Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
Cell ; 176(6): 1393-1406.e16, 2019 03 07.
Article in English | MEDLINE | ID: mdl-30773318

ABSTRACT

Retrieving and acting on memories of food-predicting environments are fundamental processes for animal survival. Hippocampal pyramidal cells (PYRs) of the mammalian brain provide mnemonic representations of space. Yet the substrates by which these hippocampal representations support memory-guided behavior remain unknown. Here, we uncover a direct connection from dorsal CA1 (dCA1) hippocampus to nucleus accumbens (NAc) that enables the behavioral manifestation of place-reward memories. By monitoring neuronal ensembles in mouse dCA1→NAc pathway, combined with cell-type selective optogenetic manipulations of input-defined postsynaptic neurons, we show that dCA1 PYRs drive NAc medium spiny neurons and orchestrate their spiking activity using feedforward inhibition mediated by dCA1-connected parvalbumin-expressing fast-spiking interneurons. This tripartite cross-circuit motif supports spatial appetitive memory and associated NAc assemblies, being independent of dorsal subiculum and dispensable for both spatial novelty detection and reward seeking. Our findings demonstrate that the dCA1→NAc pathway instantiates a limbic-motor interface for neuronal representations of space to promote effective appetitive behavior.


Subject(s)
Appetitive Behavior/physiology , Memory/physiology , Nucleus Accumbens/physiology , Animals , CA1 Region, Hippocampal/physiology , HEK293 Cells , Hippocampus/physiology , Humans , Interneurons/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neurons/physiology , Pyramidal Cells/physiology , Reward , Temporal Lobe/physiology
2.
Neurobiol Dis ; 201: 106652, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39209070

ABSTRACT

Defining spatial synchronisation of pathological beta oscillations is important, given that many theories linking them to parkinsonian symptoms propose a reduction in the dimensionality of the coding space within and/or across cortico-basal ganglia structures. Such spatial synchronisation could arise from a single process, with widespread entrainment of neurons to the same oscillation. Alternatively, the partially segregated structure of cortico-basal ganglia loops could provide a substrate for multiple ensembles that are independently synchronized at beta frequencies. Addressing this question requires an analytical approach that identifies groups of signals with a statistical tendency for beta synchronisation, which is unachievable using standard pairwise measures. Here, we utilized such an approach on multichannel recordings of background unit activity (BUA) in the external globus pallidus (GP) and subthalamic nucleus (STN) in parkinsonian rats. We employed an adapted version of a principle and independent component analysis-based method commonly used to define assemblies of single neurons (i.e., neurons that are synchronized over short timescales). This analysis enabled us to define whether changes in the power of beta oscillations in local ensembles of neurons (i.e., the BUA recorded from single contacts) consistently covaried over time, forming a "beta ensemble". Multiple beta ensembles were often present in single recordings and could span brain structures. Membership of a beta ensemble predicted significantly higher levels of short latency (<5 ms) synchrony in the raw BUA signal and phase synchronisation with cortical beta oscillations, suggesting that they comprised clusters of neurons that are functionally connected at multiple levels, despite sometimes being non-contiguous in space. Overall, these findings suggest that beta oscillations do not comprise of a single synchronisation process, but rather multiple independent activities that can bind both spatially contiguous and non-contiguous pools of neurons within and across structures. As previously proposed, such ensembles provide a substrate for beta oscillations to constrain the coding space of cortico-basal ganglia circuits.

3.
PLoS Comput Biol ; 18(3): e1009887, 2022 03.
Article in English | MEDLINE | ID: mdl-35245281

ABSTRACT

Synchronization of neural oscillations is thought to facilitate communication in the brain. Neurodegenerative pathologies such as Parkinson's disease (PD) can result in synaptic reorganization of the motor circuit, leading to altered neuronal dynamics and impaired neural communication. Treatments for PD aim to restore network function via pharmacological means such as dopamine replacement, or by suppressing pathological oscillations with deep brain stimulation. We tested the hypothesis that brain stimulation can operate beyond a simple "reversible lesion" effect to augment network communication. Specifically, we examined the modulation of beta band (14-30 Hz) activity, a known biomarker of motor deficits and potential control signal for stimulation in Parkinson's. To do this we setup a neural mass model of population activity within the cortico-basal ganglia-thalamic (CBGT) circuit with parameters that were constrained to yield spectral features comparable to those in experimental Parkinsonism. We modulated the connectivity of two major pathways known to be disrupted in PD and constructed statistical summaries of the spectra and functional connectivity of the resulting spontaneous activity. These were then used to assess the network-wide outcomes of closed-loop stimulation delivered to motor cortex and phase locked to subthalamic beta activity. Our results demonstrate that the spatial pattern of beta synchrony is dependent upon the strength of inputs to the STN. Precisely timed stimulation has the capacity to recover network states, with stimulation phase inducing activity with distinct spectral and spatial properties. These results provide a theoretical basis for the design of the next-generation brain stimulators that aim to restore neural communication in disease.


Subject(s)
Deep Brain Stimulation , Motor Cortex , Parkinson Disease , Basal Ganglia/physiology , Deep Brain Stimulation/methods , Humans , Motor Cortex/physiology , Neurons/physiology , Parkinson Disease/therapy , Thalamus/physiology
4.
J Neurosci ; 41(50): 10382-10404, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34753740

ABSTRACT

The cerebral cortex, basal ganglia and motor thalamus form circuits important for purposeful movement. In Parkinsonism, basal ganglia neurons often exhibit dysrhythmic activity during, and with respect to, the slow (∼1 Hz) and beta-band (15-30 Hz) oscillations that emerge in cortex in a brain state-dependent manner. There remains, however, a pressing need to elucidate the extent to which motor thalamus activity becomes similarly dysrhythmic after dopamine depletion relevant to Parkinsonism. To address this, we recorded single-neuron and ensemble outputs in the basal ganglia-recipient zone (BZ) and cerebellar-recipient zone (CZ) of motor thalamus in anesthetized male dopamine-intact rats and 6-OHDA-lesioned rats during two brain states, respectively defined by cortical slow-wave activity and activation. Two forms of thalamic input zone-selective dysrhythmia manifested after dopamine depletion: (1) BZ neurons, but not CZ neurons, exhibited abnormal phase-shifted firing with respect to cortical slow oscillations prevalent during slow-wave activity; and (2) BZ neurons, but not CZ neurons, inappropriately synchronized their firing and engaged with the exaggerated cortical beta oscillations arising in activated states. These dysrhythmias were not accompanied by the thalamic hypoactivity predicted by canonical firing rate-based models of circuit organization in Parkinsonism. Complementary recordings of neurons in substantia nigra pars reticulata suggested that their altered activity dynamics could underpin the BZ dysrhythmias. Finally, pharmacological perturbations demonstrated that ongoing activity in the motor thalamus bolsters exaggerated beta oscillations in motor cortex. We conclude that BZ neurons are selectively primed to mediate the detrimental influences of abnormal slow and beta-band rhythms on circuit information processing in Parkinsonism.SIGNIFICANCE STATEMENT Motor thalamus neurons mediate the influences of basal ganglia and cerebellum on the cerebral cortex to govern movement. Chronic depletion of dopamine from the basal ganglia causes some symptoms of Parkinson's disease. Here, we elucidate how dopamine depletion alters the ways motor thalamus neurons engage with two distinct oscillations emerging in cortico-basal ganglia circuits in vivo We discovered that, after dopamine depletion, neurons in the thalamic zone receiving basal ganglia inputs are particularly prone to becoming dysrhythmic, changing the phases and/or synchronization (but not rate) of their action potential firing. This bolsters cortical dysrhythmia. Our results provide important new insights into how aberrant rhythmicity in select parts of motor thalamus could detrimentally affect neural circuit dynamics and behavior in Parkinsonism.


Subject(s)
Dopamine/deficiency , Neurons/physiology , Parkinsonian Disorders/physiopathology , Thalamus/physiopathology , Animals , Male , Rats
5.
Proc Natl Acad Sci U S A ; 116(32): 16095-16104, 2019 08 06.
Article in English | MEDLINE | ID: mdl-31341079

ABSTRACT

Beta frequency oscillations (15 to 35 Hz) in cortical and basal ganglia circuits become abnormally synchronized in Parkinson's disease (PD). How excessive beta oscillations emerge in these circuits is unclear. We addressed this issue by defining the firing properties of basal ganglia neurons around the emergence of cortical beta bursts (ß bursts), transient (50 to 350 ms) increases in the beta amplitude of cortical signals. In PD patients, the phase locking of background spiking activity in the subthalamic nucleus (STN) to frontal electroencephalograms preceded the onset and followed the temporal profile of cortical ß bursts, with conditions of synchronization consistent within and across bursts. Neuronal ensemble recordings in multiple basal ganglia structures of parkinsonian rats revealed that these dynamics were recapitulated in STN, but also in external globus pallidus and striatum. The onset of consistent phase-locking conditions was preceded by abrupt phase slips between cortical and basal ganglia ensemble signals. Single-unit recordings demonstrated that ensemble-level properties of synchronization were not underlain by changes in firing rate but, rather, by the timing of action potentials in relation to cortical oscillation phase. Notably, the preferred angle of phase-locked action potential firing in each basal ganglia structure was shifted during burst initiation, then maintained stable phase relations during the burst. Subthalamic, pallidal, and striatal neurons engaged and disengaged with cortical ß bursts to different extents and timings. The temporal evolution of cortical and basal ganglia synchronization is cell type-selective, which could be key for the generation/ maintenance of excessive beta oscillations in parkinsonism.


Subject(s)
Basal Ganglia/physiopathology , Beta Rhythm/physiology , Cerebral Cortex/physiopathology , Parkinson Disease/physiopathology , Action Potentials , Aged , Animals , Electroencephalography , Female , Humans , Male , Neurons/physiology , Rats , Time Factors
6.
Neuroimage ; 193: 103-114, 2019 06.
Article in English | MEDLINE | ID: mdl-30862535

ABSTRACT

Parkinson's disease (PD) is a neurodegenerative condition in which aberrant oscillatory synchronization of neuronal activity at beta frequencies (15-35 Hz) across the cortico-basal ganglia-thalamocortical circuit is associated with debilitating motor symptoms, such as bradykinesia and rigidity. Mounting evidence suggests that the magnitude of beta synchrony in the parkinsonian state fluctuates over time, but the mechanisms by which thalamocortical circuitry regulates the dynamic properties of cortical beta in PD are poorly understood. Using the recently developed generic Dynamic Causal Modelling (DCM) framework, we recursively optimized a set of plausible models of the thalamocortical circuit (n = 144) to infer the neural mechanisms that best explain the transitions between low and high beta power states observed in recordings of field potentials made in the motor cortex of anesthetized Parkinsonian rats. Bayesian model comparison suggests that upregulation of cortical rhythmic activity in the beta-frequency band results from changes in the coupling strength both between and within the thalamus and motor cortex. Specifically, our model indicates that high levels of cortical beta synchrony are mainly achieved by a delayed (extrinsic) input from thalamic relay cells to deep pyramidal cells and a fast (intrinsic) input from middle pyramidal cells to superficial pyramidal cells. From a clinical perspective, our study provides insights into potential therapeutic strategies that could be utilized to modulate the network mechanisms responsible for the enhancement of cortical beta in PD. Specifically, we speculate that cortical stimulation aimed to reduce the enhanced excitatory inputs to either the superficial or deep pyramidal cells could be a potential non-invasive therapeutic strategy for PD.


Subject(s)
Beta Rhythm/physiology , Models, Neurological , Motor Cortex/physiopathology , Parkinsonian Disorders/physiopathology , Thalamus/physiopathology , Animals , Male , Rats , Rats, Sprague-Dawley
7.
Proc Natl Acad Sci U S A ; 113(15): E2180-8, 2016 Apr 12.
Article in English | MEDLINE | ID: mdl-27001837

ABSTRACT

Midbrain dopaminergic neurons are essential for appropriate voluntary movement, as epitomized by the cardinal motor impairments arising in Parkinson's disease. Understanding the basis of such motor control requires understanding how the firing of different types of dopaminergic neuron relates to movement and how this activity is deciphered in target structures such as the striatum. By recording and labeling individual neurons in behaving mice, we show that the representation of brief spontaneous movements in the firing of identified midbrain dopaminergic neurons is cell-type selective. Most dopaminergic neurons in the substantia nigra pars compacta (SNc), but not in ventral tegmental area or substantia nigra pars lateralis, consistently represented the onset of spontaneous movements with a pause in their firing. Computational modeling revealed that the movement-related firing of these dopaminergic neurons can manifest as rapid and robust fluctuations in striatal dopamine concentration and receptor activity. The exact nature of the movement-related signaling in the striatum depended on the type of dopaminergic neuron providing inputs, the striatal region innervated, and the type of dopamine receptor expressed by striatal neurons. Importantly, in aged mice harboring a genetic burden relevant for human Parkinson's disease, the precise movement-related firing of SNc dopaminergic neurons and the resultant striatal dopamine signaling were lost. These data show that distinct dopaminergic cell types differentially encode spontaneous movement and elucidate how dysregulation of their firing in early Parkinsonism can impair their effector circuits.


Subject(s)
Dopaminergic Neurons/physiology , Movement/physiology , Parkinsonian Disorders/physiopathology , Animals , Corpus Striatum/physiology , Dopamine/physiology , Male , Mice, Inbred C57BL , Mice, Transgenic , Models, Biological , Substantia Nigra/physiology , Ventral Tegmental Area/physiology , alpha-Synuclein/genetics
8.
J Neurosci ; 37(41): 9977-9998, 2017 10 11.
Article in English | MEDLINE | ID: mdl-28847810

ABSTRACT

Classical schemes of basal ganglia organization posit that parkinsonian movement difficulties presenting after striatal dopamine depletion stem from the disproportionate firing rates of spiny projection neurons (SPNs) therein. There remains, however, a pressing need to elucidate striatal SPN firing in the context of the synchronized network oscillations that are abnormally exaggerated in cortical-basal ganglia circuits in parkinsonism. To address this, we recorded unit activities in the dorsal striatum of dopamine-intact and dopamine-depleted rats during two brain states, respectively defined by cortical slow-wave activity (SWA) and activation. Dopamine depletion escalated striatal net output but had contrasting effects on "direct pathway" SPNs (dSPNs) and "indirect pathway" SPNs (iSPNs); their firing rates became imbalanced, and they disparately engaged in network oscillations. Disturbed striatal activity dynamics relating to the slow (∼1 Hz) oscillations prevalent during SWA partly generalized to the exaggerated beta-frequency (15-30 Hz) oscillations arising during cortical activation. In both cases, SPNs exhibited higher incidences of phase-locked firing to ongoing cortical oscillations, and SPN ensembles showed higher levels of rhythmic correlated firing, after dopamine depletion. Importantly, in dopamine-depleted striatum, a widespread population of iSPNs, which often displayed excessive firing rates and aberrant phase-locked firing to cortical beta oscillations, preferentially and excessively synchronized their firing at beta frequencies. Conversely, dSPNs were neither hyperactive nor synchronized to a large extent during cortical activation. These data collectively demonstrate a cell type-selective entrainment of SPN firing to parkinsonian beta oscillations. We conclude that a population of overactive, excessively synchronized iSPNs could orchestrate these pathological rhythms in basal ganglia circuits.SIGNIFICANCE STATEMENT Chronic depletion of dopamine from the striatum, a part of the basal ganglia, causes some symptoms of Parkinson's disease. Here, we elucidate how dopamine depletion alters striatal neuron firing in vivo, with an emphasis on defining whether and how spiny projection neurons (SPNs) engage in the synchronized beta-frequency (15-30 Hz) oscillations that become pathologically exaggerated throughout basal ganglia circuits in parkinsonism. We discovered that a select population of so-called "indirect pathway" SPNs not only fire at abnormally high rates, but are also particularly prone to being recruited to exaggerated beta oscillations. Our results provide an important link between two complementary theories that explain the presentation of disease symptoms on the basis of changes in firing rate or firing synchronization/rhythmicity.


Subject(s)
Beta Rhythm , Corpus Striatum/physiopathology , Neural Pathways/physiopathology , Neurons/pathology , Parkinsonian Disorders/physiopathology , Animals , Basal Ganglia/physiopathology , Cerebral Cortex/pathology , Cerebral Cortex/physiopathology , Corpus Striatum/pathology , Dopamine/metabolism , Hydroxydopamines , Male , Neural Pathways/pathology , Parkinsonian Disorders/chemically induced , Parkinsonian Disorders/pathology , Rats , Rats, Sprague-Dawley
9.
J Neurophysiol ; 119(5): 1608-1628, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29357448

ABSTRACT

Much of the motor impairment associated with Parkinson's disease is thought to arise from pathological activity in the networks formed by the basal ganglia (BG) and motor cortex. To evaluate several hypotheses proposed to explain the emergence of pathological oscillations in parkinsonism, we investigated changes to the directed connectivity in BG networks following dopamine depletion. We recorded local field potentials (LFPs) in the cortex and basal ganglia of rats rendered parkinsonian by injection of 6-hydroxydopamine (6-OHDA) and in dopamine-intact controls. We performed systematic analyses of the networks using a novel tool for estimation of directed interactions (nonparametric directionality, NPD). We used a "conditioned" version of the NPD analysis that reveals the dependence of the correlation between two signals on a third reference signal. We find evidence of the dopamine dependency of both low-beta (14-20 Hz) and high-beta/low-gamma (20-40 Hz) directed network interactions. Notably, 6-OHDA lesions were associated with enhancement of the cortical "hyperdirect" connection to the subthalamic nucleus (STN) and its feedback to the cortex and striatum. We find that pathological beta synchronization resulting from 6-OHDA lesioning is widely distributed across the network and cannot be located to any individual structure. Furthermore, we provide evidence that high-beta/gamma oscillations propagate through the striatum in a pathway that is independent of STN. Rhythms at high beta/gamma show susceptibility to conditioning that indicates a hierarchical organization compared with those at low beta. These results further inform our understanding of the substrates for pathological rhythms in salient brain networks in parkinsonism. NEW & NOTEWORTHY We present a novel analysis of electrophysiological recordings in the cortico-basal ganglia network with the aim of evaluating several hypotheses concerning the origins of abnormal brain rhythms associated with Parkinson's disease. We present evidence for changes in the directed connections within the network following chronic dopamine depletion in rodents. These findings speak to the plausibility of a "short-circuiting" of the network that gives rise to the conditions from which pathological synchronization may arise.


Subject(s)
Basal Ganglia/physiopathology , Beta Rhythm/physiology , Cerebral Cortex/physiopathology , Electroencephalography Phase Synchronization/physiology , Electroencephalography/methods , Gamma Rhythm/physiology , Nerve Net/physiopathology , Parkinsonian Disorders/physiopathology , Subthalamic Nucleus/physiopathology , Animals , Disease Models, Animal , Male , Oxidopamine/pharmacology , Parkinsonian Disorders/chemically induced , Rats , Rats, Sprague-Dawley
10.
Hum Mol Genet ; 25(5): 951-63, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26744332

ABSTRACT

Mutations in leucine-rich repeat kinase 2 (LRRK2) lead to late-onset, autosomal dominant Parkinson's disease, characterized by the degeneration of dopamine neurons of the substantia nigra pars compacta, a deficit in dopamine neurotransmission and the development of motor and non-motor symptoms. The most prevalent Parkinson's disease LRRK2 mutations are located in the kinase (G2019S) and GTPase (R1441C) encoding domains of LRRK2. To better understand the sequence of events that lead to progressive neurophysiological deficits in vulnerable neurons and circuits in Parkinson's disease, we have generated LRRK2 bacterial artificial chromosome transgenic rats expressing either G2019S or R1441C mutant, or wild-type LRRK2, from the complete human LRRK2 genomic locus, including endogenous promoter and regulatory regions. Aged (18-21 months) G2019S and R1441C mutant transgenic rats exhibit L-DOPA-responsive motor dysfunction, impaired striatal dopamine release as determined by fast-scan cyclic voltammetry, and cognitive deficits. In addition, in vivo recordings of identified substantia nigra pars compacta dopamine neurons in R1441C LRRK2 transgenic rats reveal an age-dependent reduction in burst firing, which likely results in further reductions to striatal dopamine release. These alterations to dopamine circuit function occur in the absence of neurodegeneration or abnormal protein accumulation within the substantia nigra pars compacta, suggesting that nigrostriatal dopamine dysfunction precedes detectable protein aggregation and cell death in the development of Parkinson's disease. In conclusion, our longitudinal deep-phenotyping provides novel insights into how the genetic burden arising from human mutant LRRK2 manifests as early pathophysiological changes to dopamine circuit function and highlights a potential model for testing Parkinson's therapeutics.


Subject(s)
Aging/metabolism , Antiparkinson Agents/pharmacology , Dopaminergic Neurons/drug effects , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Levodopa/pharmacology , Mutation , Parkinson Disease/genetics , Action Potentials , Aging/pathology , Amino Acid Substitution , Animals , Cell Death/genetics , Chromosomes, Artificial, Bacterial/chemistry , Chromosomes, Artificial, Bacterial/metabolism , Corpus Striatum/drug effects , Corpus Striatum/metabolism , Corpus Striatum/pathology , Disease Models, Animal , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , Female , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Male , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Parkinson Disease/pathology , Promoter Regions, Genetic , Protein Domains , Rats , Rats, Transgenic , Substantia Nigra/drug effects , Substantia Nigra/metabolism , Substantia Nigra/pathology
11.
Proc Natl Acad Sci U S A ; 112(35): E4929-38, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26283356

ABSTRACT

Midbrain dopaminergic (mDA) neurons are implicated in cognitive functions, neuropsychiatric disorders, and pathological conditions; hence understanding genes regulating their homeostasis has medical relevance. Transcription factors FOXA1 and FOXA2 (FOXA1/2) are key determinants of mDA neuronal identity during development, but their roles in adult mDA neurons are unknown. We used a conditional knockout strategy to specifically ablate FOXA1/2 in mDA neurons of adult mice. We show that deletion of Foxa1/2 results in down-regulation of tyrosine hydroxylase, the rate-limiting enzyme of dopamine (DA) biosynthesis, specifically in dopaminergic neurons of the substantia nigra pars compacta (SNc). In addition, DA synthesis and striatal DA transmission were reduced after Foxa1/2 deletion. Furthermore, the burst-firing activity characteristic of SNc mDA neurons was drastically reduced in the absence of FOXA1/2. These molecular and functional alterations lead to a severe feeding deficit in adult Foxa1/2 mutant mice, independently of motor control, which could be rescued by L-DOPA treatment. FOXA1/2 therefore control the maintenance of molecular and physiological properties of SNc mDA neurons and impact on feeding behavior in adult mice.


Subject(s)
Dopamine/metabolism , Feeding Behavior , Hepatocyte Nuclear Factor 3-alpha/physiology , Hepatocyte Nuclear Factor 3-beta/physiology , Neurons/metabolism , Animals , Brain/cytology , Brain/metabolism , Gene Deletion , Hepatocyte Nuclear Factor 3-alpha/genetics , Hepatocyte Nuclear Factor 3-beta/genetics , Mice , Mice, Knockout , Neurons/cytology , RNA, Messenger/genetics
12.
PLoS Comput Biol ; 12(7): e1005004, 2016 07.
Article in English | MEDLINE | ID: mdl-27389780

ABSTRACT

The external globus pallidus (GPe) is a key nucleus within basal ganglia circuits that are thought to be involved in action selection. A class of computational models assumes that, during action selection, the basal ganglia compute for all actions available in a given context the probabilities that they should be selected. These models suggest that a network of GPe and subthalamic nucleus (STN) neurons computes the normalization term in Bayes' equation. In order to perform such computation, the GPe needs to send feedback to the STN equal to a particular function of the activity of STN neurons. However, the complex form of this function makes it unlikely that individual GPe neurons, or even a single GPe cell type, could compute it. Here, we demonstrate how this function could be computed within a network containing two types of GABAergic GPe projection neuron, so-called 'prototypic' and 'arkypallidal' neurons, that have different response properties in vivo and distinct connections. We compare our model predictions with the experimentally-reported connectivity and input-output functions (f-I curves) of the two populations of GPe neurons. We show that, together, these dichotomous cell types fulfil the requirements necessary to compute the function needed for optimal action selection. We conclude that, by virtue of their distinct response properties and connectivities, a network of arkypallidal and prototypic GPe neurons comprises a neural substrate capable of supporting the computation of the posterior probabilities of actions.


Subject(s)
Globus Pallidus/cytology , Models, Neurological , Neurons/physiology , Computational Biology , Feedback, Physiological/physiology , Globus Pallidus/physiology , Neurons/cytology
13.
J Neurosci ; 35(5): 2044-57, 2015 Feb 04.
Article in English | MEDLINE | ID: mdl-25653362

ABSTRACT

Various GABAergic neuron types of the amygdala cooperate to control principal cell firing during fear-related and other behaviors, and understanding their specialized roles is important. Among GABAergic neurons, the so-called intercalated cells (ITCcs) are critically involved in the expression and extinction of fear memory. Tightly clustered small-sized spiny neurons constitute the majority of ITCcs, but they are surrounded by sparse, larger neurons (L-ITCcs) for which very little information is known. We report here a detailed neurochemical, structural and physiological characterization of rat L-ITCcs, as identified with juxtacellular recording/labeling in vivo. We supplement these data with anatomical and neurochemical analyses of nonrecorded L-ITCcs. We demonstrate that L-ITCcs are GABAergic, and strongly express metabotropic glutamate receptor 1α and GABAA receptor α1 subunit, together with moderate levels of parvalbumin. Furthermore, L-ITCcs are innervated by fibers enriched with metabotropic glutamate receptors 7a and/or 8a. In contrast to small-sized spiny ITCcs, L-ITCcs possess thick, aspiny dendrites, have highly branched, long-range axonal projections, and innervate interneurons in the basolateral amygdaloid complex. The axons of L-ITCcs also project to distant brain areas, such as the perirhinal, entorhinal, and endopiriform cortices. In vivo recorded L-ITCcs are strongly activated by noxious stimuli, such as hindpaw pinches or electrical footshocks. Consistent with this, we observed synaptic contacts on L-ITCc dendrites from nociceptive intralaminar thalamic nuclei. We propose that, during salient sensory stimulation, L-ITCcs disinhibit local and distant principal neurons, acting as "hub cells," to orchestrate the activity of a distributed network.


Subject(s)
Amygdala/physiology , Evoked Potentials, Somatosensory , GABAergic Neurons/physiology , Interneurons/physiology , Nociception , Amygdala/cytology , Animals , Axons/metabolism , Axons/physiology , Dendrites/metabolism , Dendrites/physiology , Entorhinal Cortex/cytology , Entorhinal Cortex/physiology , GABAergic Neurons/metabolism , Interneurons/metabolism , Male , Rats , Rats, Sprague-Dawley , Receptors, GABA-A/genetics , Receptors, GABA-A/metabolism , Receptors, Metabotropic Glutamate/genetics , Receptors, Metabotropic Glutamate/metabolism , Thalamic Nuclei/cytology , Thalamic Nuclei/physiology
14.
J Neurosci ; 35(17): 6667-88, 2015 Apr 29.
Article in English | MEDLINE | ID: mdl-25926446

ABSTRACT

Studies in dopamine-depleted rats indicate that the external globus pallidus (GPe) contains two main types of GABAergic projection cell; so-called "prototypic" and "arkypallidal" neurons. Here, we used correlative anatomical and electrophysiological approaches in rats to determine whether and how this dichotomous organization applies to the dopamine-intact GPe. Prototypic neurons coexpressed the transcription factors Nkx2-1 and Lhx6, comprised approximately two-thirds of all GPe neurons, and were the major GPe cell type innervating the subthalamic nucleus (STN). In contrast, arkypallidal neurons expressed the transcription factor FoxP2, constituted just over one-fourth of GPe neurons, and innervated the striatum but not STN. In anesthetized dopamine-intact rats, molecularly identified prototypic neurons fired at relatively high rates and with high regularity, regardless of brain state (slow-wave activity or spontaneous activation). On average, arkypallidal neurons fired at lower rates and regularities than prototypic neurons, and the two cell types could be further distinguished by the temporal coupling of their firing to ongoing cortical oscillations. Complementing the activity differences observed in vivo, the autonomous firing of identified arkypallidal neurons in vitro was slower and more variable than that of prototypic neurons, which tallied with arkypallidal neurons displaying lower amplitudes of a "persistent" sodium current important for such pacemaking. Arkypallidal neurons also exhibited weaker driven and rebound firing compared with prototypic neurons. In conclusion, our data support the concept that a dichotomous functional organization, as actioned by arkypallidal and prototypic neurons with specialized molecular, structural, and physiological properties, is fundamental to the operations of the dopamine-intact GPe.


Subject(s)
Dopamine/metabolism , Globus Pallidus/cytology , Neural Pathways/physiology , Neurons/physiology , Subthalamic Nucleus/cytology , Action Potentials/genetics , Action Potentials/physiology , Adrenergic Agents/toxicity , Animals , Animals, Newborn , ELAV Proteins/metabolism , ELAV-Like Protein 3 , Female , Forkhead Transcription Factors/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , In Vitro Techniques , Neural Pathways/drug effects , Neurons/drug effects , Nuclear Proteins/metabolism , Oxidopamine/toxicity , Parvalbumins/metabolism , Rats , Statistics, Nonparametric , Thyroid Nuclear Factor 1 , Transcription Factors/metabolism
15.
Proc Natl Acad Sci U S A ; 110(42): E4016-25, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-24082145

ABSTRACT

The pathological end-state of Parkinson disease is well described from postmortem tissue, but there remains a pressing need to define early functional changes to susceptible neurons and circuits. In particular, mechanisms underlying the vulnerability of the dopamine neurons of the substantia nigra pars compacta (SNc) and the importance of protein aggregation in driving the disease process remain to be determined. To better understand the sequence of events occurring in familial and sporadic Parkinson disease, we generated bacterial artificial chromosome transgenic mice (SNCA-OVX) that express wild-type α-synuclein from the complete human SNCA locus at disease-relevant levels and display a transgene expression profile that recapitulates that of endogenous α-synuclein. SNCA-OVX mice display age-dependent loss of nigrostriatal dopamine neurons and motor impairments characteristic of Parkinson disease. This phenotype is preceded by early deficits in dopamine release from terminals in the dorsal, but not ventral, striatum. Such neurotransmission deficits are not seen at either noradrenergic or serotoninergic terminals. Dopamine release deficits are associated with an altered distribution of vesicles in dopaminergic axons in the dorsal striatum. Aged SNCA-OVX mice exhibit reduced firing of SNc dopamine neurons in vivo measured by juxtacellular recording of neurochemically identified neurons. These progressive changes in vulnerable SNc neurons were observed independently of overt protein aggregation, suggesting neurophysiological changes precede, and are not driven by, aggregate formation. This longitudinal phenotyping strategy in SNCA-OVX mice thus provides insights into the region-specific neuronal disturbances preceding and accompanying Parkinson disease.


Subject(s)
Aging/metabolism , Corpus Striatum/metabolism , Dopaminergic Neurons/metabolism , Parkinsonian Disorders/metabolism , Substantia Nigra/metabolism , Synaptic Transmission , Aging/pathology , Animals , Chromosomes, Artificial, Bacterial/genetics , Chromosomes, Artificial, Bacterial/metabolism , Corpus Striatum/pathology , Corpus Striatum/physiopathology , Dopaminergic Neurons/pathology , Humans , Mice , Parkinsonian Disorders/genetics , Parkinsonian Disorders/pathology , Parkinsonian Disorders/physiopathology , Substantia Nigra/pathology , Substantia Nigra/physiopathology , alpha-Synuclein/biosynthesis , alpha-Synuclein/genetics
16.
J Neurosci ; 34(8): 3101-17, 2014 Feb 19.
Article in English | MEDLINE | ID: mdl-24553950

ABSTRACT

Cholinergic interneurons are key components of striatal microcircuits. In primates, tonically active neurons (putative cholinergic interneurons) exhibit multiphasic responses to motivationally salient stimuli that mirror those of midbrain dopamine neurons and together these two systems mediate reward-related learning in basal ganglia circuits. Here, we addressed the potential contribution of cortical and thalamic excitatory inputs to the characteristic multiphasic responses of cholinergic interneurons in vivo. We first recorded and labeled individual cholinergic interneurons in anesthetized rats. Electron microscopic analyses of these labeled neurons demonstrated that an individual interneuron could form synapses with cortical and, more commonly, thalamic afferents. Single-pulse electrical stimulation of ipsilateral frontal cortex led to robust short-latency (<20 ms) interneuron spiking, indicating monosynaptic connectivity, but firing probability progressively decreased during high-frequency pulse trains. In contrast, single-pulse thalamic stimulation led to weak short-latency spiking, but firing probability increased during pulse trains. After initial excitation from cortex or thalamus, interneurons displayed a "pause" in firing, followed by a "rebound" increase in firing rate. Across all stimulation protocols, the number of spikes in the initial excitation correlated positively with pause duration and negatively with rebound magnitude. The magnitude of the initial excitation, therefore, partly determined the profile of later components of multiphasic responses. Upon examining the responses of tonically active neurons in behaving primates, we found that these correlations held true for unit responses to a reward-predicting stimulus, but not to the reward alone, delivered outside of any task. We conclude that excitatory inputs determine, at least in part, the multiphasic responses of cholinergic interneurons under specific behavioral conditions.


Subject(s)
Cerebral Cortex/physiology , Interneurons/physiology , Motivation/physiology , Neostriatum/physiology , Parasympathetic Nervous System/physiology , Thalamus/physiology , Animals , Data Interpretation, Statistical , Electric Stimulation , Electrophysiological Phenomena/physiology , Immunohistochemistry , Macaca mulatta , Male , Microscopy, Electron , Neural Pathways/cytology , Neural Pathways/physiology , Parasympathetic Nervous System/cytology , Rats , Rats, Sprague-Dawley , Reward , Synapses/physiology
17.
Opt Express ; 23(4): 4666-71, 2015 Feb 23.
Article in English | MEDLINE | ID: mdl-25836504

ABSTRACT

We report a hybrid integrated external cavity, multi-wavelength laser for high-capacity data transmission operating near 1310 nm. This is the first demonstration of a single cavity multi-wavelength laser in silicon to our knowledge. The device consists of a quantum dot reflective semiconductor optical amplifier and a silicon-on-insulator chip with a Sagnac loop mirror and microring wavelength filter. We show four major lasing peaks from a single cavity with less than 3 dB power non-uniformity and demonstrate error-free 4 × 10 Gb/s data transmission.

18.
Cereb Cortex ; 24(1): 81-97, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23042738

ABSTRACT

Neurons of the motor thalamus mediate basal ganglia and cerebellar influences on cortical activity. To elucidate the net result of γ-aminobutyric acid-releasing or glutamatergic bombardment of the motor thalamus by basal ganglia or cerebellar afferents, respectively, we recorded the spontaneous activities of thalamocortical neurons in distinct identified "input zones" in anesthetized rats during defined cortical activity states. Unexpectedly, the mean rates and brain state dependencies of the firing of neurons in basal ganglia-recipient zone (BZ) and cerebellar-recipient zone (CZ) were matched during slow-wave activity (SWA) and cortical activation. However, neurons were distinguished during SWA by their firing regularities, low-threshold spike bursts and, more strikingly, by the temporal coupling of their activities to ongoing cortical oscillations. The firing of neurons across the BZ was stronger and more precisely phase-locked to cortical slow (≈ 1 Hz) oscillations, although both neuron groups preferentially fired at the same phase. In contrast, neurons in BZ and CZ fired at different phases of cortical spindles (7-12 Hz), but with similar strengths of coupled firing. Thus, firing rates do not reflect the predicted inhibitory-excitatory imbalance across the motor thalamus, and input zone-specific temporal coding through oscillatory synchronization with the cortex could partly mediate the different roles of basal ganglia and cerebellum in behavior.


Subject(s)
Basal Ganglia/physiology , Cerebellum/physiology , Cerebral Cortex/physiology , Neurons/physiology , Thalamus/physiology , Algorithms , Animals , Calcium Signaling/physiology , Data Interpretation, Statistical , Electrophysiological Phenomena , Fluorescent Antibody Technique , Glutamates/physiology , Male , Nerve Net/physiology , Presynaptic Terminals/physiology , Rats , Rats, Sprague-Dawley
19.
J Physiol ; 592(7): 1429-55, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24344162

ABSTRACT

In Parkinsonism, subthalamic nucleus (STN) neurons and two types of external globus pallidus (GP) neuron inappropriately synchronise their firing in time with slow (∼1 Hz) or beta (13-30 Hz) oscillations in cortex. We recorded the activities of STN, Type-I GP (GP-TI) and Type-A GP (GP-TA) neurons in anaesthetised Parkinsonian rats during such oscillations to constrain a series of computational models that systematically explored the effective connections and physiological parameters underlying neuronal rhythmic firing and phase preferences in vivo. The best candidate model, identified with a genetic algorithm optimising accuracy/complexity measures, faithfully reproduced experimental data and predicted that the effective connections of GP-TI and GP-TA neurons are quantitatively different. Estimated inhibitory connections from striatum were much stronger to GP-TI neurons than to GP-TA neurons, whereas excitatory connections from thalamus were much stronger to GP-TA and STN neurons than to GP-TI neurons. Reciprocal connections between GP-TI and STN neurons were matched in weight, but those between GP-TA and STN neurons were not; only GP-TI neurons sent substantial connections back to STN. Different connection weights between and within the two types of GP neuron were also evident. Adding to connection differences, GP-TA and GP-TI neurons were predicted to have disparate intrinsic physiological properties, reflected in distinct autonomous firing rates. Our results elucidate potential substrates of GP functional dichotomy, and emphasise that rhythmic inputs from striatum, thalamus and cortex are important for setting activity in the STN-GP network during Parkinsonian beta oscillations, suggesting they arise from interactions between most nodes of basal ganglia-thalamocortical circuits.


Subject(s)
Globus Pallidus/physiopathology , Parkinson Disease/physiopathology , Subthalamic Nucleus/physiopathology , Action Potentials , Algorithms , Animals , Computer Simulation , Disease Models, Animal , Dopamine/metabolism , Globus Pallidus/metabolism , Male , Models, Neurological , Neural Inhibition , Neural Pathways/physiopathology , Neurons/metabolism , Parkinson Disease/metabolism , Periodicity , Rats, Sprague-Dawley , Subthalamic Nucleus/metabolism , Time Factors
20.
Opt Express ; 22(18): 21521-8, 2014 Sep 08.
Article in English | MEDLINE | ID: mdl-25321530

ABSTRACT

We propose a novel silicon-on-insulator (SOI) wavelength diplexer design based on an adiabatic bent taper and an unconventional multimode waveguide. The geometry of the device is optimized using particle swarm optimization (PSO). The device has an ultra-short length of 15 µm. Simulated insertion loss at peak wavelength is less than 0.25 dB with 1-dB bandwidth around 100 nm for both O band and C band. The device is fabrication tolerant as demonstrated by simulated yield estimates. The reported design targets 1310 and 1550 nm as peak wavelengths; the design methodology is easily applicable to other wavelengths of interest.

SELECTION OF CITATIONS
SEARCH DETAIL