Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Nat Immunol ; 24(11): 1839-1853, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37749326

ABSTRACT

The APOE4 allele is the strongest genetic risk factor for late-onset Alzheimer's disease (AD). The contribution of microglial APOE4 to AD pathogenesis is unknown, although APOE has the most enriched gene expression in neurodegenerative microglia (MGnD). Here, we show in mice and humans a negative role of microglial APOE4 in the induction of the MGnD response to neurodegeneration. Deletion of microglial APOE4 restores the MGnD phenotype associated with neuroprotection in P301S tau transgenic mice and decreases pathology in APP/PS1 mice. MGnD-astrocyte cross-talk associated with ß-amyloid (Aß) plaque encapsulation and clearance are mediated via LGALS3 signaling following microglial APOE4 deletion. In the brains of AD donors carrying the APOE4 allele, we found a sex-dependent reciprocal induction of AD risk factors associated with suppression of MGnD genes in females, including LGALS3, compared to individuals homozygous for the APOE3 allele. Mechanistically, APOE4-mediated induction of ITGB8-transforming growth factor-ß (TGFß) signaling impairs the MGnD response via upregulation of microglial homeostatic checkpoints, including Inpp5d, in mice. Deletion of Inpp5d in microglia restores MGnD-astrocyte cross-talk and facilitates plaque clearance in APP/PS1 mice. We identify the microglial APOE4-ITGB8-TGFß pathway as a negative regulator of microglial response to AD pathology, and restoring the MGnD phenotype via blocking ITGB8-TGFß signaling provides a promising therapeutic intervention for AD.


Subject(s)
Alzheimer Disease , Female , Mice , Humans , Animals , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Apolipoprotein E4/genetics , Apolipoprotein E4/metabolism , Microglia/metabolism , Galectin 3/genetics , Galectin 3/metabolism , Amyloid beta-Peptides/metabolism , Mice, Transgenic , Disease Models, Animal
2.
Immunity ; 55(9): 1627-1644.e7, 2022 09 13.
Article in English | MEDLINE | ID: mdl-35977543

ABSTRACT

The apolipoprotein E4 (APOE4) allele is associated with an increased risk of Alzheimer disease and a decreased risk of glaucoma, but the underlying mechanisms remain poorly understood. Here, we found that in two mouse glaucoma models, microglia transitioned to a neurodegenerative phenotype characterized by upregulation of Apoe and Lgals3 (Galectin-3), which were also upregulated in human glaucomatous retinas. Mice with targeted deletion of Apoe in microglia or carrying the human APOE4 allele were protected from retinal ganglion cell (RGC) loss, despite elevated intraocular pressure (IOP). Similarly to Apoe-/- retinal microglia, APOE4-expressing microglia did not upregulate neurodegeneration-associated genes, including Lgals3, following IOP elevation. Genetic and pharmacologic targeting of Galectin-3 ameliorated RGC degeneration, and Galectin-3 expression was attenuated in human APOE4 glaucoma samples. These results demonstrate that impaired activation of APOE4 microglia is protective in glaucoma and that the APOE-Galectin-3 signaling can be targeted to treat this blinding disease.


Subject(s)
Apolipoprotein E4 , Glaucoma , Animals , Apolipoprotein E4/genetics , Apolipoprotein E4/metabolism , Apolipoprotein E4/therapeutic use , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Disease Models, Animal , Galectin 3/genetics , Galectin 3/metabolism , Galectin 3/therapeutic use , Glaucoma/drug therapy , Glaucoma/genetics , Glaucoma/metabolism , Humans , Mice , Microglia/metabolism
3.
Immunity ; 52(2): 222-240, 2020 02 18.
Article in English | MEDLINE | ID: mdl-31924476

ABSTRACT

Recent years have witnessed a revolution in our understanding of microglia biology, including their major role in the etiology and pathogenesis of neurodegenerative diseases. Technological advances have enabled the identification of microglial signatures in health and disease, including the development of new models to investigate and manipulate human microglia in vivo in the context of disease. In parallel, genetic association studies have identified several gene risk factors associated with Alzheimer's disease that are specifically or highly expressed by microglia in the central nervous system (CNS). Here, we discuss evidence for the effect of stress, diet, sleep patterns, physical activity, and microbiota composition on microglia biology and consider how lifestyle might influence an individual's predisposition to neurodegenerative diseases. We discuss how different lifestyles and environmental factors might regulate microglia, potentially leading to increased susceptibility to neurodegenerative disease, and we highlight the need to investigate the contribution of modern environmental factors on microglia modulation in neurodegeneration.


Subject(s)
Life Style , Microglia/pathology , Neurodegenerative Diseases/pathology , Aging/pathology , Animals , Central Nervous System/immunology , Central Nervous System/metabolism , Central Nervous System/pathology , Circadian Rhythm , Exercise , Feeding Behavior , Genetic Predisposition to Disease/genetics , Humans , Microbiota/genetics , Microglia/immunology , Microglia/metabolism , Neurodegenerative Diseases/genetics , Sleep , Stress, Psychological/complications
4.
Immunity ; 48(5): 842-843, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29768169

ABSTRACT

TREM2 is known for its role in microglial phagocytosis and in neurodegenerative diseases. In this issue of Immunity, Filipello et al. (2018) show that microglial TREM2 is required for synaptic pruning in early development. TREM2-deficient mice show altered social behavior in adulthood, linking TREM2 to neurodevelopmental disease.


Subject(s)
Brain , Microglia , Animals , Membrane Glycoproteins , Mice , Neurodegenerative Diseases , Phagocytosis , Receptors, Immunologic , Synapses
5.
Immunity ; 47(3): 566-581.e9, 2017 09 19.
Article in English | MEDLINE | ID: mdl-28930663

ABSTRACT

Microglia play a pivotal role in the maintenance of brain homeostasis but lose homeostatic function during neurodegenerative disorders. We identified a specific apolipoprotein E (APOE)-dependent molecular signature in microglia from models of amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), and Alzheimer's disease (AD) and in microglia surrounding neuritic ß-amyloid (Aß)-plaques in the brains of people with AD. The APOE pathway mediated a switch from a homeostatic to a neurodegenerative microglia phenotype after phagocytosis of apoptotic neurons. TREM2 (triggering receptor expressed on myeloid cells 2) induced APOE signaling, and targeting the TREM2-APOE pathway restored the homeostatic signature of microglia in ALS and AD mouse models and prevented neuronal loss in an acute model of neurodegeneration. APOE-mediated neurodegenerative microglia had lost their tolerogenic function. Our work identifies the TREM2-APOE pathway as a major regulator of microglial functional phenotype in neurodegenerative diseases and serves as a novel target that could aid in the restoration of homeostatic microglia.


Subject(s)
Apolipoproteins E/metabolism , Membrane Glycoproteins/metabolism , Microglia/metabolism , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Receptors, Immunologic/metabolism , Signal Transduction , Transcriptome , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Animals , Apolipoproteins E/deficiency , Apolipoproteins E/genetics , Apoptosis/genetics , Apoptosis/immunology , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Cluster Analysis , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental , Female , Gene Expression Profiling , Gene Expression Regulation , Gene Targeting , Humans , Immune Tolerance , Mice , Mice, Knockout , Mice, Transgenic , Microglia/immunology , Monocytes/immunology , Monocytes/metabolism , Neurodegenerative Diseases/immunology , Neurons/metabolism , Phagocytosis/genetics , Phagocytosis/immunology , Phenotype , Plaque, Amyloid/metabolism , Plaque, Amyloid/pathology , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism , Transforming Growth Factor beta/metabolism
6.
Brain Behav Immun ; 111: 61-75, 2023 07.
Article in English | MEDLINE | ID: mdl-37001827

ABSTRACT

Neuroligin-4 (NLGN4) loss-of-function mutations are associated with monogenic heritable autism spectrum disorder (ASD) and cause alterations in both synaptic and behavioral phenotypes. Microglia, the resident CNS macrophages, are implicated in ASD development and progression. Here we studied the impact of NLGN4 loss in a mouse model, focusing on microglia phenotype and function in both male and female mice. NLGN4 depletion caused lower microglia density, less ramified morphology, reduced response to injury and purinergic signaling specifically in the hippocampal CA3 region predominantly in male mice. Proteomic analysis revealed disrupted energy metabolism in male microglia and provided further evidence for sexual dimorphism in the ASD associated microglial phenotype. In addition, we observed impaired gamma oscillations in a sex-dependent manner. Lastly, estradiol application in male NLGN4-/- mice restored the altered microglial phenotype and function. Together, these results indicate that loss of NLGN4 affects not only neuronal network activity, but also changes the microglia state in a sex-dependent manner that could be targeted by estradiol treatment.


Subject(s)
Autism Spectrum Disorder , Male , Female , Animals , Mice , Autism Spectrum Disorder/genetics , Microglia , Mice, Knockout , Proteomics , Neurons/physiology
7.
Mol Psychiatry ; 26(6): 1808-1831, 2021 06.
Article in English | MEDLINE | ID: mdl-32071385

ABSTRACT

Maternal immune activation (MIA) disrupts the central innate immune system during a critical neurodevelopmental period. Microglia are primary innate immune cells in the brain although their direct influence on the MIA phenotype is largely unknown. Here we show that MIA alters microglial gene expression with upregulation of cellular protrusion/neuritogenic pathways, concurrently causing repetitive behavior, social deficits, and synaptic dysfunction to layer V intrinsically bursting pyramidal neurons in the prefrontal cortex of mice. MIA increases plastic dendritic spines of the intrinsically bursting neurons and their interaction with hyper-ramified microglia. Treating MIA offspring by colony stimulating factor 1 receptor inhibitors induces depletion and repopulation of microglia, and corrects protein expression of the newly identified MIA-associated neuritogenic molecules in microglia, which coalesces with correction of MIA-associated synaptic, neurophysiological, and behavioral abnormalities. Our study demonstrates that maternal immune insults perturb microglial phenotypes and influence neuronal functions throughout adulthood, and reveals a potent effect of colony stimulating factor 1 receptor inhibitors on the correction of MIA-associated microglial, synaptic, and neurobehavioral dysfunctions.


Subject(s)
Microglia , Prenatal Exposure Delayed Effects , Animals , Behavior, Animal , Brain , Disease Models, Animal , Female , Inflammation , Macrophage Colony-Stimulating Factor , Mice , Neurons , Pregnancy , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor
8.
Proc Natl Acad Sci U S A ; 114(1): E95-E104, 2017 01 03.
Article in English | MEDLINE | ID: mdl-27980033

ABSTRACT

The brain has a tightly regulated environment that protects neurons and limits inflammation, designated "immune privilege." However, there is not an absolute lack of an immune response. We tested the ability of the brain to initiate an innate immune response to a virus, which was directly injected into the brain parenchyma, and to determine whether this response could limit viral spread. We injected vesicular stomatitis virus (VSV), a transsynaptic tracer, or naturally occurring VSV-derived defective interfering particles (DIPs), into the caudate-putamen (CP) and scored for an innate immune response and inhibition of virus spread. We found that the brain parenchyma has a functional type I interferon (IFN) response that can limit VSV spread at both the inoculation site and among synaptically connected neurons. Furthermore, we characterized the response of microglia to VSV infection and found that infected microglia produced type I IFN and uninfected microglia induced an innate immune response following virus injection.


Subject(s)
Brain/immunology , Immunity, Innate/immunology , Interferon Type I/immunology , Parenchymal Tissue/immunology , Vesiculovirus/immunology , Animals , Brain/virology , Male , Mice , Mice, Inbred C57BL , Parenchymal Tissue/virology , Vesicular Stomatitis/immunology , Vesicular Stomatitis/virology , Vesiculovirus/growth & development , Virus Replication/immunology
9.
EMBO Rep ; 18(7): 1186-1198, 2017 07.
Article in English | MEDLINE | ID: mdl-28483841

ABSTRACT

Sequence variations in the triggering receptor expressed on myeloid cells 2 (TREM2) have been linked to an increased risk for neurodegenerative disorders such as Alzheimer's disease and frontotemporal lobar degeneration. In the brain, TREM2 is predominantly expressed in microglia. Several disease-associated TREM2 variants result in a loss of function by reducing microglial phagocytosis, impairing lipid sensing, preventing binding of lipoproteins and affecting shielding of amyloid plaques. We here investigate the consequences of TREM2 loss of function on the microglia transcriptome. Among the differentially expressed messenger RNAs in wild-type and Trem2-/- microglia, gene clusters are identified which represent gene functions in chemotaxis, migration and mobility. Functional analyses confirm that loss of TREM2 impairs appropriate microglial responses to injury and signals that normally evoke chemotaxis on multiple levels. In an ex vivo organotypic brain slice assay, absence of TREM2 reduces the distance migrated by microglia. Moreover, migration towards defined chemo-attractants is reduced upon ablation of TREM2 and can be rescued by TREM2 re-expression. In vivo, microglia lacking TREM2 migrate less towards injected apoptotic neurons, and outgrowth of microglial processes towards sites of laser-induced focal CNS damage in the somatosensory cortex is slowed. The apparent lack of chemotactic stimulation upon depletion of TREM2 is consistent with a stable expression profile of genes characterizing the homoeostatic signature of microglia.


Subject(s)
Chemotaxis , Membrane Glycoproteins/deficiency , Membrane Glycoproteins/genetics , Microglia/physiology , Neurons/pathology , Receptors, Immunologic/deficiency , Receptors, Immunologic/genetics , Alzheimer Disease/genetics , Alzheimer Disease/physiopathology , Cells, Cultured , Frontotemporal Dementia , Gene Expression Profiling , Humans , Loss of Function Mutation , Myeloid Cells , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/physiopathology , Phagocytosis
10.
J Neural Transm (Vienna) ; 125(5): 809-826, 2018 05.
Article in English | MEDLINE | ID: mdl-29063348

ABSTRACT

Neuroinflammation is a hallmark of neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). Microglia, the innate immune cells of the CNS, are the first to react to pathological insults. However, multiple studies have also demonstrated an involvement of peripheral monocytes in several neurodegenerative diseases. Due to the different origins of these two cell types, it is important to distinguish their role and function in the development and progression of these diseases. In this review, we will summarize and discuss the current knowledge of the differential contributions of microglia and monocytes in the common neurodegenerative diseases AD, PD, and ALS, as well as multiple sclerosis, which is now regarded as a combination of inflammatory processes and neurodegeneration. Until recently, it has been challenging to differentiate microglia from monocytes, as there were no specific markers. Therefore, the recent identification of specific molecular signatures of both cell types will help to advance our understanding of their differential contribution in neurodegenerative diseases.


Subject(s)
Microglia/immunology , Monocytes/immunology , Neurodegenerative Diseases/immunology , Animals , Humans , Microglia/pathology , Monocytes/pathology , Neurodegenerative Diseases/pathology
11.
Brain Behav Immun ; 57: 79-93, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27301858

ABSTRACT

Children exposed to abuse or neglect show abnormal hippocampal development and similar findings have been reported in rodent models. Using brief daily separation (BDS), a mouse model of early life stress, we previously showed that exposure to BDS impairs hippocampal function in adulthood and perturbs synaptic maturation, synaptic pruning, axonal growth and myelination in the developing hippocampus. Given that microglia are involved in these developmental processes, we tested whether BDS impairs microglial activity in the hippocampus of 14 (during BDS) and 28-day old mice (one week after BDS). We found that BDS increased the density and altered the morphology of microglia in the hippocampus of 14-day old pups, effects that were no longer present on postnatal day (PND) 28. Despite the normal cell number and morphology seen at PND28, the molecular signature of hippocampal microglia, assessed using the NanoString immune panel, was altered at both ages. We showed that during normal hippocampal development, microglia undergo significant changes between PND14 and PND28, including reduced cell density, decreased ex vivo phagocytic activity, and an increase in the expression of genes involved in inflammation and cell migration. However, microglia harvested from the hippocampus of 28-day old BDS mice showed an increase in phagocytic activity and reduced expression of genes that normally increase across development. Promoter analysis indicated that alteration in the transcriptional activity of PU.1, Creb1, Sp1, and RelA accounted for most of the transcriptional changes seen during normal microglia development and for most of the BDS-induced changes at PND14 and PND28. These findings are the first to demonstrate that early life stress dysregulates microglial function in the developing hippocampus and to identify key transcription factors that are likely to mediate these changes.


Subject(s)
Hippocampus/growth & development , Hippocampus/metabolism , Microglia/metabolism , Stress, Psychological/metabolism , Age Factors , Animals , Maternal Deprivation , Mice , Mice, Inbred BALB C
12.
Neural Plast ; 2016: 3597209, 2016.
Article in English | MEDLINE | ID: mdl-27840741

ABSTRACT

Several genetic causes of autism spectrum disorder (ASD) have been identified. However, more recent work has highlighted that certain environmental exposures early in life may also account for some cases of autism. Environmental insults during pregnancy, such as infection or malnutrition, seem to dramatically impact brain development. Maternal viral or bacterial infections have been characterized as disruptors of brain shaping, even if their underlying mechanisms are not yet fully understood. Poor nutritional diversity, as well as nutrient deficiency, is strongly associated with neurodevelopmental disorders in children. For instance, imbalanced levels of essential fatty acids, and especially polyunsaturated fatty acids (PUFAs), are observed in patients with ASD and other neurodevelopmental disorders (e.g., attention deficit hyperactivity disorder (ADHD) and schizophrenia). Interestingly, PUFAs, and specifically n-3 PUFAs, are powerful immunomodulators that exert anti-inflammatory properties. These prenatal dietary and immunologic factors not only impact the fetal brain, but also affect the microbiota. Recent work suggests that the microbiota could be the missing link between environmental insults in prenatal life and future neurodevelopmental disorders. As both nutrition and inflammation can massively affect the microbiota, we discuss here how understanding the crosstalk between these three actors could provide a promising framework to better elucidate ASD etiology.


Subject(s)
Attention Deficit Disorder with Hyperactivity/metabolism , Autism Spectrum Disorder/metabolism , Autistic Disorder/metabolism , Child Development Disorders, Pervasive/metabolism , Fatty Acids, Omega-3/metabolism , Microbiota/physiology , Animals , Child Development Disorders, Pervasive/complications , Humans , Nutritional Status/physiology
13.
Brain Behav Immun ; 41: 22-31, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24735929

ABSTRACT

Low dietary intake of the n-3 polyunsaturated fatty acids (PUFAs) is a causative factor of neurodevelopmental disorders. However the mechanisms linking n-3 PUFAs low dietary intake and neurodevelopmental disorders are poorly understood. Microglia, known mainly for their immune function in the injured or infected brain, have recently been demonstrated to play a pivotal role in regulating maturation of neuronal circuits during normal brain development. Disruption of this role during the perinatal period therefore could significantly contribute to psychopathologies with a neurodevelopmental neurodevelopmental component. N-3 PUFAs, essential lipids and key structural components of neuronal membrane phospholipids, are highly incorporated in cell membranes during the gestation and lactation phase. We previously showed that in a context of perinatal n-3 PUFAs deficiency, accretion of these latter is decreased and this is correlated to an alteration of endotoxin-induced inflammatory response. We thus postulated that dietary n-3 PUFAs imbalance alters the activity of microglia in the developing brain, leading to abnormal formation of neuronal networks. We first confirmed that mice fed with a n-3 PUFAs deficient diet displayed decreased n-3 PUFAs levels in the brain at post-natal days (PND)0 and PND21. We then demonstrated that n-3 PUFAs deficiency altered microglia phenotype and motility in the post-natal developing brain. This was paralleled by an increase in pro-inflammatory cytokines expression at PND21 and to modification of neuronal plasticity-related genes expression. Overall, our findings show for the first time that a dietary n-3 PUFAs deficiency from the first day of gestation leads to the development of a pro-inflammatory condition in the central nervous system that may contribute to neurodevelopmental alterations.


Subject(s)
Brain/immunology , Fatty Acids, Omega-3/physiology , Gene Expression Regulation, Developmental , Lipids/deficiency , Microglia/immunology , Nerve Tissue Proteins/biosynthesis , Neuronal Plasticity/immunology , Prenatal Exposure Delayed Effects , Animals , Cell Count , Cell Movement , Cerebral Cortex/chemistry , Crosses, Genetic , Cytokines/biosynthesis , Cytokines/genetics , Dietary Fats/administration & dosage , Fatty Acids, Omega-3/administration & dosage , Fatty Acids, Omega-3/analysis , Female , Fish Oils , Hippocampus/immunology , Hippocampus/metabolism , Hippocampus/pathology , Immunity, Innate , Lactation , Male , Mice , Mice, Inbred C57BL , Microglia/physiology , Nerve Tissue Proteins/genetics , Neuroimmunomodulation , Neuronal Plasticity/genetics , Plant Oils/administration & dosage , Pregnancy , Sunflower Oil
14.
Nat Neurosci ; 26(7): 1196-1207, 2023 07.
Article in English | MEDLINE | ID: mdl-37291336

ABSTRACT

Microglia play a critical role in brain homeostasis and disease progression. In neurodegenerative conditions, microglia acquire the neurodegenerative phenotype (MGnD), whose function is poorly understood. MicroRNA-155 (miR-155), enriched in immune cells, critically regulates MGnD. However, its role in Alzheimer's disease (AD) pathogenesis remains unclear. Here, we report that microglial deletion of miR-155 induces a pre-MGnD activation state via interferon-γ (IFN-γ) signaling, and blocking IFN-γ signaling attenuates MGnD induction and microglial phagocytosis. Single-cell RNA-sequencing analysis of microglia from an AD mouse model identifies Stat1 and Clec2d as pre-MGnD markers. This phenotypic transition enhances amyloid plaque compaction, reduces dystrophic neurites, attenuates plaque-associated synaptic degradation and improves cognition. Our study demonstrates a miR-155-mediated regulatory mechanism of MGnD and the beneficial role of IFN-γ-responsive pre-MGnD in restricting neurodegenerative pathology and preserving cognitive function in an AD mouse model, highlighting miR-155 and IFN-γ as potential therapeutic targets for AD.


Subject(s)
Alzheimer Disease , MicroRNAs , Mice , Animals , Alzheimer Disease/metabolism , Interferon-gamma/metabolism , Microglia/metabolism , Signal Transduction/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Amyloid beta-Peptides/metabolism , Disease Models, Animal , Mice, Transgenic , Plaque, Amyloid/metabolism
15.
STAR Protoc ; 3(4): 101670, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36107747

ABSTRACT

Numerous approaches have been developed to isolate microglia from the brain, but procedures using enzymatic dissociation at 37°C can introduce drastic transcriptomic changes and confound results from gene expression assays. Here, we present an optimized protocol for microglia isolation using mechanical homogenization. We use Dounce homogenization to homogenize mouse brain tissue into single-cell suspension. We then isolate microglia through Percoll gradient and flow cytometry. Isolated microglia exhibit a gene expression pattern without the changes induced by heated enzymatic digestion. For complete details on the use and execution of this protocol, please refer to Clayton et al. (2021).


Subject(s)
Cell Separation , Microglia , Animals , Mice , Brain , Cell Separation/methods , Flow Cytometry , Transcriptome
16.
Microbiome ; 10(1): 47, 2022 03 11.
Article in English | MEDLINE | ID: mdl-35272713

ABSTRACT

BACKGROUND: The gut microbiota can affect neurologic disease by shaping microglia, the primary immune cell in the central nervous system (CNS). While antibiotics improve models of Alzheimer's disease, Parkinson's disease, multiple sclerosis, and the C9orf72 model of amyotrophic lateral sclerosis (ALS), antibiotics worsen disease progression the in SOD1G93A model of ALS. In ALS, microglia transition from a homeostatic to a neurodegenerative (MGnD) phenotype and contribute to disease pathogenesis, but whether this switch can be affected by the microbiota has not been investigated. RESULTS: In this short report, we found that a low-dose antibiotic treatment worsened motor function and decreased survival in the SOD1 mice, which is consistent with studies using high-dose antibiotics. We also found that co-housing SOD1 mice with wildtype mice had no effect on disease progression. We investigated changes in the microbiome and found that antibiotics reduced Akkermansia and butyrate-producing bacteria, which may be beneficial in ALS, and cohousing had little effect on the microbiome. To investigate changes in CNS resident immune cells, we sorted spinal cord microglia and found that antibiotics downregulated homeostatic genes and increased neurodegenerative disease genes in SOD1 mice. Furthermore, antibiotic-induced changes in microglia preceded changes in motor function, suggesting that this may be contributing to disease progression. CONCLUSIONS: Our findings suggest that the microbiota play a protective role in the SOD1 model of ALS by restraining MGnD microglia, which is opposite to other neurologic disease models, and sheds new light on the importance of disease-specific interactions between microbiota and microglia. Video abstract.


Subject(s)
Amyotrophic Lateral Sclerosis , Microbiota , Neurodegenerative Diseases , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Animals , Anti-Bacterial Agents/pharmacology , Disease Models, Animal , Disease Progression , Mice , Mice, Transgenic , Microglia/pathology , Neurodegenerative Diseases/pathology , Superoxide Dismutase/genetics , Superoxide Dismutase/pharmacology , Superoxide Dismutase/therapeutic use , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/pharmacology , Superoxide Dismutase-1/therapeutic use
17.
Neuron ; 109(10): 1657-1674.e7, 2021 05 19.
Article in English | MEDLINE | ID: mdl-33831349

ABSTRACT

The apolipoprotein E (APOE) gene is the strongest genetic risk factor for Alzheimer's disease and directly influences tauopathy and tau-mediated neurodegeneration. ApoE4 has strong deleterious effects on both parameters. In the brain, apoE is produced and secreted primarily by astrocytes and by activated microglia. The cell-specific role of each form of apoE in the setting of neurodegeneration has not been determined. We generated P301S Tau/Aldh1l1-CreERT2/apoE3flox/flox or Tau/Aldh1l1-CreERT2/apoE4flox/flox mice. At 5.5 months of age, after the onset of tau pathology, we administered tamoxifen or vehicle and compared mice at 9.5 months of age. Removing astrocytic APOE4 markedly reduced tau-mediated neurodegeneration and decreased phosphorylated tau (pTau) pathology. Single-nucleus RNA sequencing analysis revealed striking gene expression changes in all cell types, with astrocytic APOE4 removal decreasing disease-associated gene signatures in neurons, oligodendrocytes, astrocytes, and microglia. Removal of astrocytic APOE4 decreased tau-induced synaptic loss and microglial phagocytosis of synaptic elements, suggesting a key role for astrocytic apoE in synaptic degeneration.


Subject(s)
Apolipoprotein E4/metabolism , Astrocytes/metabolism , Phagocytosis , Tauopathies/metabolism , Animals , Apolipoprotein E4/deficiency , Apolipoprotein E4/genetics , Apoptosis , Humans , Mice , Mice, Inbred C57BL , Microglia/immunology , Synapses/metabolism , Synapses/pathology , Tauopathies/pathology , Transcriptome , tau Proteins/metabolism
18.
Front Cell Neurosci ; 14: 592214, 2020.
Article in English | MEDLINE | ID: mdl-33304243

ABSTRACT

SARS-CoV-2, which causes the Coronavirus Disease 2019 (COVID-19) pandemic, has a brain neurotropism through binding to the receptor angiotensin-converting enzyme 2 expressed by neurones and glial cells, including astrocytes and microglia. Systemic infection which accompanies severe cases of COVID-19 also triggers substantial increase in circulating levels of chemokines and interleukins that compromise the blood-brain barrier, enter the brain parenchyma and affect its defensive systems, astrocytes and microglia. Brain areas devoid of a blood-brain barrier such as the circumventricular organs are particularly vulnerable to circulating inflammatory mediators. The performance of astrocytes and microglia, as well as of immune cells required for brain health, is considered critical in defining the neurological damage and neurological outcome of COVID-19. In this review, we discuss the neurotropism of SARS-CoV-2, the implication of neuroinflammation, adaptive and innate immunity, autoimmunity, as well as astrocytic and microglial immune and homeostatic functions in the neurological and psychiatric aspects of COVID-19. The consequences of SARS-CoV-2 infection during ageing, in the presence of systemic comorbidities, and for the exposed pregnant mother and foetus are also covered.

19.
Acta Neuropathol Commun ; 8(1): 72, 2020 05 19.
Article in English | MEDLINE | ID: mdl-32430064

ABSTRACT

Microglia are resident macrophages of the central nervous system, and their unique molecular signature is dependent upon CSF-1 signaling. Previous studies have demonstrated the importance of CSF-1R in survival and development of microglia in animal models, but the findings are of uncertain relevance to understanding the influence of CSF-1R on microglia in humans. Hereditary diffuse leukoencephalopathy with spheroids (HDLS) [also known as adult onset leukoencephalopathy with spheroids and pigmented glia (ALSP)] is a neurodegenerative disorder primarily affecting cerebral white matter, most often caused by mutations of CSF1R. Therefore, we hypothesized that the molecular profile of microglia may be affected in HDLS. Semi-quantitative immunohistochemistry and quantitative transcriptomic profiling revealed reduced expression of IBA-1 and P2RY12 in both white and gray matter microglia of HDLS. In contrast, there was increased expression of CD68 and CD163 in microglia in affected white matter. In addition, expression of selective and specific microglial markers, including P2RY12, CX3CR1 and CSF-1R, were reduced in affected white matter. These results suggest that microglia in white matter in HDLS lose their homeostatic phenotype. Supported by gene ontology analysis, it is likely that an inflammatory phenotype is a key pathogenic feature of microglia in vulnerable brain regions of HDLS. Our findings suggest a potential mechanism of disease pathogenesis by linking aberrant CSF-1 signaling to altered microglial phenotype. They also support the idea that HDLS may be a primary microgliopathy. We observed increased expression of CSF-2 in gray matter compared to affected white matter, which may contribute to selective vulnerability of white matter in HDLS. Our findings suggest that methods that restore the homeostatic phenotype of microglia might be considered treatment approaches in HDLS.


Subject(s)
Brain/metabolism , Brain/pathology , Leukoencephalopathies/metabolism , Leukoencephalopathies/pathology , Microglia/metabolism , Microglia/pathology , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Aged , Calcium-Binding Proteins/metabolism , Female , Gray Matter/metabolism , Gray Matter/pathology , Homeostasis , Humans , Male , Microfilament Proteins/metabolism , Middle Aged , Phenotype , Receptors, Purinergic P2Y12/metabolism , Signal Transduction , Transcriptome , White Matter/metabolism , White Matter/pathology
20.
Acta Neuropathol Commun ; 8(1): 90, 2020 06 24.
Article in English | MEDLINE | ID: mdl-32580749

ABSTRACT

An amendment to this paper has been published and can be accessed via the original article.

SELECTION OF CITATIONS
SEARCH DETAIL