Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Phys Rev Lett ; 131(25): 256702, 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38181360

ABSTRACT

Time-resolved ultrafast EUV magnetic scattering was used to test a recent prediction of >10 km/s domain wall speeds by optically exciting a magnetic sample with a nanoscale labyrinthine domain pattern. Ultrafast distortion of the diffraction pattern was observed at markedly different timescales compared to the magnetization quenching. The diffraction pattern distortion shows a threshold dependence with laser fluence, not seen for magnetization quenching, consistent with a picture of domain wall motion with pinning sites. Supported by simulations, we show that a speed of ≈66 km/s for highly curved domain walls can explain the experimental data. While our data agree with the prediction of extreme, nonequilibrium wall speeds locally, it differs from the details of the theory, suggesting that additional mechanisms are required to fully understand these effects.

2.
J Phys Chem B ; 126(28): 5320-5325, 2022 Jul 21.
Article in English | MEDLINE | ID: mdl-35730616

ABSTRACT

The structural relaxation processes in a Ge3As52S45 molecular chalcogenide glass sample were directly studied by X-ray photon correlation spectroscopy (XPCS). XPCS was conducted at the first sharp diffraction peak at q = 1.16 Å-1 at temperatures ranging from 123 K to above the glass transition at 328 K, and the results showed two different dynamical regimes. At a low temperature, the observed glass dynamics are slow and dominated by X-ray-photon-induced effects, which are temperature independent. At a higher temperature, we observed a dramatic decrease in the fluctuation timescales, indicating that the dynamics were mainly due to the intermolecular correlation of the As4S3 molecule in the glass. The timescales in this high-temperature range agree well with those determined from measurements of the Newtonian viscosity. Our XPCS studies suggest an extended length scale of the relaxation process in glassy Ge3As52S45 from the single molecule to the intermolecular range across the glass transition, providing a unique direct probe of the dynamics beyond the length scales of the individual molecule.

SELECTION OF CITATIONS
SEARCH DETAIL