ABSTRACT
RNA can directly control protein activity in a process called riboregulation; only a few mechanisms of riboregulation have been described in detail, none of which have been characterized on structural grounds. Here, we present a comprehensive structural, functional, and phylogenetic analysis of riboregulation of cytosolic serine hydroxymethyltransferase (SHMT1), the enzyme interconverting serine and glycine in one-carbon metabolism. We have determined the cryoelectron microscopy (cryo-EM) structure of human SHMT1 in its free- and RNA-bound states, and we show that the RNA modulator competes with polyglutamylated folates and acts as an allosteric switch, selectively altering the enzyme's reactivity vs. serine. In addition, we identify the tetrameric assembly and a flap structural motif as key structural elements necessary for binding of RNA to eukaryotic SHMT1. The results presented here suggest that riboregulation may have played a role in evolution of eukaryotic SHMT1 and in compartmentalization of one-carbon metabolism. Our findings provide insights for RNA-based therapeutic strategies targeting this cancer-linked metabolic pathway.
Subject(s)
Cryoelectron Microscopy , Glycine Hydroxymethyltransferase , Glycine Hydroxymethyltransferase/metabolism , Glycine Hydroxymethyltransferase/genetics , Glycine Hydroxymethyltransferase/chemistry , Humans , RNA/metabolism , RNA/genetics , Serine/metabolism , Allosteric Regulation , Protein Binding , Phylogeny , Models, Molecular , Protein Conformation , Structure-Activity Relationship , Glycine/metabolism , Glycine/chemistry , Binding SitesABSTRACT
Antituberculosis drugs, mostly developed over 60 years ago, combined with a poorly effective vaccine, have failed to eradicate tuberculosis. More worryingly, multiresistant strains of Mycobacterium tuberculosis (MTB) are constantly emerging. Innovative strategies are thus urgently needed to improve tuberculosis treatment. Recently, host-directed therapy has emerged as a promising strategy to be used in adjunct with existing or future antibiotics, by improving innate immunity or limiting immunopathology. Here, using high-content imaging, we identified novel 1,2,4-oxadiazole-based compounds, which allow human macrophages to control MTB replication. Genome-wide gene expression analysis revealed that these molecules induced zinc remobilization inside cells, resulting in bacterial zinc intoxication. More importantly, we also demonstrated that, upon treatment with these novel compounds, MTB became even more sensitive to antituberculosis drugs, in vitro and in vivo, in a mouse model of tuberculosis. Manipulation of heavy metal homeostasis holds thus great promise to be exploited to develop host-directed therapeutic interventions.
Subject(s)
Antitubercular Agents , Disease Models, Animal , Macrophages , Mycobacterium tuberculosis , Oxadiazoles , Tuberculosis , Zinc , Animals , Oxadiazoles/pharmacology , Humans , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Mycobacterium tuberculosis/drug effects , Zinc/metabolism , Macrophages/drug effects , Macrophages/metabolism , Mice , Tuberculosis/drug therapy , Mice, Inbred C57BL , Female , Drug SynergismABSTRACT
NADPH oxidases (NOXs) are transmembrane enzymes that are devoted to the production of reactive oxygen species (ROS). In cancers, dysregulation of NOX enzymes affects ROS production, leading to redox unbalance and tumor progression. Consequently, NOXs are a drug target for cancer therapeutics, although current therapies have off-target effects: there is a need for isoenzyme-selective inhibitors. Here, we describe fully validated human NOX inhibitors, obtained from an in silico screen, targeting the active site of Cylindrospermum stagnale NOX5 (csNOX5). The hits are validated by in vitro and in cellulo enzymatic and binding assays, and their binding modes to the dehydrogenase domain of csNOX5 studied via high-resolution crystal structures. A high-throughput screen in a panel of cancer cells shows activity in selected cancer cell lines and synergistic effects with KRAS modulators. Our work lays the foundation for the development of inhibitor-based methods for controlling the tightly regulated and highly localized ROS sources.
Subject(s)
NADPH Oxidases , Neoplasms , Humans , NADPH Oxidases/chemistry , NADPH Oxidases/metabolism , Reactive Oxygen Species/metabolism , Neoplasms/drug therapy , Oxidation-Reduction , Cell LineABSTRACT
The sirtuin family comprises seven NAD+-dependent enzymes which catalyze protein lysine deacylation and mono ADP-ribosylation. Sirtuins act as central regulators of genomic stability and gene expression and control key processes, including energetic metabolism, cell cycle, differentiation, apoptosis, and aging. As a result, all sirtuins play critical roles in cellular homeostasis and organism wellness, and their dysregulation has been linked to metabolic, cardiovascular, and neurological diseases. Furthermore, sirtuins have shown dichotomous roles in cancer, acting as context-dependent tumor suppressors or promoters. Given their central role in different cellular processes, sirtuins have attracted increasing research interest aimed at developing both activators and inhibitors. Indeed, sirtuin modulation may have therapeutic effects in many age-related diseases, including diabetes, cardiovascular and neurodegenerative disorders, and cancer. Moreover, isoform selective modulators may increase our knowledge of sirtuin biology and aid to develop better therapies. Through this review, we provide critical insights into sirtuin pharmacology and illustrate their enzymatic activities and biological functions. Furthermore, we outline the most relevant sirtuin modulators in terms of their modes of action, structure-activity relationships, pharmacological effects, and clinical applications.
ABSTRACT
BACKGROUND: About 30% of Prostate cancer (PCa) patients progress to metastatic PCa that remains largely incurable. This evidence underlines the need for the development of innovative therapies. In this direction, the potential research focus might be on long non-coding RNAs (lncRNAs) like H19, which serve critical biological functions and show significant dysregulation in cancer. Previously, we showed a transcriptional down-regulation of H19 under combined pro-tumoral estrogen and hypoxia treatment in PCa cells that, in turn, induced both E-cadherin and ß4 integrin expression. H19, indeed, acts as transcriptional repressor of cell adhesion molecules affecting the PCa metastatic properties. Here, we investigated the role of H19/cell adhesion molecules circuitry on in vivo PCa experimental tumor growth and metastatic dissemination models. METHODS: H19 was silenced in luciferase-positive PC-3 and 22Rv1 cells and in vitro effect was evaluated by gene expression, proliferation and invasion assays before and after treatment with the histone lysine demethylase inhibitor, GSK-J4. In vivo tumor growth and metastasis dissemination, in the presence or absence of GSK-J4, were analyzed in two models of human tumor in immunodeficient mice by in vivo bioluminescent imaging and immunohistochemistry (IHC) on explanted tissues. Organotypic Slice Cultures (OSCs) from fresh PCa-explant were used as ex vivo model to test GSK-J4 effects. RESULTS: H19 silencing in both PC-3 and 22Rv1 cells increased: i) E-cadherin and ß4 integrin expression as well as proliferation and invasion, ii) in vivo tumor growth, and iii) metastasis formation at bone, lung, and liver. Of note, treatment with GSK-J4 reduced lesions. In parallel, GSK-J4 efficiently induced cell death in PCa-derived OSCs. CONCLUSIONS: Our findings underscore the potential of the H19/cell adhesion molecules circuitry as a targeted approach in PCa treatment. Modulating this interaction has proven effective in inhibiting tumor growth and metastasis, presenting a logical foundation for targeted therapy.
ABSTRACT
Pharmacological treatment of Duchenne muscular dystrophy (DMD) with histone deacetylase inhibitors (HDACi) is currently being tested in clinical trials; however, pre-clinical studies indicated that the beneficial effects of HDACi are restricted to early stages of disease. We show that FAPs from late-stage mdx mice exhibit aberrant HDAC activity and genome-wide alterations of histone acetylation that are not fully reversed by HDACi. In particular, combinatorial H3K27 and/or H3K9/14 hypo-acetylation at promoters of genes required for cell cycle activation and progression, as well as glycolysis, are associated with their downregulation in late-stage mdx FAPs. These alterations could not be reversed by HDACi, due to a general resistance to HDACi-induced H3K9/14 hyperacetylation. Conversely, H3K9/14 hyper-acetylation at promoters of Senescence Associated Secretory Phenotype (SASP) genes is associated with their upregulation in late-stage mdx FAPs; however, HDACi could reduce promoter acetylation and blunt SASP gene activation. These data reveal that during DMD progression FAPs develop disease-associated features reminiscent of cellular senescence, through epigenetically distinct and pharmacologically dissociable events. They also indicate that HDACi might retain anti-fibrotic effects at late stages of DMD.
Subject(s)
Histone Deacetylase Inhibitors , Muscular Dystrophy, Duchenne , Animals , Epigenesis, Genetic , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Mice , Mice, Inbred mdx , Muscle, Skeletal/metabolism , Muscular Dystrophy, Duchenne/drug therapy , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/metabolismABSTRACT
In leiomyosarcoma class IIa HDACs (histone deacetylases) bind MEF2 and convert these transcription factors into repressors to sustain proliferation. Disruption of this complex with small molecules should antagonize cancer growth. NKL54, a PAOA (pimeloylanilide o-aminoanilide) derivative, binds a hydrophobic groove of MEF2, which is used as a docking site by class IIa HDACs. However, NKL54 could also act as HDAC inhibitor (HDACI). Therefore, it is unclear which activity is predominant. Here, we show that NKL54 and similar derivatives are unable to release MEF2 from binding to class IIa HDACs. Comparative transcriptomic analysis classifies these molecules as HDACIs strongly related to SAHA/vorinostat. Low expressed genes are upregulated by HDACIs, while abundant genes are repressed. This transcriptional resetting correlates with a reorganization of H3K27 acetylation around the transcription start site (TSS). Among the upregulated genes there are several BH3-only family members, thus explaining the induction of apoptosis. Moreover, NKL54 triggers the upregulation of MEF2 and the downregulation of class IIa HDACs. NKL54 also increases the binding of MEF2D to promoters of genes that are upregulated after treatment. In summary, although NKL54 cannot outcompete MEF2 from binding to class IIa HDACs, it supports MEF2-dependent transcription through several actions, including potentiation of chromatin binding.
Subject(s)
Histone Deacetylase Inhibitors , Transcriptome , Acetylation , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , MEF2 Transcription Factors/genetics , Vorinostat/pharmacologyABSTRACT
Toxoplasmosis is a critical health issue for immune-deficient individuals and the offspring of newly infected mothers. It is caused by a unicellular intracellular parasite called Toxoplasma gondii that is found worldwide. Although efficient drugs are commonly used to treat toxoplasmosis, serious adverse events are common. Therefore, new compounds with potent anti-T. gondii activity are needed to provide better suited treatments. We have tested compounds designed to target specifically histone deacetylase enzymes. Among the 55 compounds tested, we identified three compounds showing a concentration of drug required for 50% inhibition (IC50) in the low 100 nM range with a selectivity index of more than 100. These compounds are not only active at inhibiting the growth of the parasite in vitro but also at preventing some of the consequences of the acute disease in vivo. Two of these hydroxamate based compound also induce a hyper-acetylation of the parasite histones while the parasitic acetylated tubulin level remains unchanged. These findings suggest that the enzymes regulating histone acetylation are potent therapeutic targets for the treatment of acute toxoplasmosis.
Subject(s)
Toxoplasma , Toxoplasmosis , Humans , Toxoplasmosis/drug therapy , Toxoplasmosis/parasitology , Hydroxamic Acids/pharmacology , Hydroxamic Acids/therapeutic useABSTRACT
Androgen deprivation therapy (ADT) is a common treatment for recurrent prostate cancer (PC). However, after a certain period of responsiveness, ADT resistance occurs virtually in all patients and the disease progresses to lethal metastatic castration-resistant prostate cancer (mCRPC). Aberrant expression and function of the epigenetic modifiers EZH2 and BET over activates c-myc, an oncogenic transcription factor critically contributing to mCRPC. In the present work, we tested, for the first time, the combination of an EZH2 inhibitor with a BET inhibitor in metastatic PC cells. The combination outperformed single drugs in inhibiting cell viability, cell proliferation and clonogenic ability, and concomitantly reduced both c-myc and NF-kB expression. Although these promising results will warrant further in vivo validation, they represent the first step to establishing the rationale that the proposed combination might be suitable for mCRPC treatment, by exploiting molecular targets different from androgen receptor.
Subject(s)
Antineoplastic Agents , Prostatic Neoplasms, Castration-Resistant , Humans , Male , Androgen Antagonists/pharmacology , Androgen Antagonists/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Proliferation , Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors , Enhancer of Zeste Homolog 2 Protein/metabolism , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/pathology , Transcription Factors , Betaine-Homocysteine S-Methyltransferase/antagonists & inhibitors , Betaine-Homocysteine S-Methyltransferase/metabolismABSTRACT
Carbonic anhydrases (CAs) are important regulators of pH homeostasis and participate in many physiological and pathological processes. CA activators (CAAs) are becoming increasingly important in the biomedical field since enhancing CA activity may have beneficial effects at neurological level. Here, we investigate selected antihistamines, phenothiazine-based antipsychotics, and tricyclic antidepressants (TCAs) as potential activators of human CAs I, II, IV, and VII. Our findings indicate that these compounds are more effective at activating hCA II and VII compared to hCA I and IV. Overall, hCA VII was the most efficiently activated isoform, particularly by phenothiazines and TCAs. This is especially relevant since hCA VII is the most abundant isoform in the central nervous system (CNS) and is implicated in neuronal signalling and bicarbonate balance regulation. This study offers additional insights into the pharmacological profiles of clinically employed drugs and sets the ground for the development of novel optimised CAAs.
Subject(s)
Antipsychotic Agents , Carbonic Anhydrases , Humans , Antipsychotic Agents/pharmacology , Antidepressive Agents, Tricyclic/pharmacology , Carbonic Anhydrases/metabolism , Protein Isoforms/metabolism , Phenothiazines , Histamine Antagonists/pharmacology , Carbonic Anhydrase Inhibitors/pharmacology , Structure-Activity Relationship , Molecular StructureABSTRACT
BACKGROUND & AIMS: SIRT5 plays pleiotropic roles via post-translational modifications, serving as a tumor suppressor, or an oncogene, in different tumors. However, the role SIRT5 plays in the initiation and progression of pancreatic ductal adenocarcinoma (PDAC) remains unknown. METHODS: Published datasets and tissue arrays with SIRT5 staining were used to investigate the clinical relevance of SIRT5 in PDAC. Furthermore, to define the role of SIRT5 in the carcinogenesis of PDAC, we generated autochthonous mouse models with conditional Sirt5 knockout. Moreover, to examine the mechanistic role of SIRT5 in PDAC carcinogenesis, SIRT5 was knocked down in PDAC cell lines and organoids, followed by metabolomics and proteomics studies. A novel SIRT5 activator was used for therapeutic studies in organoids and patient-derived xenografts. RESULTS: SIRT5 expression negatively regulated tumor cell proliferation and correlated with a favorable prognosis in patients with PDAC. Genetic ablation of Sirt5 in PDAC mouse models promoted acinar-to-ductal metaplasia, precursor lesions, and pancreatic tumorigenesis, resulting in poor survival. Mechanistically, SIRT5 loss enhanced glutamine and glutathione metabolism via acetylation-mediated activation of GOT1. A selective SIRT5 activator, MC3138, phenocopied the effects of SIRT5 overexpression and exhibited antitumor effects on human PDAC cells. MC3138 also diminished nucleotide pools, sensitizing human PDAC cell lines, organoids, and patient-derived xenografts to gemcitabine. CONCLUSIONS: Collectively, we identify SIRT5 as a key tumor suppressor in PDAC, whose loss promotes tumorigenesis through increased noncanonic use of glutamine via GOT1, and that SIRT5 activation is a novel therapeutic strategy to target PDAC.
Subject(s)
Carcinoma, Pancreatic Ductal/enzymology , Energy Metabolism , Pancreatic Neoplasms/enzymology , Proto-Oncogene Proteins p21(ras)/metabolism , Sirtuins/deficiency , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Aspartate Aminotransferase, Cytoplasmic/genetics , Aspartate Aminotransferase, Cytoplasmic/metabolism , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Disease Progression , Energy Metabolism/drug effects , Enzyme Activation , Enzyme Activators/pharmacology , Female , Gene Expression Regulation, Neoplastic , Humans , Male , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Mutation , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Proto-Oncogene Proteins p21(ras)/genetics , Signal Transduction , Sirtuins/genetics , Tumor Burden , Tumor Cells, Cultured , Xenograft Model Antitumor Assays , GemcitabineABSTRACT
As regioisomers/bioisosteres of 1a, a 4-phenylbenzamide tranylcypromine (TCP) derivative previously disclosed by us, we report here the synthesis and biological evaluation of some (hetero)arylbenzoylamino TCP derivatives 1b-6, in which the 4-phenyl moiety of 1a was shifted at the benzamide C3 position or replaced by 2- or 3-furyl, 2- or 3-thienyl, or 4-pyridyl group, all at the benzamide C4 or C3 position. In anti-LSD1-CoREST assay, all the meta derivatives were more effective than the para analogues, with the meta thienyl analogs 4b and 5b being the most potent (IC50 values = 0.015 and 0.005 µM) and the most selective over MAO-B (selectivity indexes: 24.4 and 164). When tested in U937 AML and prostate cancer LNCaP cells, selected compounds 1a,b, 2b, 3b, 4b, and 5a,b displayed cell growth arrest mainly in LNCaP cells. Western blot analyses showed increased levels of H3K4me2 and/or H3K9me2 confirming the involvement of LSD1 inhibition in these assays.
Subject(s)
Antineoplastic Agents/pharmacology , Enzyme Inhibitors/pharmacology , Heterocyclic Compounds/pharmacology , Histone Demethylases/antagonists & inhibitors , Tranylcypromine/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Heterocyclic Compounds/chemical synthesis , Heterocyclic Compounds/chemistry , Histone Demethylases/metabolism , Humans , Molecular Structure , Monoamine Oxidase/metabolism , Structure-Activity Relationship , Tranylcypromine/chemical synthesis , Tranylcypromine/chemistry , Tumor Cells, CulturedABSTRACT
Diabetic retinopathy (DR) is undoubtedly one of the most prominent causes of blindness worldwide. This pathology is the most frequent microvascular complication arising from diabetes, and its incidence is increasing at a constant pace. To date, the insurgence of DR is thought to be the consequence of the intricate complex of relations connecting inflammation, the generation of free oxygen species, and the consequent oxidative stress determined by protracted hyperglycemia. The sirtuin (SIRT) family comprises 7 histone and non-histone protein deacetylases and mono (ADP-ribosyl) transferases regulating different processes, including metabolism, senescence, DNA maintenance, and cell cycle regulation. These enzymes are involved in the development of various diseases such as neurodegeneration, cardiovascular pathologies, metabolic disorders, and cancer. SIRT1, 3, 5, and 6 are key enzymes in DR since they modulate glucose metabolism, insulin sensitivity, and inflammation. Currently, indirect and direct activators of SIRTs (such as antagomir, glycyrrhizin, and resveratrol) are being developed to modulate the inflammation response arising during DR. In this review, we aim to illustrate the most important inflammatory and metabolic pathways connecting SIRT activity to DR, and to describe the most relevant SIRT activators that might be proposed as new therapeutics to treat DR.
Subject(s)
Diabetes Mellitus , Diabetic Retinopathy , Sirtuins , Diabetes Mellitus/metabolism , Diabetic Retinopathy/metabolism , Humans , Inflammation/pathology , Oxidative Stress , Retina/metabolism , Sirtuins/metabolismABSTRACT
Chronic cardiac muscle inflammation and subsequent fibrotic tissue deposition are key features in Duchenne Muscular Dystrophy (DMD). The treatment of choice for delaying DMD progression both in skeletal and cardiac muscle are corticosteroids, supporting the notion that chronic inflammation in the heart plays a pivotal role in fibrosis deposition and subsequent cardiac dysfunction. Nevertheless, considering the adverse effects associated with long-term corticosteroid treatments, there is a need for novel anti-inflammatory therapies. In this study, we used our recently described exercised mdx (ex mdx) mouse model characterised by accelerated heart pathology, and the specific PKCθ inhibitor Compound 20 (C20), to show that inhibition of this kinase leads to a significant reduction in the number of immune cells infiltrating the heart, as well as necrosis and fibrosis. Functionally, C20 treatment also prevented the reduction in left ventricle fractional shortening, which was typically observed in the vehicle-treated ex mdx mice. Based on these findings, we propose that PKCθ pharmacological inhibition could be an attractive therapeutic approach to treating dystrophic cardiomyopathy.
Subject(s)
Cardiomyopathies/drug therapy , Heart/drug effects , Muscular Dystrophy, Animal/drug therapy , Muscular Dystrophy, Duchenne/drug therapy , Protein Kinase C-theta/antagonists & inhibitors , Animals , Cardiomyopathies/metabolism , Dipeptides/pharmacology , Disease Models, Animal , Dystrophin/metabolism , Fibrosis/drug therapy , Fibrosis/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Inbred mdx , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Muscular Dystrophy, Animal/metabolism , Muscular Dystrophy, Duchenne/metabolism , Myocardium/metabolism , PhenotypeABSTRACT
Epigenetic modifications in eukaryotic biological pathways can lead to the up- or downregulation of regulatory proteins contributing to disease onset and progression. In the last three decades, histone deacetylases (HDACs) are among the most studied epigenetic targets. In fact, aberrant HDAC expression is associated with numerous types of cancer and neurodegenerative disorders, making HDACs promising molecular targets for the design of new drugs. Many HDAC inhibitors (HDACi) are currently in clinical evaluation for various types of cancer, and some of them reached the market after approval by the Food and Drug Administration (FDA). The present review summarizes the various HDAC classes and relative isoforms. Then we discuss different class or isoform-selective HDACi with a strong emphasis on late-stage preclinical candidates and drugs in clinical studies. Last but not least, we shed light on the pharmacokinetic challenges and future directions in HDACi design.
ABSTRACT
Many epigenetic modifications occur in glioma, in particular the histone-deacetylase class proteins play a pivotal role in glioma development, driving the proliferation rate and the invasiveness of tumor cells, and modulating the tumor microenvironment. In this study, we evaluated the role of the histone deacetylase HDAC8 in the regulation of the immune response in glioma and tumor growth. We found that inhibition of HDAC8 by the specific inhibitor PCI-34051 reduces tumor volume in glioma mouse models. We reported that HDAC8 modulates the viability and the migration of human and murine glioma cells. Interestingly, HDAC8 inhibition increases the acetylation of alpha-tubulin, suggesting this epigenetic modification controls glioma migration. Furthermore, we identify HDAC8 as a key molecule that supports a poorly immunogenic tumor microenvironment, modulating microglial phenotype and regulating the gene transcription of NKG2D ligands that trigger the Natural Killer cell-mediated cytotoxicity of tumor cells. Altogether, these results identify HDAC8 as a key actor in glioma growth and tumor microenvironment, and pave the way to a better knowledge of the molecular mechanisms of immune escape in glioma.
Subject(s)
Glioma , Histone Deacetylases , Percutaneous Coronary Intervention , Animals , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/genetics , Histone Deacetylases/immunology , Histone Deacetylases/metabolism , Histones/metabolism , Immunity , Mice , Tumor MicroenvironmentABSTRACT
Influenza viruses represent a major threat to human health and are responsible for seasonal epidemics, along with pandemics. Currently, few therapeutic options are available, with most drugs being at risk of the insurgence of resistant strains. Hence, novel approaches targeting less explored pathways are urgently needed. In this work, we assayed a library of nitrobenzoxadiazole derivatives against the influenza virus A/Puerto Rico/8/34 H1N1 (PR8) strain. We identified three promising 4-thioether substituted nitrobenzoxadiazoles (12, 17, and 25) that were able to inhibit viral replication at low micromolar concentrations in two different infected cell lines using a haemagglutination assay. We further assessed these molecules using an In-Cell Western assay, which confirmed their potency in the low micromolar range. Among the three molecules, 12 and 25 displayed the most favourable profile of activity and selectivity and were selected as hit compounds for future optimisation studies.
Subject(s)
4-Chloro-7-nitrobenzofurazan/pharmacology , Antiviral Agents/pharmacology , Influenza A Virus, H1N1 Subtype/drug effects , 4-Chloro-7-nitrobenzofurazan/chemical synthesis , 4-Chloro-7-nitrobenzofurazan/chemistry , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Cell Survival/drug effects , Cells, Cultured , Dogs , Dose-Response Relationship, Drug , Humans , Microbial Sensitivity Tests , Molecular Structure , Structure-Activity RelationshipABSTRACT
Recently, despite the great success achieved by the so-called "magic bullets" in the treatment of different diseases through a marked and specific interaction with the target of interest, the pharmacological research is moving toward the development of "molecular network active compounds," embracing the related polypharmacology approach. This strategy was born to overcome the main limitations of the single target therapy leading to a superior therapeutic effect, a decrease of adverse reactions, and a reduction of potential mechanism(s) of drug resistance caused by robustness and redundancy of biological pathways. It has become clear that multifactorial diseases such as cancer, neurological, and inflammatory disorders, may require more complex therapeutic approaches hitting a certain biological system as a whole. Concerning epigenetics, the goal of the multi-epi-target approach consists in the development of small molecules able to simultaneously and (often) reversibly bind different specific epi-targets. To date, two dual histone deacetylase/kinase inhibitors (CUDC-101 and CUDC-907) are in an advanced stage of clinical trials. In the last years, the growing interest in polypharmacology encouraged the publication of high-quality reviews on combination therapy and hybrid molecules. Hence, to update the state-of-the-art of these therapeutic approaches avoiding redundancy, herein we focused only on multiple medication therapies and multitargeting compounds exploiting epigenetic plus nonepigenetic drugs reported in the literature in 2018. In addition, all the multi-epi-target inhibitors known in literature so far, hitting two or more epigenetic targets, have been included.
Subject(s)
Drug Discovery , Epigenesis, Genetic , Polypharmacology , Animals , Clinical Trials as Topic , Humans , Ligands , Neoplasms/drug therapyABSTRACT
Fragile X-related disorders are due to a dynamic mutation of the CGG repeat at the 5' UTR of the FMR1 gene, coding for the RNA-binding protein FMRP. As the CGG sequence expands from premutation (PM, 56-200 CGGs) to full mutation (> 200 CGGs), FMRP synthesis decreases until it is practically abolished in fragile X syndrome (FXS) patients, mainly due to FMR1 methylation. Cells from rare individuals with no intellectual disability and carriers of an unmethylated full mutation (UFM) produce slightly elevated levels of FMR1-mRNA and relatively low levels of FMRP, like in PM carriers. With the aim of clarifying how UFM cells differ from CTRL and FXS cells, a comparative proteomic approach was undertaken, from which emerged an overexpression of SOD2 in UFM cells, also confirmed in PM but not in FXS. The SOD2-mRNA bound to FMRP in UFM more than in the other cell types. The high SOD2 levels in UFM and PM cells correlated with lower levels of superoxide and reactive oxygen species (ROS), and with morphological anomalies and depolarization of the mitochondrial membrane detected through confocal microscopy. The same effect was observed in CTRL and FXS after treatment with MC2791, causing SOD2 overexpression. These mitochondrial phenotypes reverted after knock-down with siRNA against SOD2-mRNA and FMR1-mRNA in UFM and PM. Overall, these data suggest that in PM and UFM carriers, which have high levels of FMR1 transcription and may develop FXTAS, SOD2 overexpression helps to maintain low levels of both superoxide and ROS with signs of mitochondrial degradation.
Subject(s)
Ataxia/pathology , DNA Methylation , Fragile X Mental Retardation Protein/metabolism , Fragile X Syndrome/pathology , Mitochondria/pathology , Mitochondrial Proteins/metabolism , Mutation , Proteome/analysis , Tremor/pathology , Ataxia/genetics , Ataxia/metabolism , Case-Control Studies , Cells, Cultured , Fibroblasts/metabolism , Fibroblasts/pathology , Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/genetics , Fragile X Syndrome/metabolism , Humans , Male , Mitochondria/metabolism , Mitochondrial Proteins/genetics , RNA, Small Interfering/genetics , Superoxide Dismutase/antagonists & inhibitors , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Tremor/genetics , Tremor/metabolismABSTRACT
Chagas disease is an illness caused by the protozoan parasite Trypanosoma cruzi, affecting more than 7 million people in the world. Benznidazole and nifurtimox are the only drugs available for treatment and in addition to causing several side effects, are only satisfactory in the acute phase of the disease. Sirtuins are NAD+-dependent deacetylases involved in several biological processes, which have become drug target candidates in various disease settings. T. cruzi presents two sirtuins, one cytosolic (TcSir2rp1) and the latter mitochondrial (TcSir2rp3). Here, we characterized the effects of human sirtuin inhibitors against T. cruzi sirtuins as an initial approach to develop specific parasite inhibitors. We found that, of 33 compounds tested, two inhibited TcSir2rp1 (15 and 17), while other five inhibited TcSir2rp3 (8, 12, 13, 30, and 32), indicating that specific inhibitors can be devised for each one of the enzymes. Furthermore, all inhibiting compounds prevented parasite proliferation in cultured mammalian cells. When combining the most effective inhibitors with benznidazole at least two compounds, 17 and 32, demonstrated synergistic effects. Altogether, these results support the importance of exploring T. cruzi sirtuins as drug targets and provide key elements to develop specific inhibitors for these enzymes as potential targets for Chagas disease treatment.