Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
Proc Natl Acad Sci U S A ; 120(44): e2306177120, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37871210

ABSTRACT

Lepidopterans affect crop production worldwide. The use of transgenes encoding insecticidal proteins from Bacillus thuringiensis (Bt) in crop plants is a well-established technology that enhances protection against lepidopteran larvae. Concern about widespread field-evolved resistance to Bt proteins has highlighted an urgent need for new insecticidal proteins with different modes or sites of action. We discovered a new family of insecticidal proteins from ferns. The prototype protein from Pteris species (Order Polypodiales) and variants from two other orders of ferns, Schizaeales and Ophioglossales, were effective against important lepidopteran pests of maize and soybean in diet-based assays. Transgenic maize and soybean plants producing these proteins were more resistant to insect damage than controls. We report here the crystal structure of a variant of the prototype protein to 1.98 Å resolution. Remarkably, despite being derived from plants, the structure resembles the 3-domain Cry proteins from Bt but has only two out of three of their characteristic domains, lacking the C-terminal domain which is typically required for their activities. Two of the fern proteins were effective against strains of fall armyworm that were resistant to Bt 3-domain Cry proteins Cry1Fa or Cry2A.127. This therefore represents a novel family of insecticidal proteins that have the potential to provide future tools for pest control.


Subject(s)
Bacillus thuringiensis , Ferns , Insecticides , Tracheophyta , Animals , Insecticides/metabolism , Bacillus thuringiensis/genetics , Bacillus thuringiensis/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Pest Control, Biological , Endotoxins/genetics , Endotoxins/metabolism , Hemolysin Proteins/genetics , Hemolysin Proteins/metabolism , Tracheophyta/metabolism , Zea mays/metabolism
2.
EMBO Rep ; 24(8): e56430, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37272231

ABSTRACT

Human Tim8a and Tim8b are paralogous intermembrane space proteins of the small TIM chaperone family. Yeast small TIMs function in the trafficking of proteins to the outer and inner mitochondrial membranes. This putative import function for hTim8a and hTim8b has been challenged in human models, but their precise molecular function(s) remains undefined. Likewise, the necessity for human cells to encode two Tim8 proteins and whether any potential redundancy exists is unclear. We demonstrate that hTim8a and hTim8b function in the assembly of cytochrome c oxidase (Complex IV). Using affinity enrichment mass spectrometry, we define the interaction network of hTim8a, hTim8b and hTim13, identifying subunits and assembly factors of the Complex IV COX2 module. hTim8-deficient cells have a COX2 and COX3 module defect and exhibit an accumulation of the Complex IV S2 subcomplex. These data suggest that hTim8a and hTim8b function in assembly of Complex IV via interactions with intermediate-assembly subcomplexes. We propose that hTim8-hTim13 complexes are auxiliary assembly factors involved in the formation of the Complex IV S3 subcomplex during assembly of mature Complex IV.


Subject(s)
Mitochondrial Membrane Transport Proteins , Saccharomyces cerevisiae Proteins , Humans , Mitochondrial Membrane Transport Proteins/metabolism , Electron Transport Complex IV/genetics , Electron Transport Complex IV/metabolism , Mitochondrial Precursor Protein Import Complex Proteins , Cyclooxygenase 2/analysis , Cyclooxygenase 2/metabolism , Mitochondrial Membranes/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Mitochondrial Proteins/metabolism
3.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Article in English | MEDLINE | ID: mdl-35210360

ABSTRACT

Cytochrome c oxidase (COX) assembly factor 7 (COA7) is a metazoan-specific assembly factor, critical for the biogenesis of mitochondrial complex IV (cytochrome c oxidase). Although mutations in COA7 have been linked to complex IV assembly defects and neurological conditions such as peripheral neuropathy, ataxia, and leukoencephalopathy, the precise role COA7 plays in the biogenesis of complex IV is not known. Here, we show that loss of COA7 blocks complex IV assembly after the initial step where the COX1 module is built, progression from which requires the incorporation of copper and addition of the COX2 and COX3 modules. The crystal structure of COA7, determined to 2.4 Å resolution, reveals a banana-shaped molecule composed of five helix-turn-helix (α/α) repeats, tethered by disulfide bonds. COA7 interacts transiently with the copper metallochaperones SCO1 and SCO2 and catalyzes the reduction of disulfide bonds within these proteins, which are crucial for copper relay to COX2. COA7 binds heme with micromolar affinity, through axial ligation to the central iron atom by histidine and methionine residues. We therefore propose that COA7 is a heme-binding disulfide reductase for regenerating the copper relay system that underpins complex IV assembly.


Subject(s)
Copper/metabolism , Electron Transport Complex IV/metabolism , Heme-Binding Proteins/metabolism , Mitochondria/enzymology , Mitochondrial Proteins/metabolism , Oxidoreductases/metabolism , Binding Sites , HEK293 Cells , Humans , Mitochondrial Proteins/chemistry , Structure-Activity Relationship
4.
Biochemistry ; 62(9): 1484-1496, 2023 05 02.
Article in English | MEDLINE | ID: mdl-37014173

ABSTRACT

The nematode Caenorhabditis elegans contains genes for two types of ferritin (ftn-1 and ftn-2) that express FTN-1 and FTN-2. We have expressed and purified both proteins and characterized them by X-ray crystallography, cryo-electron microscopy, transmission electron microscopy, dynamic light scattering, and kinetically by oxygen electrode and UV-vis spectroscopy. Both show ferroxidase activity, but although they have identical ferroxidase active sites, FTN-2 is shown to react approximately 10 times faster than FTN-1, with L-type ferritin character over longer time periods. We hypothesize that the large variation in rate may be due to differences in the three- and four-fold channels into the interior of the protein 24-mer. FTN-2 is shown to have a wider entrance into the three-fold channel than FTN-1. Additionally, the charge gradient through the channel of FTN-2 is more pronounced, with Asn and Gln residues in FTN-1 replaced by Asp and Glu residues in FTN-2. Both FTN-1 and FTN-2 have an Asn residue near the ferroxidase active site that is a Val in most other species, including human H ferritin. This Asn residue has been observed before in ferritin from the marine pennate diatom Pseudo-mitzchia multiseries. By replacing this Asn residue with a Val in FTN-2, we show that the reactivity decreases over long time scales. We therefore propose that Asn106 is involved in iron transport from the ferroxidase active site to the central cavity of the protein.


Subject(s)
Caenorhabditis elegans , Ferritins , Animals , Humans , Ferritins/chemistry , Caenorhabditis elegans/metabolism , Iron/chemistry , Ceruloplasmin/metabolism , Cryoelectron Microscopy
5.
Biochemistry ; 60(6): 465-476, 2021 02 16.
Article in English | MEDLINE | ID: mdl-33538578

ABSTRACT

The anaerobic bacterium Chrysiogenes arsenatis respires using the oxyanion arsenate (AsO43-) as the terminal electron acceptor, where it is reduced to arsenite (AsO33-) while concomitantly oxidizing various organic (e.g., acetate) electron donors. This respiratory activity is catalyzed in the periplasm of the bacterium by the enzyme arsenate reductase (Arr), with expression of the enzyme controlled by a sensor histidine kinase (ArrS) and a periplasmic-binding protein (PBP), ArrX. Here, we report for the first time, the molecular structure of ArrX in the absence and presence of bound ligand arsenate. Comparison of the ligand-bound structure of ArrX with other PBPs shows a high level of conservation of critical residues for ligand binding by these proteins; however, this suite of PBPs shows different structural alterations upon ligand binding. For ArrX and its homologue AioX (from Rhizobium sp. str. NT-26), which specifically binds arsenite, the structures of the substrate-binding sites in the vicinity of a conserved and critical cysteine residue contribute to the discrimination of binding for these chemically similar ligands.


Subject(s)
Arsenate Reductases/chemistry , Bacteria/metabolism , Amino Acid Sequence/genetics , Arsenate Reductases/metabolism , Arsenates/chemistry , Arsenates/metabolism , Bacteria/chemistry , Base Composition/genetics , Binding Sites , Catalysis , Crystallography, X-Ray/methods , Histidine Kinase/metabolism , Oxidoreductases/metabolism , Periplasm/metabolism , Periplasmic Binding Proteins/chemistry , Periplasmic Binding Proteins/metabolism , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA/methods
6.
Proc Natl Acad Sci U S A ; 115(12): 2982-2987, 2018 03 20.
Article in English | MEDLINE | ID: mdl-29514959

ABSTRACT

Succinate:quinone oxidoreductase (SQR) functions in energy metabolism, coupling the tricarboxylic acid cycle and electron transport chain in bacteria and mitochondria. The biogenesis of flavinylated SdhA, the catalytic subunit of SQR, is assisted by a highly conserved assembly factor termed SdhE in bacteria via an unknown mechanism. By using X-ray crystallography, we have solved the structure of Escherichia coli SdhE in complex with SdhA to 2.15-Å resolution. Our structure shows that SdhE makes a direct interaction with the flavin adenine dinucleotide-linked residue His45 in SdhA and maintains the capping domain of SdhA in an "open" conformation. This displaces the catalytic residues of the succinate dehydrogenase active site by as much as 9.0 Å compared with SdhA in the assembled SQR complex. These data suggest that bacterial SdhE proteins, and their mitochondrial homologs, are assembly chaperones that constrain the conformation of SdhA to facilitate efficient flavinylation while regulating succinate dehydrogenase activity for productive biogenesis of SQR.


Subject(s)
Electron Transport Complex II/metabolism , Escherichia coli Proteins/chemistry , Flavoproteins/chemistry , Bacterial Proteins , Crystallization , Crystallography, X-Ray , Electron Transport Complex II/genetics , Escherichia coli , Escherichia coli Proteins/ultrastructure , Flavoproteins/ultrastructure , Models, Molecular , Protein Binding , Protein Conformation , Protein Domains , Strobilurins
7.
Int J Mol Sci ; 21(19)2020 Sep 23.
Article in English | MEDLINE | ID: mdl-32977416

ABSTRACT

Complex IV (cytochrome c oxidase; COX) is the terminal complex of the mitochondrial electron transport chain. Copper is essential for COX assembly, activity, and stability, and is incorporated into the dinuclear CuA and mononuclear CuB sites. Multiple assembly factors play roles in the biogenesis of these sites within COX and the failure of this intricate process, such as through mutations to these factors, disrupts COX assembly and activity. Various studies over the last ten years have revealed that the assembly factor COA6, a small intermembrane space-located protein with a twin CX9C motif, plays a role in the biogenesis of the CuA site. However, how COA6 and its copper binding properties contribute to the assembly of this site has been a controversial area of research. In this review, we summarize our current understanding of the molecular mechanisms by which COA6 participates in COX biogenesis.


Subject(s)
Carrier Proteins/metabolism , Copper/metabolism , Electron Transport Complex IV/metabolism , Metalloproteins/metabolism , Mitochondrial Proteins/metabolism , Molecular Chaperones/metabolism , Amino Acid Motifs , Animals , Carrier Proteins/genetics , Electron Transport Complex IV/genetics , Humans , Metalloproteins/genetics , Mitochondrial Proteins/genetics , Molecular Chaperones/genetics
8.
Protein Expr Purif ; 160: 11-18, 2019 08.
Article in English | MEDLINE | ID: mdl-30878602

ABSTRACT

Bacteria contain sigma (σ) factors that control gene expression in response to various environmental stimuli. The alternative sigma factors σFpvI and σPvdS bind specifically to the antisigma factor FpvR. These proteins are an essential component of the pyoverdine-based system for iron uptake in Pseudomonas aeruginosa. Due to the uniqueness of this system, where the activities of both the σFpvI and σPvdS sigma factors are regulated by the same antisigma factor, the interactions between the antisigma protein FpvR20 and the σFpvI and σPvdS proteins have been widely studied in vivo. However, difficulties in obtaining soluble, recombinant preparations of the σFpvI and σPvdS proteins have limited their biochemical and structural characterizations. In this study, we describe a purification protocol that resulted in the production of soluble, recombinant His6-σFpvI/FpvR1-67, His6-σFpvI/FpvR1-89, His6-σPvdS/FpvR1-67 and His6-σPvdS/FpvR1-89 protein complexes (where FpvR1-67 and FpvR1-89 are truncated versions of FpvR20) at high purities and concentrations, appropriate for biophysical analyses by circular dichroism spectroscopy and analytical ultracentrifugation. These results showed the proteins to be folded in solution and led to the determination of the affinities of the protein-protein interactions within the His6-σFpvI/FpvR1-67 and His6-σPvdS/FpvR1-67 complexes. A comparison of these values with those previously reported for the His6-σFpvI/FpvR1-89 and His6-σPvdS/FpvR1-89 complexes is made.


Subject(s)
Bacterial Proteins/isolation & purification , Pseudomonas aeruginosa/metabolism , Sigma Factor/isolation & purification , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Protein Binding , Protein Folding , Pseudomonas aeruginosa/chemistry , Pseudomonas aeruginosa/genetics , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/isolation & purification , Recombinant Fusion Proteins/metabolism , Sigma Factor/chemistry , Sigma Factor/genetics , Sigma Factor/metabolism , Temperature
9.
Biochim Biophys Acta Bioenerg ; 1859(1): 19-27, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28986298

ABSTRACT

A central conserved arginine, first identified as a clinical mutation leading to sulfite oxidase deficiency, is essential for catalytic competency of sulfite oxidizing molybdoenzymes, but the molecular basis for its effects on turnover and substrate affinity have not been fully elucidated. We have used a bacterial sulfite dehydrogenase, SorT, which lacks an internal heme group, but transfers electrons to an external, electron accepting cytochrome, SorU, to investigate the molecular functions of this arginine residue (Arg78). Assay of the SorT Mo centre catalytic competency in the absence of SorU showed that substitutions in the central arginine (R78Q, R78K and R78M mutations) only moderately altered SorT catalytic properties, except for R78M which caused significant reduction in SorT activity. The substitutions also altered the Mo-centre redox potentials (MoVI/V potential lowered by ca. 60-80mV). However, all Arg78 mutations significantly impaired the ability of SorT to transfer electrons to SorU, where activities were reduced 17 to 46-fold compared to SorTWT, precluding determination of kinetic parameters. This was accompanied by the observation of conformational changes in both the introduced Gln and Lys residues in the crystal structure of the enzymes. Taking into account data collected by others on related SOE mutations we propose that the formation and maintenance of an electron transfer complex between the Mo centre and electron accepting heme groups is the main function of the central arginine, and that the reduced turnover and increases in KMsulfite are caused by the inefficient operation of the oxidative half reaction of the catalytic cycle in enzymes carrying these mutations.


Subject(s)
Arginine/chemistry , Bacterial Proteins/chemistry , Sinorhizobium meliloti/enzymology , Sulfite Dehydrogenase/chemistry , Amino Acid Substitution , Arginine/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Catalytic Domain , Electron Transport , Kinetics , Molybdenum , Mutation, Missense , Oxidation-Reduction , Sinorhizobium meliloti/genetics , Sulfite Dehydrogenase/genetics , Sulfite Dehydrogenase/metabolism
10.
Mol Microbiol ; 106(6): 891-904, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28971540

ABSTRACT

Alternative sigma (σ) factors govern expression of bacterial genes in response to diverse environmental signals. In Pseudomonas aeruginosa σPvdS directs expression of genes for production of a siderophore, pyoverdine, as well as a toxin and a protease. σFpvI directs expression of a receptor for ferripyoverdine import. Expression of the genes encoding σPvdS and σFpvI is iron-regulated and an antisigma protein, FpvR20 , post-translationally controls the activities of the sigma factors in response to the amount of ferripyoverdine present. Here we show that iron represses synthesis of σPvdS to a far greater extent than σFpvI . In contrast ferripyoverdine exerts similar effects on the activities of both sigma factors. Using a combination of in vivo and in vitro assays we show that σFpvI and σPvdS have comparable affinities for, and are equally inhibited by, FpvR20 . Importantly, in the absence of ferripyoverdine the amount of FpvR20 per cell is lower than the amount of σFpvI and σPvdS , allowing basal expression of target genes that is required to activate the signalling pathway when ferripyoverdine is present. This complex interplay of transcriptional and post-translational regulation enables a co-ordinated response to ferripyoverdine but distinct responses to iron.


Subject(s)
Bacterial Proteins/metabolism , Iron/metabolism , Pseudomonas aeruginosa/metabolism , Repressor Proteins/metabolism , Sigma Factor/metabolism , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/metabolism , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial , Iron Chelating Agents , Oligopeptides/genetics , Oligopeptides/metabolism , Protein Binding , Pseudomonas aeruginosa/genetics , Regulatory Elements, Transcriptional , Repressor Proteins/genetics , Siderophores/genetics , Siderophores/metabolism , Sigma Factor/antagonists & inhibitors , Sigma Factor/genetics
11.
Hum Mol Genet ; 24(19): 5404-15, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26160915

ABSTRACT

Biogenesis of complex IV of the mitochondrial respiratory chain requires assembly factors for subunit maturation, co-factor attachment and stabilization of intermediate assemblies. A pathogenic mutation in COA6, leading to substitution of a conserved tryptophan for a cysteine residue, results in a loss of complex IV activity and cardiomyopathy. Here, we demonstrate that the complex IV defect correlates with a severe loss in complex IV assembly in patient heart but not fibroblasts. Complete loss of COA6 activity using gene editing in HEK293T cells resulted in a profound growth defect due to complex IV deficiency, caused by impaired biogenesis of the copper-bound mitochondrial DNA-encoded subunit COX2 and subsequent accumulation of complex IV assembly intermediates. We show that the pathogenic mutation in COA6 does not affect its import into mitochondria but impairs its maturation and stability. Furthermore, we show that COA6 has the capacity to bind copper and can associate with newly translated COX2 and the mitochondrial copper chaperone SCO1. Our data reveal that COA6 is intricately involved in the copper-dependent biogenesis of COX2.


Subject(s)
Cardiomyopathies/genetics , Carrier Proteins/genetics , Electron Transport Complex IV/genetics , Membrane Proteins/metabolism , Mitochondrial Proteins/genetics , Carrier Proteins/metabolism , Copper/metabolism , Electron Transport Complex IV/metabolism , Fibroblasts/cytology , Fibroblasts/enzymology , HEK293 Cells , Humans , Infant , Male , Mitochondrial Proteins/metabolism , Molecular Chaperones
12.
Proc Natl Acad Sci U S A ; 109(38): 15247-52, 2012 Sep 18.
Article in English | MEDLINE | ID: mdl-22949654

ABSTRACT

Bioenergy is efficiently produced in the mitochondria by the respiratory system consisting of complexes I-V. In various organisms, complex I can be replaced by the alternative NADH-quinone oxidoreductase (NDH-2), which catalyzes the transfer of an electron from NADH via FAD to quinone, without proton pumping. The Ndi1 protein from Saccharomyces cerevisiae is a monotopic membrane protein, directed to the matrix. A number of studies have investigated the potential use of Ndi1 as a therapeutic agent against complex I disorders, and the NDH-2 enzymes have emerged as potential therapeutic targets for treatments against the causative agents of malaria and tuberculosis. Here we present the crystal structures of Ndi1 in its substrate-free, NAD(+)- and ubiquinone- (UQ2) complexed states. The structures reveal that Ndi1 is a peripheral membrane protein forming an intimate dimer, in which packing of the monomeric units within the dimer creates an amphiphilic membrane-anchor domain structure. Crucially, the structures of the Ndi1-NAD(+) and Ndi1-UQ2 complexes show overlapping binding sites for the NAD(+) and quinone substrates.


Subject(s)
Electron Transport Complex I/chemistry , Lipids/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Binding Sites , Catalytic Domain , Crystallography, X-Ray/methods , Cytoplasm/metabolism , Dimerization , Electrons , Escherichia coli/metabolism , Molecular Conformation , Mutation , Protein Structure, Tertiary , Protons , Quinones/chemistry , Saccharomyces cerevisiae/metabolism , Static Electricity , Water/chemistry
13.
Biophys J ; 107(12): L45-L48, 2014 Dec 16.
Article in English | MEDLINE | ID: mdl-25517170

ABSTRACT

The release of GDP from GTPases signals the initiation of a GTPase cycle, where the association of GTP triggers conformational changes promoting binding of downstream effector molecules. Studies have implicated the nucleotide-binding G5 loop to be involved in the GDP release mechanism. For example, biophysical studies on both the eukaryotic Gα proteins and the GTPase domain (NFeoB) of prokaryotic FeoB proteins have revealed conformational changes in the G5 loop that accompany nucleotide binding and release. However, it is unclear whether this conformational change in the G5 loop is a prerequisite for GDP release, or, alternatively, the movement is a consequence of release. To gain additional insight into the sequence of events leading to GDP release, we have created a chimeric protein comprised of Escherichia coli NFeoB and the G5 loop from the human Giα1 protein. The protein chimera retains GTPase activity at a similar level to wild-type NFeoB, and structural analyses of the nucleotide-free and GDP-bound proteins show that the G5 loop adopts conformations analogous to that of the human nucleotide-bound Giα1 protein in both states. Interestingly, isothermal titration calorimetry and stopped-flow kinetic analyses reveal uncoupled nucleotide affinity and release rates, supporting a model where G5 loop movement promotes nucleotide release.


Subject(s)
GTP-Binding Protein alpha Subunits, Gi-Go/chemistry , Guanosine Diphosphate/metabolism , Amino Acid Sequence , Cation Transport Proteins/chemistry , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , GTP-Binding Protein alpha Subunits, Gi-Go/genetics , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , Guanosine Diphosphate/chemistry , Humans , Molecular Sequence Data , Protein Binding , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
14.
Cell Mol Life Sci ; 70(6): 977-92, 2013 Mar.
Article in English | MEDLINE | ID: mdl-22907414

ABSTRACT

SoxAX cytochromes are heme-thiolate proteins that play a key role in bacterial thiosulfate oxidation, where they initiate the reaction cycle of a multi-enzyme complex by catalyzing the attachment of sulfur substrates such as thiosulfate to a conserved cysteine present in a carrier protein. SoxAX proteins have a wide phylogenetic distribution and form a family with at least three distinct types of SoxAX protein. The types of SoxAX cytochromes differ in terms of the number of heme groups present in the proteins (there are diheme and triheme versions) as well as in their subunit structure. While two of the SoxAX protein types are heterodimers, the third group contains an additional subunit, SoxK, that stabilizes the complex of the SoxA and SoxX proteins. Crystal structures are available for representatives of the two heterodimeric SoxAX protein types and both of these have shown that the cysteine ligand to the SoxA active site heme carries a modification to a cysteine persulfide that implicates this ligand in catalysis. EPR studies of SoxAX proteins have also revealed a high complexity of heme dependent signals associated with this active site heme; however, the exact mechanism of catalysis is still unclear at present, as is the exact number and types of redox centres involved in the reaction.


Subject(s)
Bacteria/chemistry , Bacterial Proteins/metabolism , Cytochromes/metabolism , Models, Molecular , Protein Conformation , Amino Acid Sequence , Bacterial Proteins/chemistry , Catalytic Domain/genetics , Cluster Analysis , Cytochromes/chemistry , Dimerization , Electron Spin Resonance Spectroscopy , Heme/metabolism , Molecular Sequence Data , Oxidation-Reduction , Phylogeny , Signal Transduction/physiology , Thiosulfates/metabolism
15.
EMBO J ; 28(17): 2677-85, 2009 Sep 02.
Article in English | MEDLINE | ID: mdl-19629046

ABSTRACT

G proteins are key molecular switches in the regulation of membrane protein function and signal transduction. The prokaryotic membrane protein FeoB is involved in G protein coupled Fe(2+) transport, and is unique in that the G protein is directly tethered to the membrane domain. Here, we report the structure of the soluble domain of FeoB, including the G protein domain, and its assembly into an unexpected trimer. Comparisons between nucleotide free and liganded structures reveal the closed and open state of a central cytoplasmic pore, respectively. In addition, these data provide the first observation of a conformational switch in the nucleotide-binding G5 motif, defining the structural basis for GDP release. From these results, structural parallels are drawn to eukaryotic G protein coupled membrane processes.


Subject(s)
Cation Transport Proteins/chemistry , Escherichia coli Proteins/chemistry , GTP-Binding Proteins/chemistry , Guanosine Diphosphate/metabolism , Iron/metabolism , Binding Sites , Biological Transport , Cation Transport Proteins/metabolism , Cytoplasm/metabolism , Escherichia coli Proteins/metabolism , GTP-Binding Proteins/metabolism , Guanosine Diphosphate/chemistry , Models, Molecular , Protein Conformation , Signal Transduction
16.
EMBO J ; 28(23): 3771-9, 2009 Dec 02.
Article in English | MEDLINE | ID: mdl-19893485

ABSTRACT

Vacuolar-type ATPases (V-ATPases) exist in various cellular membranes of many organisms to regulate physiological processes by controlling the acidic environment. Here, we have determined the crystal structure of the A(3)B(3) subcomplex of V-ATPase at 2.8 A resolution. The overall construction of the A(3)B(3) subcomplex is significantly different from that of the alpha(3)beta(3) sub-domain in F(o)F(1)-ATP synthase, because of the presence of a protruding 'bulge' domain feature in the catalytic A subunits. The A(3)B(3) subcomplex structure provides the first molecular insight at the catalytic and non-catalytic interfaces, which was not possible in the structures of the separate subunits alone. Specifically, in the non-catalytic interface, the B subunit seems to be incapable of binding ATP, which is a marked difference from the situation indicated by the structure of the F(o)F(1)-ATP synthase. In the catalytic interface, our mutational analysis, on the basis of the A(3)B(3) structure, has highlighted the presence of a cluster composed of key hydrophobic residues, which are essential for ATP hydrolysis by V-ATPases.


Subject(s)
Protein Subunits/chemistry , Thermus thermophilus/enzymology , Vacuolar Proton-Translocating ATPases/chemistry , Adenosine Triphosphate/chemistry , Bacillus/enzymology , Bacillus/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Catalytic Domain/genetics , Crystallization , Crystallography, X-Ray , Hydrolysis , Hydrophobic and Hydrophilic Interactions , Mutagenesis, Site-Directed , Protein Structure, Tertiary/genetics , Protein Subunits/genetics , Protein Subunits/metabolism , Thermus thermophilus/genetics , Vacuolar Proton-Translocating ATPases/genetics , Vacuolar Proton-Translocating ATPases/metabolism
17.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 69(Pt 4): 399-404, 2013 Apr 01.
Article in English | MEDLINE | ID: mdl-23545645

ABSTRACT

FeoB is a transmembrane protein involved in ferrous iron uptake in prokaryotic organisms. FeoB comprises a cytoplasmic soluble domain termed NFeoB and a C-terminal polytopic transmembrane domain. Recent structures of NFeoB have revealed two structural subdomains: a canonical GTPase domain and a five-helix helical domain. The GTPase domain hydrolyses GTP to GDP through a well characterized mechanism, a process which is required for Fe(2+) transport. In contrast, the precise role of the helical domain has not yet been fully determined. Here, the structure of the cytoplasmic domain of FeoB from Gallionella capsiferriformans is reported. Unlike recent structures of NFeoB, the G. capsiferriformans NFeoB structure is highly unusual in that it does not contain a helical domain. The crystal structures of both apo and GDP-bound protein forms a domain-swapped dimer.


Subject(s)
GTP Phosphohydrolases/chemistry , Gallionellaceae/enzymology , Membrane Proteins/chemistry , Protein Multimerization , Amino Acid Sequence , Crystallography, X-Ray , Models, Molecular , Molecular Sequence Data , Protein Structure, Quaternary , Protein Structure, Tertiary , Sequence Alignment , Structural Homology, Protein
18.
Acta Crystallogr D Struct Biol ; 79(Pt 4): 345-352, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36995233

ABSTRACT

The arsenite oxidase (AioAB) from Pseudorhizobium banfieldiae sp. strain NT-26 catalyzes the oxidation of arsenite to arsenate and transfers electrons to its cognate electron acceptor cytochrome c552 (cytc552). This activity underpins the ability of this organism to respire using arsenite present in contaminated environments. The crystal structure of the AioAB/cytc552 electron transfer complex reveals two A2B2/(cytc552)2 assemblies per asymmetric unit. Three of the four cytc552 molecules in the asymmetric unit dock to AioAB in a cleft at the interface between the AioA and AioB subunits, with an edge-to-edge distance of 7.5 Šbetween the heme of cytc552 and the [2Fe-2S] Rieske cluster in the AioB subunit. The interface between the AioAB and cytc552 proteins features electrostatic and nonpolar interactions and is stabilized by two salt bridges. A modest number of hydrogen bonds, salt bridges and relatively small, buried surface areas between protein partners are typical features of transient electron transfer complexes. Interestingly, the fourth cytc552 molecule is positioned differently between two AioAB heterodimers, with distances between its heme and the AioAB redox active cofactors that are outside the acceptable range for fast electron transfer. This unique cytc552 molecule appears to be positioned to facilitate crystal packing rather than reflecting a functional complex.


Subject(s)
Arsenites , Cytochromes c , Cytochromes c/metabolism , Arsenites/metabolism , Electrons , Oxidation-Reduction
19.
J Biol Chem ; 286(28): 24872-81, 2011 Jul 15.
Article in English | MEDLINE | ID: mdl-21592966

ABSTRACT

SoxAX cytochromes catalyze the formation of heterodisulfide bonds between inorganic sulfur compounds and a carrier protein, SoxYZ. They contain unusual His/Cys-ligated heme groups with complex spectroscopic signatures. The heme-ligating cysteine has been implicated in SoxAX catalysis, but neither the SoxAX spectroscopic properties nor its catalysis are fully understood at present. We have solved the first crystal structure for a group 2 SoxAX protein (SnSoxAX), where an N-terminal extension of SoxX forms a novel structure that supports dimer formation. Crystal structures of SoxAX with a heme ligand substitution (C236M) uncovered an inherent flexibility of this SoxA heme site, with both bonding distances and relative ligand orientation differing between asymmetric units and the new residue, Met(236), representing an unusual rotamer of methionine. The flexibility of the SnSoxAX(C236M) SoxA heme environment is probably the cause of the four distinct, new EPR signals, including a high spin ferric heme form, that were observed for the enzyme. Despite the removal of the catalytically active cysteine heme ligand and drastic changes in the redox potential of the SoxA heme (WT, -479 mV; C236M, +85 mV), the substituted enzyme was catalytically active in glutathione-based assays although with reduced turnover numbers (WT, 3.7 s(-1); C236M, 2.0 s(-1)). SnSoxAX(C236M) was also active in assays using SoxYZ and thiosulfate as the sulfur substrate, suggesting that Cys(236) aids catalysis but is not crucial for it. The SoxYZ-based SoxAX assay is the first assay for an isolated component of the Sox multienzyme system.


Subject(s)
Bacterial Proteins/chemistry , Cytochrome c Group/chemistry , Gram-Negative Aerobic Rods and Cocci/enzymology , Oxidoreductases/chemistry , Protein Multimerization/physiology , Amino Acid Substitution , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Catalysis , Catalytic Domain/physiology , Crystallography, X-Ray , Cytochrome c Group/genetics , Cytochrome c Group/metabolism , Escherichia coli/enzymology , Escherichia coli/genetics , Gram-Negative Aerobic Rods and Cocci/genetics , Heme/chemistry , Heme/genetics , Heme/metabolism , Mutation, Missense , Oxidoreductases/genetics , Oxidoreductases/metabolism , Protein Structure, Quaternary , Rhodobacter capsulatus/enzymology , Rhodobacter capsulatus/genetics , Structure-Activity Relationship
20.
Cell Rep ; 38(2): 110202, 2022 01 11.
Article in English | MEDLINE | ID: mdl-35021083

ABSTRACT

Streptococcus pneumoniae is the primary cause of community-acquired bacterial pneumonia with rates of penicillin and multidrug-resistance exceeding 80% and 40%, respectively. The innate immune response generates a variety of antimicrobial agents to control infection, including zinc stress. Here, we characterize the impact of zinc intoxication on S. pneumoniae, observing disruptions in central carbon metabolism, lipid biogenesis, and peptidoglycan biosynthesis. Characterization of the pivotal peptidoglycan biosynthetic enzyme GlmU indicates a sensitivity to zinc inhibition. Disruption of the sole zinc efflux pathway, czcD, renders S. pneumoniae highly susceptible to ß-lactam antibiotics. To dysregulate zinc homeostasis in the wild-type strain, we investigated the safe-for-human-use ionophore 5,7-dichloro-2-[(dimethylamino)methyl]quinolin-8-ol (PBT2). PBT2 rendered wild-type S. pneumoniae strains sensitive to a range of antibiotics. Using an invasive ampicillin-resistant strain, we demonstrate in a murine pneumonia infection model the efficacy of PBT2 + ampicillin treatment. These findings present a therapeutic modality to break antibiotic resistance in multidrug-resistant S. pneumoniae.


Subject(s)
Ampicillin Resistance/physiology , Streptococcus pneumoniae/metabolism , Zinc/metabolism , Ampicillin/pharmacology , Ampicillin Resistance/genetics , Animals , Anti-Bacterial Agents/pharmacology , Clioquinol/analogs & derivatives , Clioquinol/pharmacology , Disease Models, Animal , Female , Homeostasis , Mice , Mice, Inbred BALB C , Microbial Sensitivity Tests , Pneumonia
SELECTION OF CITATIONS
SEARCH DETAIL