Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
J Neurochem ; 130(2): 215-26, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24588462

ABSTRACT

Astrocytes are a target for regenerative neurobiology because in brain injury their phenotype arbitrates brain integrity, neuronal death and subsequent repair and reconstruction. We explored the ability of 3D scaffolds to direct astrocytes into phenotypes with the potential to support neuronal survival. Poly-ε-caprolactone scaffolds were electrospun with random and aligned fibre orientations on which murine astrocytes were sub-cultured and analysed at 4 and 12 DIV. Astrocytes survived, proliferated and migrated into scaffolds adopting 3D morphologies, mimicking in vivo stellated phenotypes. Cells on random poly-ε-caprolactone scaffolds grew as circular colonies extending processes deep within sub-micron fibres, whereas astrocytes on aligned scaffolds exhibited rectangular colonies with processes following not only the direction of fibre alignment but also penetrating the scaffold. Cell viability was maintained over 12 DIV, and cytochemistry for F-/G-actin showed fewer stress fibres on bioscaffolds relative to 2D astrocytes. Reduced cytoskeletal stress was confirmed by the decreased expression of glial fibrillary acidic protein. PCR demonstrated up-regulation of genes (excitatory amino acid transporter 2, brain-derived neurotrophic factor and anti-oxidant) reflecting healthy biologies of mature astrocytes in our extended culture protocol. This study illustrates the therapeutic potential of bioengineering strategies using 3D electrospun scaffolds which direct astrocytes into phenotypes supporting brain repair. Astrocytes exist in phenotypes with pro-survival and destructive components, and their biology can be modulated by changing phenotype. Our findings demonstrate murine astrocytes adopt a healthy phenotype when cultured in 3D. Astrocytes proliferate and extend into poly-ε-caprolactone scaffolds displaying 3D stellated morphologies with reduced GFAP expression and actin stress fibres, plus a cytotrophic gene profile. Bioengineered 3D scaffolds have potential to direct inflammation to aid regenerative neurobiology.


Subject(s)
Astrocytes/physiology , Cytological Techniques , Animals , Astrocytes/ultrastructure , Blotting, Western , Cell Division/physiology , Cell Survival/physiology , Cytoskeleton/drug effects , Cytoskeleton/ultrastructure , Foreign-Body Reaction/pathology , Gene Expression , Glial Fibrillary Acidic Protein/metabolism , Immunohistochemistry , Mice , Mice, Inbred C57BL , Microscopy, Confocal , Microscopy, Electron, Scanning , Nerve Tissue Proteins/biosynthesis , Polyesters/chemistry , Primary Cell Culture , RNA/biosynthesis , RNA/genetics , Real-Time Polymerase Chain Reaction
2.
APL Bioeng ; 2(2): 021502, 2018 Jun.
Article in English | MEDLINE | ID: mdl-31069296

ABSTRACT

The inflammatory response within the central nervous system (CNS) is a tightly regulated cascade of events which is a balance of both cytotoxic and cytotrophic effects which determine the outcome of an injury. The two effects are inextricably linked, particularly in traumatic brain injury or stroke, where permanent dysfunction is often observed. Chronic brain inflammation is a key barrier to regeneration. This is considered a toxic, growth inhibitory mechanism; yet, the inflammatory response must also be considered as a mechanism that can be exploited as protective and reparative. Repurposing this complex response is the challenge for tissue engineers: to design treatments to repair and regenerate damaged tissue after brain insult. Astrocytes are important cells within the CNS which play a key role after traumatic brain injury. A comprehensive understanding of their functions-both cytotrophic and cytotoxic-will enable designed materials and drug delivery approaches for improved treatment options post traumatic injury. Understanding, evaluating, and designing biomaterials that match the healthy neural environment to temporally alter the inflammatory cascade represent a promise neural tissue engineering strategy to optimise repair and regeneration after injury.

3.
Adv Mater ; 30(50): e1805209, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30285286

ABSTRACT

Immunology is the next frontier of nano/biomaterial science research, with the immune system determining the degree of tissue repair. However, the complexity of the inflammatory response represents a significant challenge that is essential to understand for the development of future therapies. Cell-instructive 3D culture environments are critical to improve our understanding of the link between the behavior and morphology of inflammatory cells and to remodel their response to injury. This study has taken two recent high-profile innovations-functional peptide-based hydrogels, and the inclusion of anti-inflammatory agents via coassembly-to make a programmed anti-inflammatory nanoscaffold (PAIN) with unusual and valuable properties that allows tissue-independent switching of the inflammatory cascade. Here, extraordinary durability of the anti-inflammatory agent allows, for the first time, the development of a 3D culture system that maintains the growth and cytoskeletal reorganization of brain tissue, while also facilitating the trophic behavior of brain cells for 22 d in vitro. Notably, this behavior was confirmed within an active scar site due to the unprecedented resilience to the presence of inflammatory cells and enzymes in the brain. Efficacy of the culture system is demonstrated via novel insights about inflammatory cell behavior, which would be impossible to obtain via in vivo experimentation.


Subject(s)
Anti-Inflammatory Agents/chemistry , Nanotechnology/methods , Tissue Scaffolds/chemistry , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Astrocytes/cytology , Astrocytes/drug effects , Astrocytes/metabolism , Astrocytes/transplantation , Brain/metabolism , Brain Injuries/drug therapy , Brain Injuries/metabolism , Brain Injuries/pathology , Cell Culture Techniques , Cell Proliferation/drug effects , Cells, Cultured , Female , Hydrogels/chemistry , Interleukin-1alpha/metabolism , Lipopolysaccharides/toxicity , Male , Mice , Mice, Inbred C57BL , Nanotechnology/instrumentation , Peptides/chemistry , Rheology , Tissue Engineering
4.
Nanoscale ; 9(36): 13661-13669, 2017 Sep 21.
Article in English | MEDLINE | ID: mdl-28876347

ABSTRACT

Tissue-specific self-assembling peptide (SAP) hydrogels designed based on biologically relevant peptide sequences have great potential in regenerative medicine. These materials spontaneously form 3D networks of physically assembled nanofibres utilising non-covalent interactions. The nanofibrous structure of SAPs is often compared to that of electrospun scaffolds. These electrospun nanofibers are produced as sheets that can be engineered from a variety of polymers that can be chemically modified to incorporate many molecules including drugs and growth factors. However, their macroscale morphology limits them to wrapping and bandaging applications. Here, for the first time, we combine the benefits of these systems to describe a two-component composite scaffold from these biomaterials, with the design goal of providing a hydrogel scaffold that presents 3D structures, and also has temporal control over drug delivery. Short fibres, cut from electrospun scaffolds, were mixed with our tissue-specific SAP hydrogel to provide a range of nanofibre sizes found in the extracellular matrix (10-300 nm in diameter). The composite material maintained the shear-thinning and void-filling properties of SAP hydrogels that have previously been shown to be effective for minimally invasive material injection, cell delivery and subsequent in vivo integration. Both scaffold components were separately loaded with growth factors, important signaling molecules in tissue regeneration whose rapid degradation limits their clinical efficacy. The two biomaterials provided sequential growth factor delivery profiles: the SAP hydrogel provided a burst release, with the release rate decreasing over 12 hours, while the electrospun nanofibres provided a more constant, sustained delivery. Importantly, this second release commenced 6 days later. The design rules established here to provide temporally distinct release profiles can enable researchers to target specific stages in regeneration, such as the acute immune response versus sustained protection and survival of cells following injury. In summary, this novel composite material combines the physical advantages of SAP hydrogels and electrospun nanofibres, while additionally providing a superior vehicle for the stabilisation and controlled delivery of growth factors necessary for optimal tissue repair.


Subject(s)
Drug Delivery Systems , Hydrogels , Intercellular Signaling Peptides and Proteins/administration & dosage , Nanofibers , Peptides , Tissue Scaffolds , Animals , Biocompatible Materials , Brain-Derived Neurotrophic Factor/administration & dosage , Female , Glial Cell Line-Derived Neurotrophic Factor/administration & dosage , Mice , Regenerative Medicine , Tissue Engineering
5.
ACS Biomater Sci Eng ; 3(10): 2542-2549, 2017 Oct 09.
Article in English | MEDLINE | ID: mdl-33465910

ABSTRACT

Traumatic brain injury results in devastating long-term functional damage due to the growth inhibition of the inflammatory response, and in particular, the complex response of astrocytes. Sustained, nonsteroidal anti-inflammatory approaches that can attenuate this response are of interest to improve therapeutic outcomes, particularly when combined with a tissue engineering construct that recapitulates the physiological microenvironment to facilitate functional repair. Here, we present a multifaceted, therapeutic extracellular-matrix mimic consisting of a coassembled scaffold with a laminin-inspired self-assembling peptide hydrogel, Fmoc-DIKVAV, and the anti-inflammatory macromolecule, fucoidan. At 7 days post-injury, our novel multicomponent hydrogel system presenting biologically relevant nanofibers and the anti-inflammatory fucoidan attenuated the primary glial scar to half that of a stab (control) injury. Further, the presentation of fucoidan increased the organization of astrocytes within the glial scar, while also significantly changing the morphology of astrocytes distal from the administered hydrogel and further into the parenchyma. This demonstrates that the anti-inflammatory fucoidan, present on the surface of the Fmoc-DIKVAV nanofibers, causes a change in astrocyte phenotype post-injury attenuating "reactive" astrocytosis. For the first time, we present a multicomponent tissue engineering construct to promote a growth-permissive environment in vivo and, thus, increase the potential for repair and regeneration after traumatic brain injury.

6.
J Mater Chem B ; 5(22): 4073-4083, 2017 Jun 14.
Article in English | MEDLINE | ID: mdl-32264140

ABSTRACT

Astrocytes represent an attractive therapeutic target for the treatment of traumatic brain injury in the glial scar, which inhibits functional repair and recovery if persistent. Many biomaterial systems have been investigated for neural tissue engineering applications, including electrospun nanofibres, which are a favourable biomaterial as they can mimic the fibrous architecture of the extracellular matrix, and are conveniently modified to present biologically relevant cues to aid in regeneration. Here, we synthesised a novel galactose-presenting polymer, poly(l-lysine)-lactobionic acid (PLL-LBA), for use in layer-by-layer (LbL) functionalisation of poly(ε-caprolactone) (PCL) nanofibres, to covalently attach galactose moieties to the nanofibre scaffold surface. We have assessed the use of this novel biomaterial system in vitro and in vivo, and have shown, for the first time, the ability of galactose to maintain an attenuated inflammatory profile of astrocytes in culture, and to increase the survival of neurons after traumatic injury, as compared to control PCL nanofibres. This study highlights the importance of galactose in controlling the astrocytic response, and provides a promising biomaterial system to deliver the essential morphological and biological cues to achieve functional repair after traumatic brain injury.

7.
Stem Cells Dev ; 25(3): 214-26, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26577681

ABSTRACT

The central nervous system has a limited capacity to regenerate, and thus, traumatic injuries or diseases often have devastating consequences. Therefore, there is a distinct need to develop alternative treatments that can achieve functional recovery without side effects currently observed with some pharmacological treatments. Combining biomaterials with pluripotent stem cells (PSCs), either embryonic or induced, has the potential to revolutionize the treatment of neurodegenerative diseases and traumatic injuries. Biomaterials can mimic the extracellular matrix and present a myriad of relevant biochemical cues through rational design or further functionalization. Biomaterials such as nanofibers and hydrogels, including self-assembling peptide (SAP) hydrogels can provide a superior cell culture environment. When these materials are then combined with PSCs, more accurate drug screening and disease modeling could be developed, and the generation of large number of cells with the appropriate phenotype can be achieved, for subsequent use in vitro. Biomaterials have also been shown to support endogenous cell growth after implantation, and, in particular, hydrogels and SAPs have effectively acted as cell delivery vehicles, increasing cell survival after transplantation. Few studies are yet to fully exploit the combination of PSCs and innovative biomaterials; however, initial studies with neural stem cells, for example, are promising, and, hence, such a combination for use in vitro and in vivo is an exciting new direction for the field of neural regeneration.


Subject(s)
Biocompatible Materials/pharmacology , Guided Tissue Regeneration/methods , Nerve Regeneration , Animals , Humans , Nanofibers , Neural Stem Cells/cytology , Neural Stem Cells/drug effects , Neural Stem Cells/transplantation , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/drug effects , Pluripotent Stem Cells/transplantation
8.
J Immunol Methods ; 420: 38-49, 2015 May.
Article in English | MEDLINE | ID: mdl-25837415

ABSTRACT

Macrophages play a key role in tissue regeneration following peripheral nerve injury by preparing the surrounding parenchyma for regeneration, however, they can be damaging if the response is excessive. Interleukin 10 (IL-10) is a cytokine that promotes macrophages toward an anti-inflammatory/wound healing state (M2 phenotype). The bioactive half-life of IL-10 is dependent on the cellular microenvironment and ranges from minutes to hours in vivo. Our objective was to extend the in vivo bioavailability and bioactivity of IL-10 by attaching the protein onto nanofibrous scaffolds and demonstrating increased expression levels of M2 macrophages when placed around healthy intact peripheral nerves. IL-10 was adsorbed and covalently bound to electrospun poly(ε-caprolactone) (PCL) nanofibrous scaffolds. In vivo bioavailability and bioactivity of IL-10 was confirmed by wrapping IL-10 conjugated nanofibres around the sciatic nerves of Wistar rats and quantifying M2 macrophages immunohistochemically double labelled with ED1 and either arginase 1 or CD206. IL-10 remained immobilised to PCL scaffolds for more than 120 days when stored in phosphate buffered saline at room temperature and for up to 14d ays when implanted around the sciatic nerve. IL-10 conjugated nanofibres successfully induced macrophage polarisation towards the M2 activated state within the scaffold material as well as the adjacent tissue surrounding the nerve. PCL biofunctionalised nanofibres are useful for manipulating the cellular microenvironment. Materials such as these could potentially lead to new therapeutic strategies for nervous tissue injuries as well as provide novel investigative tools for biological research.


Subject(s)
Interleukin-10/pharmacology , Macrophage Activation/drug effects , Macrophages/immunology , Nanofibers/chemistry , Peripheral Nerves/immunology , Polyesters/pharmacology , Tissue Scaffolds , Animals , Immobilized Proteins/chemistry , Immobilized Proteins/pharmacology , Interleukin-10/chemistry , Macrophages/pathology , Male , Peripheral Nerves/pathology , Polyesters/chemistry , Rats , Rats, Wistar
9.
Front Neurosci ; 9: 50, 2015.
Article in English | MEDLINE | ID: mdl-25750613

ABSTRACT

Astrocytes provide trophic, structural and metabolic support to neurons, and are considered genuine targets in regenerative neurobiology, as their phenotype arbitrates brain integrity during injury. Inhibitors of Rho kinase (ROCK) cause stellation of cultured 2D astrocytes, increased L-glutamate transport, augmented G-actin, and elevated expression of BDNF and anti-oxidant genes. Here we further explored the signposts of a cytotrophic, "healthy" phenotype by data-mining of our astrocytic transcriptome in the presence of Fasudil. Gene expression profiles of motor and autophagic cellular cascades and inflammatory/angiogenic responses were all inhibited, favoring adoption of an anti-migratory phenotype. Like ROCK inhibition, tissue engineered bioscaffolds can influence the extracellular matrix. We built upon our evidence that astrocytes maintained on 3D poly-ε-caprolactone (PCL) electrospun scaffolds adopt a cytotrophic phenotype similar to that produced by Fasudil. Using these procedures, employing mature 3D cultured astrocytes, Fasudil (100 µM) or Y27632 (30 µM) added for the last 72 h of culture altered arborization, which featured numerous additional minor processes as shown by GFAP and AHNAK immunolabelling. Both ROCK inhibitors decreased F-actin, but increased G-actin labeling, indicative of disassembly of actin stress fibers. ROCK inhibitors provide additional beneficial effects for bioengineered 3D astrocytes, including enlargement of the overall arbor. Potentially, the combined strategy of bio-compatible scaffolds with ROCK inhibition offers unique advantages for the management of glial scarring. Overall these data emphasize that manipulation of the astrocyte phenotype to achieve a "healthy biology" offers new hope for the management of inflammation in neuropathologies.

SELECTION OF CITATIONS
SEARCH DETAIL