Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Development ; 143(4): 658-69, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26884398

ABSTRACT

Duchenne muscular dystrophy (DMD) is a progressive neuromuscular disorder characterized by muscle wasting and premature death. The defective gene is dystrophin, a structural protein, absence of which causes membrane fragility and myofiber necrosis. Several lines of evidence showed that in adult DMD patients dystrophin is involved in signaling pathways that regulate calcium homeostasis and differentiation programs. However, secondary aspects of the disease, such as inflammation and fibrosis development, might represent a bias in the analysis. Because fetal muscle is not influenced by gravity and does not suffer from mechanical load and/or inflammation, we investigated 12-week-old fetal DMD skeletal muscles, highlighting for the first time early alterations in signaling pathways mediated by the absence of dystrophin itself. We found that PLC/IP3/IP3R/Ryr1/Ca(2+) signaling is widely active in fetal DMD skeletal muscles and, through the calcium-dependent PKCα protein, exerts a fundamental regulatory role in delaying myogenesis and in myofiber commitment. These data provide new insights into the origin of DMD pathology during muscle development.


Subject(s)
Calcium Signaling , Fetus/metabolism , Inositol 1,4,5-Trisphosphate/metabolism , Muscle Development , Muscle, Skeletal/embryology , Muscular Dystrophy, Duchenne/embryology , Muscular Dystrophy, Duchenne/metabolism , Animals , Biomarkers/metabolism , Biopsy , Calcium/metabolism , Calcium Channels/metabolism , Fetus/pathology , Gene Expression Regulation, Developmental , Mice, Inbred C57BL , Mice, Inbred mdx , Models, Biological , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/pathology , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Dystrophy, Animal/metabolism , Muscular Dystrophy, Animal/pathology , Muscular Dystrophy, Duchenne/pathology , PAX7 Transcription Factor/metabolism , Protein Kinase C-alpha/metabolism
2.
J Cell Mol Med ; 20(6): 1036-48, 2016 06.
Article in English | MEDLINE | ID: mdl-26987908

ABSTRACT

In the cell therapy scenario, efficient tracing of transplanted cells is essential for investigating cell migration and interactions with host tissues. This is fundamental to provide mechanistic insights which altogether allow for the understanding of the translational potential of placental cell therapy in the clinical setting. Mesenchymal stem/stromal cells (MSC) from human placenta are increasingly being investigated for their potential in treating patients with a variety of diseases. In this study, we investigated the feasibility of using poly (methyl methacrylate) nanoparticles (PMMA-NPs) to trace placental MSC, namely those from the amniotic membrane (hAMSC) and early chorionic villi (hCV-MSC). We report that PMMP-NPs are efficiently internalized and retained in both populations, and do not alter cell morphofunctional parameters. We observed that PMMP-NP incorporation does not alter in vitro immune modulatory capability of placental MSC, a characteristic central to their reparative/therapeutic effects in vitro. We also show that in vitro, PMMP-NP uptake is not affected by hypoxia. Interestingly, after in vivo brain ischaemia and reperfusion injury achieved by transient middle cerebral artery occlusion (tMCAo) in mice, iv hAMSC treatment resulted in significant improvement in cognitive function compared to PBS-treated tMCAo mice. Our study provides evidence that tracing placental MSC with PMMP-NPs does not alter their in vitro and in vivo functions. These observations are grounds for the use of PMMP-NPs as tools to investigate the therapeutic mechanisms of hAMSC and hCV-MSC in preclinical models of inflammatory-driven diseases.


Subject(s)
Endocytosis , Nanoparticles/chemistry , Placenta/cytology , Polymers/metabolism , Amnion/cytology , Animals , Cell Differentiation , Cell Hypoxia , Cell Proliferation , Cell Survival , Chorionic Villi/metabolism , Female , Humans , Immunomodulation , Ischemia/pathology , Male , Mesenchymal Stem Cells/cytology , Mice , Mice, Inbred C57BL , Phenotype , Pregnancy
3.
BMC Med Genet ; 17(1): 55, 2016 Aug 11.
Article in English | MEDLINE | ID: mdl-27515321

ABSTRACT

BACKGROUND: The dystrophin gene is the one of the largest described in human beings and mutations associated to this gene are responsible for Duchenne or Becker muscular dystrophies. CASE PRESENTATION: Here we describe a nucleotide substitution in the acceptor splice site of intron 26 (c.3604-1G > C) carried by a 6-year-old boy who presented with a history of progressive proximal muscle weakness and elevated serum creatine kinase levels. RNA analysis showed that the first two nucleotides of the mutated intron 26 (AC) were not recognized by the splicing machinery and a new splicing site was created within exon 27, generating a premature stop codon and avoiding protein translation. CONCLUSIONS: The evaluation of the pathogenic effect of the mutation by mRNA analysis will be useful in the optics of an antisense oligonucleotides (AON)-based therapy.


Subject(s)
Dystrophin/genetics , Frameshift Mutation , Muscular Dystrophy, Duchenne/genetics , RNA Splice Sites , Amino Acid Substitution , Child , Humans , Introns , Male , Sequence Analysis, RNA
4.
Mol Ther ; 19(11): 2055-64, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21829175

ABSTRACT

Treatment of dominantly inherited muscle disorders remains a difficult task considering the need to eliminate the pathogenic gene product in a body-wide fashion. We show here that it is possible to reverse dominant muscle disease in a mouse model of facioscapulohumeral muscular dystrophy (FSHD). FSHD is a common form of muscular dystrophy associated with a complex cascade of epigenetic events following reduction in copy number of D4Z4 macrosatellite repeats located on chromosome 4q35. Several 4q35 genes have been examined for their role in disease, including FRG1. Overexpression of FRG1 causes features related to FSHD in transgenic mice and the FRG1 mouse is currently the only available mouse model of FSHD. Here we show that systemic delivery of RNA interference expression cassettes in the FRG1 mouse, after the onset of disease, led to a dose-dependent long-term FRG1 knockdown without signs of toxicity. Histological features including centrally nucleated fibers, fiber size reduction, fibrosis, adipocyte accumulation, and inflammation were all significantly improved. FRG1 mRNA knockdown resulted in a dramatic restoration of muscle function. Through RNA interference (RNAi) expression cassette redesign, our method is amenable to targeting any pathogenic gene offering a viable option for long-term, body-wide treatment of dominant muscle disease in humans.


Subject(s)
Dependovirus/genetics , Genetic Vectors , Muscular Dystrophy, Facioscapulohumeral/therapy , RNA, Small Interfering/administration & dosage , Animals , Disease Models, Animal , Down-Regulation , Female , Gene Expression Regulation , Gene Silencing , Genetic Vectors/administration & dosage , Genetic Vectors/adverse effects , Humans , Injections, Intravenous , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microfilament Proteins , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Dystrophy, Facioscapulohumeral/genetics , Muscular Dystrophy, Facioscapulohumeral/pathology , Nuclear Proteins/genetics , Phenotype , RNA-Binding Proteins , Time Factors , Transduction, Genetic
5.
Front Cell Neurosci ; 7: 265, 2013 Dec 19.
Article in English | MEDLINE | ID: mdl-24391543

ABSTRACT

Neurodegenerative diseases (NDDs) originate from a loss of neurons in the central nervous system and are severely debilitating. The incidence of NDDs increases with age, and they are expected to become more common due to extended life expectancy. Because no cure is available, these diseases have become a major challenge in neurobiology. The increasing relevance of microRNAs (miRNAs) in biology has prompted investigation into their possible involvement in neurodegeneration in order to identify new therapeutic targets. The idea of using miRNAs as therapeutic targets is not far from realization, but important issues need to be addressed before moving into the clinics. Here, we review what is known about the involvement of miRNAs in the pathogenesis of NDDs. We also report the miRNA expression levels in peripheral tissues of patients affected by NDDs in order to evaluate their application as biomarkers of disease. Finally, discrepancies, innovations, and the effectiveness of collected data will be elucidated and discussed.

6.
PLoS One ; 7(8): e43464, 2012.
Article in English | MEDLINE | ID: mdl-22912879

ABSTRACT

BACKGROUND: MicroRNAs (miRNAs) have been recently involved in most of human diseases as targets for potential strategies to rescue the pathological phenotype. Since the skeletal muscle is a spread-wide highly differentiated and organized tissue, rescue of severely compromised muscle still remains distant from nowadays. For this reason, we aimed to identify a subset of miRNAs major involved in muscle remodelling and regeneration by analysing the miRNA-profile of single fibres isolated from dystrophic muscle, which was here considered as a model of chronic damage. METHODOLOGY/PRINCIPAL FINDINGS: The miRNA-signature associated to regenerating (newly formed) and remodelling (resting) fibres was investigated in animal models of muscular dystrophies and acute damage, in order to distinguish which miRNAs are primary related to muscle regeneration. In this study we identify fourteen miRNAs associated to dystrophic fibres responsible for muscle regeneration and remodelling, and confirm over-expression of the previously identified regeneration-associated myomiR-206. In particular, a functional binding site for myomiR-206 was identified and validated in the 3'untranslated region (3'UTR) of an X-linked member of a family of sequence independent chromatin-binding proteins (Hmgb3) that is preferentially expressed in hematopoietic stem cells. During regeneration of single muscle fibres, Hmgb3 messenger RNA (mRNA) and protein expression was gradually reduced, concurrent with the up-regulation of miR-206. CONCLUSION/SIGNIFICANCE: Our results elucidate a negative feedback circuit in which myomiR-206 represses Hmgb3 expression to modulate the regeneration of single muscle fibres after acute and chronic muscle damage. These findings suggest that myomiR-206 may be a potential therapeutic target in muscle diseases.


Subject(s)
HMGB3 Protein/genetics , MicroRNAs/genetics , Muscle, Skeletal/metabolism , Regeneration/genetics , 3' Untranslated Regions/genetics , Adolescent , Animals , Animals, Newborn , Binding Sites/genetics , Blotting, Western , Child , Child, Preschool , Gene Expression Profiling , HEK293 Cells , HMGB3 Protein/metabolism , Humans , Infant , Mice , Mice, Inbred C57BL , Mice, Inbred mdx , MicroRNAs/metabolism , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/pathology , Muscle, Skeletal/pathology , Muscle, Skeletal/physiopathology , Muscular Dystrophies/genetics , Muscular Dystrophies/metabolism , Muscular Dystrophies/physiopathology , Muscular Dystrophy, Animal/genetics , Muscular Dystrophy, Animal/metabolism , Muscular Dystrophy, Animal/physiopathology , NIH 3T3 Cells , Oligonucleotide Array Sequence Analysis
7.
Int J Biochem Cell Biol ; 44(12): 2095-105, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22982241

ABSTRACT

Among the scarce available data about the biological role of the membrane protein CD20, there is some evidence that this protein functions as a store-operated Ca(2+) channel and/or regulates transmembrane Ca(2+) trafficking. Recent findings indicate that store-operated Ca(2+) entry (SOCE) plays a central role in skeletal muscle function and development, but there remain a number of unresolved issues relating to SOCE modulation in this tissue. Here we describe CD20 expression in skeletal muscle, verifying its membrane localization in myoblasts and adult muscle fibers. Additionally, we show that inhibition of CD20 through antibody binding or gene silencing resulted in specific impairment of SOCE in C2C12 myoblasts. Our results provide novel insights into the CD20 expression pattern, and suggest that functional CD20 is required for SOCE to consistently occur in C2C12 myoblasts. These findings may contribute to future identification of mechanisms and molecules involved in the fine regulation of store-operated Ca(2+) entry in skeletal muscle.


Subject(s)
Antigens, CD20/metabolism , Calcium Signaling/drug effects , Gene Expression , Muscle Fibers, Skeletal/metabolism , Amino Acid Sequence , Animals , Antibodies/pharmacology , Antigens, CD20/chemistry , Antigens, CD20/genetics , Antigens, CD20/immunology , Cell Line , Cell Membrane/metabolism , Cell Proliferation/drug effects , Cell Survival/drug effects , Gene Knockdown Techniques , Humans , Mice , Mice, Inbred C57BL , Mice, SCID , Molecular Sequence Data , Muscle, Skeletal/cytology , Muscle, Skeletal/metabolism , Myoblasts/metabolism , RNA Interference
8.
BioDrugs ; 24(4): 237-47, 2010 Aug 01.
Article in English | MEDLINE | ID: mdl-20623990

ABSTRACT

Muscular dystrophies are heritable, heterogeneous neuromuscular disorders and include Duchenne and Becker muscular dystrophies (DMD and BMD, respectively). DMD patients exhibit progressive muscle weakness and atrophy followed by exhaustion of muscular regenerative capacity, fibrosis, and eventually disruption of the muscle tissue architecture. In-frame mutations in the dystrophin gene lead to expression of a partially functional protein, resulting in the milder BMD. No effective therapies are available at present. Cell-based therapies have been attempted in an effort to promote muscle regeneration, with the hope that the host cells would repopulate the muscle and improve muscle function and pathology. Injection of adult myoblasts has led to the development of new muscle fibers, but several limitations have been identified, such as poor cell survival and limited migratory ability. As an alternative to myoblasts, stem cells were considered preferable for therapeutic applications because of their capacity for self-renewal and differentiation potential. In recent years, encouraging results have been obtained with adult stem cells to treat human diseases such as leukemia, Parkinson's disease, stroke, and muscular dystrophies. Embryonic stem cells (ESCs) can be derived from mammalian embryos in the blastocyst stage, and because they can differentiate into a wide range of specialized cells, they hold potential for use in treating almost all human diseases. Several ongoing studies focus on this possibility, evaluating differentiation of specific cell lines from human ESCs (hESCs) as well as the potential tumorigenicity of hESCs. The most important limitation with using hESCs is that it requires destruction of human blastocysts or embryos. Conversely, adult stem cells have been identified in various tissues, where they serve to maintain, generate, and replace terminally differentiated cells within their specific tissue as the need arises for cell turnover or from tissue injury. Moreover, these cells can participate in regeneration of more than just their specific tissue type. Here we describe multiple types of muscle- and fetal-derived myogenic stem cells, their characterization, and their possible use in treating muscular dystrophies such as DMD and BMD. We also emphasize that the most promising possibility for the management and therapy of DMD and BMD is a combination of different approaches, such as gene and stem cell therapy.


Subject(s)
Adult Stem Cells/transplantation , Embryonic Stem Cells/transplantation , Muscle, Skeletal/cytology , Muscular Dystrophies/therapy , Pluripotent Stem Cells/transplantation , Stem Cell Transplantation , Adult , Adult Stem Cells/cytology , Adult Stem Cells/physiology , Animals , Cell Differentiation , Embryonic Stem Cells/cytology , Embryonic Stem Cells/physiology , Female , Genetic Therapy , Humans , Male , Muscle, Skeletal/physiology , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/physiology , Regeneration , Stem Cell Transplantation/trends
SELECTION OF CITATIONS
SEARCH DETAIL