Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Proc Natl Acad Sci U S A ; 116(51): 26008-26019, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31796582

ABSTRACT

The transient receptor potential ankyrin 1 (TRPA1) channel functions as an irritant sensor and is a therapeutic target for treating pain, itch, and respiratory diseases. As a ligand-gated channel, TRPA1 can be activated by electrophilic compounds such as allyl isothiocyanate (AITC) through covalent modification or activated by noncovalent agonists through ligand binding. However, how covalent modification leads to channel opening and, importantly, how noncovalent binding activates TRPA1 are not well-understood. Here we report a class of piperidine carboxamides (PIPCs) as potent, noncovalent agonists of human TRPA1. Based on their species-specific effects on human and rat channels, we identified residues critical for channel activation; we then generated binding modes for TRPA1-PIPC interactions using structural modeling, molecular docking, and mutational analysis. We show that PIPCs bind to a hydrophobic site located at the interface of the pore helix 1 (PH1) and S5 and S6 transmembrane segments. Interestingly, this binding site overlaps with that of known allosteric modulators, such as A-967079 and propofol. Similar binding sites, involving π-helix rearrangements on S6, have been recently reported for other TRP channels, suggesting an evolutionarily conserved mechanism. Finally, we show that for PIPC analogs, predictions from computational modeling are consistent with experimental structure-activity studies, thereby suggesting strategies for rational drug design.


Subject(s)
Molecular Docking Simulation , Piperidines/pharmacology , TRPA1 Cation Channel/chemistry , TRPA1 Cation Channel/drug effects , Animals , Binding Sites , Calcium Channels/chemistry , Calcium Channels/metabolism , Drug Design , Humans , Isothiocyanates , Ligands , Models, Structural , Mutagenesis , Oximes/pharmacology , Propofol/pharmacology , Protein Domains , Rats , Species Specificity , TRPA1 Cation Channel/metabolism
2.
Toxicol Pathol ; 48(3): 465-480, 2020 04.
Article in English | MEDLINE | ID: mdl-32124659

ABSTRACT

Cyclic adenosine monophosphate-response element (CREB)-binding protein (CBP) and EP300E1A-binding protein (p300) are members of the bromodomain and extraterminal motif (BET) family. These highly homologous proteins have a key role in modulating transcription, including altering the status of chromatin or through interactions with or posttranslational modifications of transcription factors. As CBP and p300 have known roles for stimulating c-Myc oncogenic activity, a small-molecule inhibitor, GNE-781, was developed to selectively and potently inhibit the CBP/p300 bromodomains (BRDs). Genetic models have been challenging to develop due to embryonic lethality arising from germline homozygous mutations in either CBP or P300. Hence, the purpose of this study was to characterize the role of dual inhibition of these proteins in adult rats and dogs. Repeat dose toxicity studies were conducted, and toxicologic and pathologic end points were assessed. GNE-781 was generally tolerated; however, marked effects on thrombopoiesis occurred in both species. Evidence of inhibition of erythroid, granulocytic, and lymphoid cell differentiation was also present, as well as deleterious changes in gastrointestinal and reproductive tissues. These findings are consistent with many preclinical (and clinical) effects reported with BET inhibitors targeting BRD proteins; thus, the current study findings indicate a likely important role for CBP/p300 in stem cell differentiation.


Subject(s)
Pyrazoles/pharmacology , Pyridines/pharmacology , p300-CBP Transcription Factors/antagonists & inhibitors , Animals , Dogs , Drug Evaluation, Preclinical/methods , Ether-A-Go-Go Potassium Channels/drug effects , Female , Humans , Male , Rats , Rats, Sprague-Dawley
3.
Bioorg Med Chem Lett ; 28(1): 15-23, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29169673

ABSTRACT

A novel, potent, and orally bioavailable inhibitor of the bromodomain of CBP, compound 35 (GNE-207), has been identified through SAR investigations focused on optimizing al bicyclic heteroarene to replace the aniline present in the published GNE-272 series. Compound 35 has excellent CBP potency (CBP IC50 = 1 nM, MYC EC50 = 18 nM), a selectively index of >2500-fold against BRD4(1), and exhibits a good pharmacokinetic profile.


Subject(s)
Biphenyl Compounds/chemistry , Drug Design , p300-CBP Transcription Factors/antagonists & inhibitors , Animals , Binding Sites , Biphenyl Compounds/chemical synthesis , Biphenyl Compounds/metabolism , Cell Cycle Proteins , Crystallography, X-Ray , Half-Life , Humans , Hydrogen Bonding , Inhibitory Concentration 50 , Mice , Microsomes, Liver/metabolism , Molecular Dynamics Simulation , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/metabolism , Protein Structure, Tertiary , Rats , Structure-Activity Relationship , Transcription Factors/antagonists & inhibitors , Transcription Factors/metabolism , p300-CBP Transcription Factors/metabolism
4.
J Biol Chem ; 291(25): 13014-27, 2016 Jun 17.
Article in English | MEDLINE | ID: mdl-27056325

ABSTRACT

Covalent modification of histones is a fundamental mechanism of regulated gene expression in eukaryotes, and interpretation of histone modifications is an essential feature of epigenetic control. Bromodomains are specialized binding modules that interact with acetylated histones, linking chromatin recognition to gene transcription. Because of their ability to function in a domain-specific fashion, selective disruption of bromodomain:acetylated histone interactions with chemical probes serves as a powerful means for understanding biological processes regulated by these chromatin adaptors. Here we describe the discovery and characterization of potent and selective small molecule inhibitors for the bromodomains of CREBBP/EP300 that engage their target in cellular assays. We use these tools to demonstrate a critical role for CREBBP/EP300 bromodomains in regulatory T cell biology. Because regulatory T cell recruitment to tumors is a major mechanism of immune evasion by cancer cells, our data highlight the importance of CREBBP/EP300 bromodomain inhibition as a novel, small molecule-based approach for cancer immunotherapy.


Subject(s)
CREB-Binding Protein/antagonists & inhibitors , E1A-Associated p300 Protein/antagonists & inhibitors , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , T-Lymphocytes, Regulatory/drug effects , Acetylation/drug effects , CREB-Binding Protein/chemistry , CREB-Binding Protein/metabolism , Cell Differentiation/drug effects , Cell Line , Cells, Cultured , E1A-Associated p300 Protein/chemistry , E1A-Associated p300 Protein/metabolism , Forkhead Transcription Factors/metabolism , Histones/metabolism , Humans , Molecular Docking Simulation , Protein Structure, Tertiary/drug effects , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/metabolism , Transcriptome/drug effects
5.
Bioorg Med Chem Lett ; 27(15): 3534-3541, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28606761

ABSTRACT

Bromodomain-containing protein 9 (BRD9), an epigenetic "reader" of acetylated lysines on post-translationally modified histone proteins, is upregulated in multiple cancer cell lines. To assess the functional role of BRD9 in cancer cell lines, we identified a small-molecule inhibitor of the BRD9 bromodomain. Starting from a pyrrolopyridone lead, we used structure-based drug design to identify a potent and highly selective in vitro tool compound 11, (GNE-375). While this compound showed minimal effects in cell viability or gene expression assays, it showed remarkable potency in preventing the emergence of a drug tolerant population in EGFR mutant PC9 cells treated with EGFR inhibitors. Such tolerance has been linked to an altered epigenetic state, and 11 decreased BRD9 binding to chromatin, and this was associated with decreased expression of ALDH1A1, a gene previously shown to be important in drug tolerance. BRD9 inhibitors may therefore show utility in preventing epigenetically-defined drug resistance.


Subject(s)
Drug Resistance/drug effects , Epigenesis, Genetic/drug effects , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Transcription Factors/antagonists & inhibitors , Aldehyde Dehydrogenase/genetics , Aldehyde Dehydrogenase 1 Family , Cell Line, Tumor , Drug Design , Drug Resistance, Neoplasm/drug effects , Humans , Molecular Docking Simulation , Pyridones/chemistry , Pyridones/pharmacology , Retinal Dehydrogenase , Transcription Factors/metabolism
6.
Bioorg Med Chem Lett ; 27(18): 4370-4376, 2017 09 15.
Article in English | MEDLINE | ID: mdl-28830649

ABSTRACT

Herein we report identification of an imidazopyridine class of potent and selective TYK2 inhibitors, exemplified by prototype 6, through constraint of the rotatable amide bond connecting the pyridine and aryl rings of compound 1. Further optimization led to generation of compound 30 that potently inhibits the TYK2 enzyme and the IL-23 pathway in cells, exhibits selectivity against cellular JAK2 activity, and has good pharmacokinetic properties. In mice, compound 30 demonstrated dose-dependent reduction of IL-17 production in a PK/PD model as well as in an imiquimod-induced psoriasis model. In this efficacy model, the IL-17 decrease was accompanied by a reduction of ear thickness indicating the potential of TYK2 inhibition as a therapeutic approach for psoriasis patients.


Subject(s)
Imidazoles/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyridines/pharmacology , TYK2 Kinase/antagonists & inhibitors , Dose-Response Relationship, Drug , Humans , Imidazoles/chemical synthesis , Imidazoles/chemistry , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyridines/chemical synthesis , Pyridines/chemistry , Structure-Activity Relationship , TYK2 Kinase/metabolism
7.
Bioorg Med Chem Lett ; 25(21): 4728-4732, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-26338362

ABSTRACT

A fragment-based lead discovery approach was used to discover novel ERK2 inhibitors. The crystal structure of N-benzyl-9H-purin-6-amine 1 in complex with ERK2 elucidated its hinge-binding mode. In addition, the simultaneous binding of an imidazole molecule adjacent to 1 suggested a direction for fragment expansion. Structure-based core hopping applied to 1 led to 5H-pyrrolo[3,2-b]pyrazine (3) that afforded direct vectors to probe the pockets of interest while retaining the essential hinge binding elements. Utilizing the new vectors for SAR exploration, the new core 3 was quickly optimized to compound 39 resulting in a greater than 6600-fold improvement in potency.


Subject(s)
Drug Discovery , Mitogen-Activated Protein Kinase 1/antagonists & inhibitors , Pyrazines/pharmacology , Pyrroles/pharmacology , Dose-Response Relationship, Drug , Humans , Mitogen-Activated Protein Kinase 1/metabolism , Models, Molecular , Molecular Structure , Pyrazines/chemical synthesis , Pyrazines/chemistry , Pyrroles/chemical synthesis , Pyrroles/chemistry , Structure-Activity Relationship
8.
J Immunol ; 191(5): 2205-16, 2013 Sep 01.
Article in English | MEDLINE | ID: mdl-23894201

ABSTRACT

TYK2 is a JAK family protein tyrosine kinase activated in response to multiple cytokines, including type I IFNs, IL-6, IL-10, IL-12, and IL-23. Extensive studies of mice that lack TYK2 expression indicate that the IFN-α, IL-12, and IL-23 pathways, but not the IL-6 or IL-10 pathways, are compromised. In contrast, there have been few studies of the role of TYK2 in primary human cells. A genetic mutation at the tyk2 locus that results in a lack of TYK2 protein in a single human patient has been linked to defects in the IFN-α, IL-6, IL-10, IL-12, and IL-23 pathways, suggesting a broad role for TYK2 protein in human cytokine responses. In this article, we have used a panel of novel potent TYK2 small-molecule inhibitors with varying degrees of selectivity against other JAK kinases to address the requirement for TYK2 catalytic activity in cytokine pathways in primary human cells. Our results indicate that the biological processes that require TYK2 catalytic function in humans are restricted to the IL-12 and IL-23 pathways, and suggest that inhibition of TYK2 catalytic activity may be an efficacious approach for the treatment of select autoimmune diseases without broad immunosuppression.


Subject(s)
Cytokines/immunology , Protein Kinase Inhibitors/pharmacology , Signal Transduction/immunology , TYK2 Kinase/immunology , TYK2 Kinase/metabolism , Animals , Cytokines/metabolism , Humans , Immunoblotting , Interleukin-12/immunology , Interleukin-12/metabolism , Interleukin-23/immunology , Interleukin-23/metabolism , Mice , Signal Transduction/drug effects
9.
Bioorg Med Chem Lett ; 24(11): 2448-52, 2014 Jun 01.
Article in English | MEDLINE | ID: mdl-24767842

ABSTRACT

There is evidence that small molecule inhibitors of the non-receptor tyrosine kinase ITK, a component of the T-cell receptor signaling cascade, could represent a novel asthma therapeutic class. Moreover, given the expected chronic dosing regimen of any asthma treatment, highly selective as well as potent inhibitors would be strongly preferred in any potential therapeutic. Here we report hit-to-lead optimization of a series of indazoles that demonstrate sub-nanomolar inhibitory potency against ITK with strong cellular activity and good kinase selectivity. We also elucidate the binding mode of these inhibitors by solving the X-ray crystal structures of the complexes.


Subject(s)
Drug Discovery , Indazoles/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Crystallography, X-Ray , Dose-Response Relationship, Drug , Humans , Indazoles/chemical synthesis , Indazoles/chemistry , Jurkat Cells , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Protein-Tyrosine Kinases/metabolism , Structure-Activity Relationship
10.
Bioorg Med Chem Lett ; 24(18): 4546-4552, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-25139565

ABSTRACT

MAP4K4 has been shown to regulate key cellular processes that are tied to disease pathogenesis. In an effort to generate small molecule MAP4K4 inhibitors, a fragment-based screen was carried out and a pyrrolotriazine fragment with excellent ligand efficiency was identified. Further modification of this fragment guided by X-ray crystal structures and molecular modeling led to the discovery of a series of promising compounds with good structural diversity and physicochemical properties. These compounds exhibited single digit nanomolar potency and compounds 35 and 44 achieved good in vivo exposure.


Subject(s)
Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Triazines/pharmacology , Animals , Crystallography, X-Ray , Dose-Response Relationship, Drug , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Ligands , Mice , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/metabolism , Structure-Activity Relationship , Triazines/chemical synthesis , Triazines/chemistry , NF-kappaB-Inducing Kinase
11.
Bioorg Med Chem Lett ; 23(11): 3149-53, 2013 Jun 01.
Article in English | MEDLINE | ID: mdl-23623490

ABSTRACT

Pim kinases are promising targets for the development of cancer therapeutics. Among the three Pim isoforms, Pim-2 is particularly important in multiple myeloma, yet is the most difficult to inhibit due to its high affinity for ATP. We identified compound 1 via high throughput screening. Using property-based drug design and co-crystal structures with Pim-1 kinase to guide analog design, we were able to improve potency against all three Pim isoforms including a significant 10,000-fold gain against Pim-2. Compound 17 is a novel lead with low picomolar potency on all three Pim kinase isoforms.


Subject(s)
Drug Design , Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins c-pim-1/antagonists & inhibitors , Pyrazoles/chemistry , Pyrimidines/chemistry , Animals , Binding Sites , Cell Line , Cell Survival/drug effects , Crystallography, X-Ray , Drug Evaluation, Preclinical , Humans , Kinetics , Mice , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/metabolism , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Protein Structure, Tertiary , Proto-Oncogene Proteins c-pim-1/metabolism , Pyrazoles/chemical synthesis , Pyrazoles/pharmacology , Pyrimidines/chemical synthesis , Pyrimidines/pharmacology , Structure-Activity Relationship
12.
ACS Med Chem Lett ; 14(9): 1179-1187, 2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37736184

ABSTRACT

Cyclin-dependent kinases (CDKs) are key regulators of the cell cycle and are frequently altered in cancer cells, thereby leading to uncontrolled proliferation. In this context, CDK2 has emerged as an appealing target for anticancer drug development. Herein, we describe the discovery of a series of selective small molecule inhibitors of CDK2 beginning with historical compounds from our ERK2 program (e.g., compound 6). Structure-based drug design led to the potent and selective tool compound 32, where excellent selectivity against ERK2 and CDK4 was achieved by filling the lipophilic DFG-1 pocket and targeting interactions with CDK2-specific lower hinge binding residues, respectively. Compound 32 demonstrated 112% tumor growth inhibition in mice bearing OVCAR3 tumors with 50 mg/kg bis in die (BID) oral dosing.

13.
J Med Chem ; 65(16): 11177-11186, 2022 08 25.
Article in English | MEDLINE | ID: mdl-35930799

ABSTRACT

Bromodomains are acetyllysine recognition domains present in a variety of human proteins. Bromodomains also bind small molecules that compete with acetyllysine, and therefore bromodomains have been targets for drug discovery efforts. Highly potent and selective ligands with good cellular permeability have been proposed as chemical probes for use in exploring the functions of many of the bromodomain proteins. We report here the discovery of a class of such inhibitors targeting the family VIII bromodomains of SMARCA2 (BRM) and SMARCA4 (BRG1), and PBRM1 (polybromo-1) bromodomain 5. We propose one example from this series, GNE-064, as a chemical probe for the bromodomains SMARCA2, SMARCA4, and PBRM1(5) with the potential for in vivo use.


Subject(s)
DNA Helicases , Transcription Factors , DNA-Binding Proteins , Humans , Nuclear Proteins , Protein Domains
14.
Proteins ; 79(2): 393-401, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21117080

ABSTRACT

Members of the JAK family of protein kinases mediate signal transduction from cytokine receptors to transcription factor activation. Over-stimulation of these pathways is causative in immune disorders like rheumatoid arthritis, psoriasis, lupus, and Crohn's disease. A search for selective inhibitors of a JAK kinase has led to our characterization of a previously unknown kinase conformation arising from presentation of Tyr962 of TYK2 to an inhibitory small molecule via an H-bonding interaction. A small minority of protein kinase domains has a Tyrosine residue in this position within the αC-ß4 loop, and it is the only amino acid commonly seen here with H-bonding potential. These discoveries will aid design of inhibitors that discriminate among the JAK family and more widely among protein kinases.


Subject(s)
TYK2 Kinase/chemistry , Catalytic Domain , Crystallography, X-Ray , Drug Design , Humans , Isoquinolines/chemistry , Models, Molecular , Mutation , Protein Binding , Protein Kinase Inhibitors/chemistry , Protein Structure, Tertiary , Quinolines/chemistry , Recombinant Proteins/antagonists & inhibitors , Recombinant Proteins/chemistry , TYK2 Kinase/antagonists & inhibitors , Thiophenes/chemistry
15.
ACS Med Chem Lett ; 12(8): 1230-1237, 2021 Aug 12.
Article in English | MEDLINE | ID: mdl-34413952

ABSTRACT

Transient receptor potential ankyrin 1 (TRPA1) antagonists have generated broad interest in the pharmaceutical industry for the treatment of both pain and asthma. Over the past decade, multiple antagonist classes have been reported in the literature with a wide range of structural diversity. Our own work has focused on the development of proline sulfonamide and hypoxanthine-based antagonists, two antagonist classes with distinct physicochemical properties and pharmacokinetic (PK) trends. Late in our discovery program, cryogenic electron microscopy (cryoEM) studies revealed two different antagonist binding sites: a membrane-exposed proline sulfonamide transmembrane site and an intracellular hypoxanthine site near the membrane interface. A retrospective look at the discovery program reveals how the different binding sites, and their location relative to the cell membrane, influenced the optimization trajectories and overall drug profiles of each antagonist class.

16.
J Med Chem ; 64(7): 3843-3869, 2021 04 08.
Article in English | MEDLINE | ID: mdl-33749283

ABSTRACT

Transient receptor potential ankyrin 1 (TRPA1) is a nonselective calcium-permeable ion channel highly expressed in the primary sensory neurons functioning as a polymodal sensor for exogenous and endogenous stimuli and has generated widespread interest as a target for inhibition due to its implication in neuropathic pain and respiratory disease. Herein, we describe the optimization of a series of potent, selective, and orally bioavailable TRPA1 small molecule antagonists, leading to the discovery of a novel tetrahydrofuran-based linker. Given the balance of physicochemical properties and strong in vivo target engagement in a rat AITC-induced pain assay, compound 20 was progressed into a guinea pig ovalbumin asthma model where it exhibited significant dose-dependent reduction of inflammatory response. Furthermore, the structure of the TRPA1 channel bound to compound 21 was determined via cryogenic electron microscopy to a resolution of 3 Å, revealing the binding site and mechanism of action for this class of antagonists.


Subject(s)
Asthma/drug therapy , Furans/therapeutic use , Purines/therapeutic use , TRPA1 Cation Channel/antagonists & inhibitors , Animals , Asthma/chemically induced , Asthma/complications , CHO Cells , Cricetulus , Furans/chemical synthesis , Furans/metabolism , Guinea Pigs , Humans , Inflammation/drug therapy , Inflammation/etiology , Ligands , Male , Molecular Structure , Ovalbumin , Oxadiazoles/chemical synthesis , Oxadiazoles/metabolism , Oxadiazoles/therapeutic use , Protein Binding , Purines/chemical synthesis , Purines/metabolism , Rats, Sprague-Dawley , Structure-Activity Relationship , TRPA1 Cation Channel/metabolism
17.
Cell Rep ; 27(1): 269-281.e4, 2019 04 02.
Article in English | MEDLINE | ID: mdl-30943407

ABSTRACT

Myeloid-derived suppressor cells (MDSCs) are found in most cancer malignancies and support tumorigenesis by suppressing immunity and promoting tumor growth. Here we identify the bromodomain (BRD) of CBP/EP300 as a critical regulator of H3K27 acetylation (H3K27ac) in MDSCs across promoters and enhancers of pro-tumorigenic target genes. In preclinical tumor models, in vivo administration of a CBP/EP300-BRD inhibitor (CBP/EP300-BRDi) alters intratumoral MDSCs and attenuates established tumor growth in immunocompetent tumor-bearing mice, as well as in MDSC-dependent xenograft models. Inhibition of CBP/EP300-BRD redirects tumor-associated MDSCs from a suppressive to an inflammatory phenotype through downregulation of STAT pathway-related genes and inhibition of Arg1 and iNOS. Similarly, CBP/EP300-BRDi decreases differentiation and suppressive function of human MDSCs in vitro. Our findings uncover a role of CBP/EP300-BRD in intratumoral MDSCs that may be targeted therapeutically to boost anti-tumor immunity.


Subject(s)
Carcinogenesis/metabolism , Histones/metabolism , Myeloid Cells/metabolism , p300-CBP Transcription Factors/metabolism , Acetylation , Animals , Arginase/genetics , Arginase/metabolism , Cell Line, Tumor , Cells, Cultured , Enhancer Elements, Genetic , Humans , Mice , Mice, Inbred BALB C , Mice, SCID , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Promoter Regions, Genetic , Protein Domains , STAT Transcription Factors/metabolism , p300-CBP Transcription Factors/chemistry
18.
Cancer Res ; 79(15): 3916-3927, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31182547

ABSTRACT

Regulatory T cells (Treg) are immunosuppressive and negatively impact response to cancer immunotherapies. CREB-binding protein (CBP) and p300 are closely related acetyltransferases and transcriptional coactivators. Here, we evaluate the mechanisms by which CBP/p300 regulate Treg differentiation and the consequences of CBP/p300 loss-of-function mutations in follicular lymphoma. Transcriptional and epigenetic profiling identified a cascade of transcription factors essential for Treg differentiation. Mass spectrometry analysis showed that CBP/p300 acetylates prostacyclin synthase, which regulates Treg differentiation by altering proinflammatory cytokine secretion by T and B cells. Reduced Treg presence in tissues harboring CBP/p300 loss-of-function mutations was observed in follicular lymphoma. Our findings provide novel insights into the regulation of Treg differentiation by CBP/p300, with potential clinical implications on alteration of the immune landscape. SIGNIFICANCE: This study provides insights into the dynamic role of CBP/p300 in the differentiation of Tregs, with potential clinical implications in the alteration of the immune landscape in follicular lymphoma.


Subject(s)
CREB-Binding Protein/immunology , E1A-Associated p300 Protein/immunology , Lymphoma, Follicular/immunology , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/immunology , Acetylation , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CREB-Binding Protein/antagonists & inhibitors , CREB-Binding Protein/genetics , Cell Differentiation/physiology , Down-Regulation , E1A-Associated p300 Protein/antagonists & inhibitors , E1A-Associated p300 Protein/genetics , Histones/metabolism , Humans , Lymphoma, Follicular/genetics , Lymphoma, Follicular/metabolism , Lymphoma, Follicular/pathology , Mutation , Pyrazoles/pharmacology , Pyridines/pharmacology , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/metabolism , Transcription, Genetic , Transcriptome
19.
Cell Rep ; 24(7): 1722-1729, 2018 08 14.
Article in English | MEDLINE | ID: mdl-30110629

ABSTRACT

Acetylation of histone H3 at lysine 27 is a well-defined marker of enhancer activity. However, the functional impact of this modification at enhancers is poorly understood. Here, we use a chemical genetics approach to acutely block the function of the cAMP response element binding protein (CREB) binding protein (CBP)/P300 bromodomain in models of hematological malignancies and describe a consequent loss of H3K27Ac specifically from enhancers, despite the continued presence of CBP/P300 at chromatin. Using this approach to dissect the role of H3K27Ac at enhancers, we identify a critical role for this modification in the production of enhancer RNAs and transcription of enhancer-regulated gene networks.


Subject(s)
Enhancer Elements, Genetic , Histones/metabolism , Protein Processing, Post-Translational , RNA, Neoplasm/genetics , p300-CBP Transcription Factors/genetics , Acetylation , Binding Sites , Cell Line, Tumor , Chromatin/chemistry , Chromatin/metabolism , Hematologic Neoplasms/genetics , Hematologic Neoplasms/metabolism , Histones/genetics , Humans , Lysine/metabolism , Protein Binding , Protein Domains , RNA, Neoplasm/metabolism , Transcription, Genetic , p300-CBP Transcription Factors/metabolism
20.
J Med Chem ; 61(20): 9301-9315, 2018 10 25.
Article in English | MEDLINE | ID: mdl-30289257

ABSTRACT

The biological functions of the dual bromodomains of human transcription-initiation-factor TFIID subunit 1 (TAF1(1,2)) remain unknown, although TAF1 has been identified as a potential target for oncology research. Here, we describe the discovery of a potent and selective in vitro tool compound for TAF1(2), starting from a previously reported lead. A cocrystal structure of lead compound 2 bound to TAF1(2) enabled structure-based design and structure-activity-relationship studies that ultimately led to our in vitro tool compound, 27 (GNE-371). Compound 27 binds TAF1(2) with an IC50 of 10 nM while maintaining excellent selectivity over other bromodomain-family members. Compound 27 is also active in a cellular-TAF1(2) target-engagement assay (IC50 = 38 nM) and exhibits antiproliferative synergy with the BET inhibitor JQ1, suggesting engagement of endogenous TAF1 by 27 and further supporting the use of 27 in mechanistic and target-validation studies.


Subject(s)
Benzimidazoles/metabolism , Drug Design , Molecular Probes/metabolism , Transcription Factor TFIID/chemistry , Transcription Factor TFIID/metabolism , Humans , Models, Molecular , Protein Conformation , Protein Domains
SELECTION OF CITATIONS
SEARCH DETAIL