientific and patented literature in relation to the fabrication of CaCO3 by green nano-chemistry, the current cost effective room temperature green process can be singled out as per the following specificities: only water as universal solvent is used, No additional base or acid chemicals for pH control, No additional catalyst, No critical or supercritical CO2 usage conditions, Only natural extract of thebaica as a green effective chelating agent through its phytochemicals and proper enzematic compounds, room Temperature processing, atmospheric pressure processing, Nanoscaled size particles, and Nanoparticles with a significant shape anisotropy (1-D like nanoparticles). Beyond and in addition to the validation of the 1-D synthesis aspect, the bio-engineered CaCO3 exhibited a wide-ranging functionalities in terms of highly reflecting pigment, an effective nanofertilizer as well as a potential binder in cement industry.

19.
Sci Rep ; 12(1): 2259, 2022 02 10.
Article in English | MEDLINE | ID: mdl-35145113

ABSTRACT

This contribution reports on the physical properties of the natural Namibian red Ochre used by the Himba Community in a form of a formulation, so called Otjize as a skin protective and beauty cream. The morphological and crystallographic studies of this red ochre validated its nano-scaled dominating phase of rhombohedral α-Fe2O3 nanocrystals with an additional hydrolized oxide component in a form of γ-FeOOH. The optical investigations showed that such a red ochre exhibits an exceptional UV filtration and a significant IR reflectivity substantiating its effectiveness as an effective UV-blocking & solar heat IR reflector in support of the low skin cancer rate within the Namibian Himba community. In addition, such nanocrystals exhibited a non-negligible antibacterial response against E. Coli & S. Aurus. This study seems confirming the effectiveness of the indigenous Otjize as an effective skin UV protection cream with a sound antimicrobial efficacy against e-Coli & S-Aurus.

20.
Sci Rep ; 12(1): 3494, 2022 Mar 03.
Article in English | MEDLINE | ID: mdl-35241681

ABSTRACT

While room temperature bulk mercury is liquid, it is solid in its nano-configuration (Ønano-Hg ≤ 2.5 nm). Conjugating the nano-scale size effect and the Laplace driven surface excess pressure, Hg nanoparticles of Ønano-Hg ≤ 2.4 nm embedded in a 2-D turbostratic Boron Nitride (BN) host matrix exhibited a net crystallization at room temperature via the experimentally observed (101) and (003) diffraction Bragg peaks of the solid Hg rhombohedral α-phase. The observed crystallization is correlated to a surface atomic ordering of 7 to 8 reticular atomic plans of the rhombohedral α-phase. Such a novelty of size effect on phase transition phenomena in Hg is conjugated to a potential Hg waste storage technology. Considering the vapor pressure of bulk Hg, Room Temperature (RT) Solid nano-Hg confinement could represent a potential green approach of Hg waste storage derived from modern halogen efficient light technology.

SELECTION OF CITATIONS
SEARCH DETAIL