Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 114
Filter
1.
Proc Natl Acad Sci U S A ; 121(2): e2312880120, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38175867

ABSTRACT

We unveil the multifractal behavior of Ising spin glasses in their low-temperature phase. Using the Janus II custom-built supercomputer, the spin-glass correlation function is studied locally. Dramatic fluctuations are found when pairs of sites at the same distance are compared. The scaling of these fluctuations, as the spin-glass coherence length grows with time, is characterized through the computation of the singularity spectrum and its corresponding Legendre transform. A comparatively small number of site pairs controls the average correlation that governs the response to a magnetic field. We explain how this scenario of dramatic fluctuations (at length scales smaller than the coherence length) can be reconciled with the smooth, self-averaging behavior that has long been considered to describe spin-glass dynamics.

2.
Proc Natl Acad Sci U S A ; 117(30): 17522-17527, 2020 Jul 28.
Article in English | MEDLINE | ID: mdl-32651276

ABSTRACT

Out-of-equilibrium relaxation processes show aging if they become slower as time passes. Aging processes are ubiquitous and play a fundamental role in the physics of glasses and spin glasses and in other applications (e.g., in algorithms minimizing complex cost/loss functions). The theory of aging in the out-of-equilibrium dynamics of mean-field spin glass models has achieved a fundamental role, thanks to the asymptotic analytic solution found by Cugliandolo and Kurchan. However, this solution is based on assumptions (e.g., the weak ergodicity breaking hypothesis) which have never been put under a strong test until now. In the present work, we present the results of an extraordinary large set of numerical simulations of the prototypical mean-field spin glass models, namely the Sherrington-Kirkpatrick and the Viana-Bray models. Thanks to a very intensive use of graphics processing units (GPUs), we have been able to run the latter model for more than [Formula: see text] spin updates and thus safely extrapolate the numerical data both in the thermodynamical limit and in the large times limit. The measurements of the two-times correlation functions in isothermal aging after a quench from a random initial configuration to a temperature [Formula: see text] provides clear evidence that, at large times, such correlations do not decay to zero as expected by assuming weak ergodicity breaking. We conclude that strong ergodicity breaking takes place in mean-field spin glasses aging dynamics which, asymptotically, takes place in a confined configurational space. Theoretical models for the aging dynamics need to be revised accordingly.

3.
Proc Natl Acad Sci U S A ; 116(31): 15350-15355, 2019 Jul 30.
Article in English | MEDLINE | ID: mdl-31311870

ABSTRACT

The Mpemba effect occurs when a hot system cools faster than an initially colder one, when both are refrigerated in the same thermal reservoir. Using the custom-built supercomputer Janus II, we study the Mpemba effect in spin glasses and show that it is a nonequilibrium process, governed by the coherence length ξ of the system. The effect occurs when the bath temperature lies in the glassy phase, but it is not necessary for the thermal protocol to cross the critical temperature. In fact, the Mpemba effect follows from a strong relationship between the internal energy and ξ that turns out to be a sure-tell sign of being in the glassy phase. Thus, the Mpemba effect presents itself as an intriguing avenue for the experimental study of the coherence length in supercooled liquids and other glass formers.

4.
Proc Natl Acad Sci U S A ; 115(20): 5129-5134, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29717042

ABSTRACT

We study numerically various properties of the free energy barriers in the Edwards-Anderson model of spin glasses in the low-temperature region in both three and four spatial dimensions. In particular, we investigated the dependence of height of free energy barriers on system size and on the distance between the initial and final states (i.e., the overlap distance). A related quantity is the distribution of large local fluctuations of the overlap in large 3D samples at equilibrium. Our results for both quantities (barriers and large deviations) are in agreement with the prediction obtained in the framework of mean-field theory. In addition, our result supports [Formula: see text] as the lower critical dimension of the model.

5.
Proc Natl Acad Sci U S A ; 114(8): 1838-1843, 2017 02 21.
Article in English | MEDLINE | ID: mdl-28174274

ABSTRACT

We have performed a very accurate computation of the nonequilibrium fluctuation-dissipation ratio for the 3D Edwards-Anderson Ising spin glass, by means of large-scale simulations on the special-purpose computers Janus and Janus II. This ratio (computed for finite times on very large, effectively infinite, systems) is compared with the equilibrium probability distribution of the spin overlap for finite sizes. Our main result is a quantitative statics-dynamics dictionary, which could allow the experimental exploration of important features of the spin-glass phase without requiring uncontrollable extrapolations to infinite times or system sizes.

6.
Glob Chang Biol ; 25(4): 1428-1444, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30536680

ABSTRACT

Efforts to limit global warming to below 2°C in relation to the pre-industrial level are under way, in accordance with the 2015 Paris Agreement. However, most impact research on agriculture to date has focused on impacts of warming >2°C on mean crop yields, and many previous studies did not focus sufficiently on extreme events and yield interannual variability. Here, with the latest climate scenarios from the Half a degree Additional warming, Prognosis and Projected Impacts (HAPPI) project, we evaluated the impacts of the 2015 Paris Agreement range of global warming (1.5 and 2.0°C warming above the pre-industrial period) on global wheat production and local yield variability. A multi-crop and multi-climate model ensemble over a global network of sites developed by the Agricultural Model Intercomparison and Improvement Project (AgMIP) for Wheat was used to represent major rainfed and irrigated wheat cropping systems. Results show that projected global wheat production will change by -2.3% to 7.0% under the 1.5°C scenario and -2.4% to 10.5% under the 2.0°C scenario, compared to a baseline of 1980-2010, when considering changes in local temperature, rainfall, and global atmospheric CO2 concentration, but no changes in management or wheat cultivars. The projected impact on wheat production varies spatially; a larger increase is projected for temperate high rainfall regions than for moderate hot low rainfall and irrigated regions. Grain yields in warmer regions are more likely to be reduced than in cooler regions. Despite mostly positive impacts on global average grain yields, the frequency of extremely low yields (bottom 5 percentile of baseline distribution) and yield inter-annual variability will increase under both warming scenarios for some of the hot growing locations, including locations from the second largest global wheat producer-India, which supplies more than 14% of global wheat. The projected global impact of warming <2°C on wheat production is therefore not evenly distributed and will affect regional food security across the globe as well as food prices and trade.

7.
Glob Chang Biol ; 25(1): 155-173, 2019 01.
Article in English | MEDLINE | ID: mdl-30549200

ABSTRACT

Wheat grain protein concentration is an important determinant of wheat quality for human nutrition that is often overlooked in efforts to improve crop production. We tested and applied a 32-multi-model ensemble to simulate global wheat yield and quality in a changing climate. Potential benefits of elevated atmospheric CO2 concentration by 2050 on global wheat grain and protein yield are likely to be negated by impacts from rising temperature and changes in rainfall, but with considerable disparities between regions. Grain and protein yields are expected to be lower and more variable in most low-rainfall regions, with nitrogen availability limiting growth stimulus from elevated CO2 . Introducing genotypes adapted to warmer temperatures (and also considering changes in CO2 and rainfall) could boost global wheat yield by 7% and protein yield by 2%, but grain protein concentration would be reduced by -1.1 percentage points, representing a relative change of -8.6%. Climate change adaptations that benefit grain yield are not always positive for grain quality, putting additional pressure on global wheat production.


Subject(s)
Adaptation, Physiological , Climate Change , Grain Proteins/analysis , Triticum/chemistry , Triticum/physiology , Carbon Dioxide/metabolism , Droughts , Food Quality , Models, Theoretical , Nitrogen/metabolism , Temperature
8.
Glob Chang Biol ; 24(11): 5072-5083, 2018 11.
Article in English | MEDLINE | ID: mdl-30055118

ABSTRACT

A recent innovation in assessment of climate change impact on agricultural production has been to use crop multimodel ensembles (MMEs). These studies usually find large variability between individual models but that the ensemble mean (e-mean) and median (e-median) often seem to predict quite well. However, few studies have specifically been concerned with the predictive quality of those ensemble predictors. We ask what is the predictive quality of e-mean and e-median, and how does that depend on the ensemble characteristics. Our empirical results are based on five MME studies applied to wheat, using different data sets but the same 25 crop models. We show that the ensemble predictors have quite high skill and are better than most and sometimes all individual models for most groups of environments and most response variables. Mean squared error of e-mean decreases monotonically with the size of the ensemble if models are added at random, but has a minimum at usually 2-6 models if best-fit models are added first. Our theoretical results describe the ensemble using four parameters: average bias, model effect variance, environment effect variance, and interaction variance. We show analytically that mean squared error of prediction (MSEP) of e-mean will always be smaller than MSEP averaged over models and will be less than MSEP of the best model if squared bias is less than the interaction variance. If models are added to the ensemble at random, MSEP of e-mean will decrease as the inverse of ensemble size, with a minimum equal to squared bias plus interaction variance. This minimum value is not necessarily small, and so it is important to evaluate the predictive quality of e-mean for each target population of environments. These results provide new information on the advantages of ensemble predictors, but also show their limitations.


Subject(s)
Agriculture , Climate Change , Models, Theoretical , Agriculture/methods , Environment , Triticum
9.
Proc Natl Acad Sci U S A ; 109(17): 6452-6, 2012 Apr 24.
Article in English | MEDLINE | ID: mdl-22493229

ABSTRACT

Spin glasses are a longstanding model for the sluggish dynamics that appear at the glass transition. However, spin glasses differ from structural glasses in a crucial feature: they enjoy a time reversal symmetry. This symmetry can be broken by applying an external magnetic field, but embarrassingly little is known about the critical behavior of a spin glass in a field. In this context, the space dimension is crucial. Simulations are easier to interpret in a large number of dimensions, but one must work below the upper critical dimension (i.e., in d < 6) in order for results to have relevance for experiments. Here we show conclusive evidence for the presence of a phase transition in a four-dimensional spin glass in a field. Two ingredients were crucial for this achievement: massive numerical simulations were carried out on the Janus special-purpose computer, and a new and powerful finite-size scaling method.

10.
EFSA J ; 22(3): e8646, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38455155

ABSTRACT

The European Commission requested the EFSA Panel on Plant Health to conduct a pest categorisation of Garella musculana (Erschov) (Lepidoptera: Nolidae), following a commodity risk assessment of Juglans regia plants for planting from Türkiye, in which G. musculana was identified as a pest of possible concern to the European Union (EU). Commonly known as the Asian walnut moth, this pest is native to Central Asia and develops on shoots, buds and fruits of Juglans species such as the English walnut, J. regia and the black walnut, J. nigra. Other reported host plants, such as Prunus dulcis and Populus spp., still require confirmation. The pest was first recorded in the EU (Bulgaria) in 2016 and was then reported in Romania in 2018 and Italy in 2021. This moth completes from one to four generations per year depending on environmental conditions (from valley to mountain forests and orchards up to an altitude of 2100 m). Eggs are laid in groups of 2-3 on young nuts or on buds of 1-year-old shoots. Neonate larvae usually enter the young nut through the peduncle. After fully exploiting one nut, the larva continues feeding in another one. Development takes 25-40 days. Larvae of the autumn generation do not enter the nuts, and so feed only in the pericarp. Larvae also often feed inside 1-year-old shoots or leaf axils. Larvae develop within the host but exit to pupate under loose bark or in deep cracks of bark. The pest overwinters at the larval or pupal stages. Plants for planting, cut branches and infested nuts provide pathways for entry. Climatic conditions and availability of host plants in southern and central EU MSs have allowed this species to establish and spread in Bulgaria, Romania and Italy. Adults can fly and the pest could spread naturally within the EU. Impact on Juglans spp. cultivated for fruit, timber and ornamental purposes is anticipated. Phytosanitary measures are available to reduce the likelihood of entry and further spread of G. musculana. This species meets the criteria that are within the remit of EFSA to assess for this species to be regarded as a potential Union quarantine pest.

11.
EFSA J ; 22(3): e8504, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38444826

ABSTRACT

The EFSA Panel on Plant Health performed a pest categorisation of Dendrolimus punctatus (Lepidoptera: Lasiocampidae), following a commodity risk assessment of bonsai Pinus parviflora grafted onto P. thunbergii from China, in which D. punctatus was identified as a pest of possible concern to the European Union (EU). D. punctatus, also known as the Masson pine caterpillar, is present in China, Taiwan, Vietnam, India and has recently spread to Japanese islands close to Taiwan. Larval feeding on the needles of Pinus elliottii, P. luchuensis, P. massoniana, P. merkusii and P. tabulaeformis causes important damage. D. punctatus larvae can also feed on P. armandii, P. echinata, P. latteri, P. parviflora, P. sylvestris var. mongolica, P. taeda, P. taiwanensis and P. thunbergii, but full development on these hosts is uncertain. The pest has three to five generations per year; winter is spent as larvae on branch tips, on tree trunks and in the soil. The females lay egg clusters on pine needles. Pupation occurs in cocoons attached to branches or needles. D. punctatus could enter the EU either as eggs, larvae or pupae in the foliage of plants for planting or cut branches, as larvae on wood with bark or as overwintering larvae in branches, crevices in the bark or in the litter of potted plants. However, Annex VI of 2019/2072 prohibits the introduction of D. punctatus hosts (Pinus spp.) from countries and areas where the pest occurs. There are climate zones where the pest occurs in Asia that also occur in the EU, though they are limited, which constitutes an uncertainty regarding establishment. The pest's main hosts are not grown in the EU. However, the fact that it attacks the North American Pinus echinata, P. elliottii and P. taeda in its Asian native area suggests a potential capacity to shift to pine species occurring in the EU territory. D. punctatus satisfies all the criteria that are within the remit of EFSA to assess for it to be regarded as a potential Union quarantine pest. Whether the Pinus commonly found in Europe could act as hosts is unknown but is fundamental, affecting the criteria of establishment and magnitude of impact.

12.
EFSA J ; 22(1): e8548, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38229874

ABSTRACT

Following the EFSA commodity risk assessment of Malus domestica plants imported from Türkiye into the EU, the EFSA Panel on Plant Health performed a pest categorisation of Pratylenchus loosi (Nematoda: Pratylenchidae) for the EU. Pratylenchus loosi belongs to the order Rhabditida, subfamily Pratylenchidae. This nematode is not known to be present in the EU. The species is not included in the EU Commission Implementing Regulation 2019/2072. The pest occurs primarily in tropical, subtropical and warm temperate areas. It is widely distributed in Asian countries, with tea plants (Camellia sinensis) as the main host. The pest was reported from more than 60 plant species, but reports from hosts other than C. sinensis, e.g. citrus (Citrus spp.) and banana (Musa spp.), are associated with high uncertainty due to doubtful pest identification. Morphological and molecular methods are available for the identification of the pest. Pathways of entry are host plants for planting except seeds, as well as soil attached to plants for planting, machinery or footwear. Soil import to the EU is prohibited from third countries. The climatic preferences of P. loosi are compatible with the microclimatic conditions occurring in the areas of the EU where tea is grown outside. The impact of the nematode is primarily known for Asian countries, where it is a devastating pathogen on tea plants, but there is a key uncertainty on impacts on hosts other than tea. Considering the strong pathogenicity of the pest, its establishment in tea producing areas would have negative consequences for tea producers. Therefore, the Panel concludes that P. loosi satisfies all the criteria that are within the remit of EFSA to assess for it to be regarded as a potential Union quarantine pest.

13.
EFSA J ; 22(1): e8549, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38260770

ABSTRACT

The EFSA Panel on Plant Health performed a pest categorisation of Malacosoma parallela (Staudinger) (Lepidoptera: Lasiocampidae) for the territory of the European Union, following commodity risk assessments of Berberis thunbergii, Malus domestica, Prunus persica and P. dulcis plants for planting from Türkiye, in which M. parallela came to attention as of possible concern. M. parallela is commonly known as the mountain ring silk moth and is a polyphagous leaf-eating pest in west-central Asia, primarily feeding on deciduous trees and shrubs, and known to cause serious damage to Malus, Prunus, and Quercus species. It is found at a range of altitudes from 130 m to 3000 m although most common above 1000 m. It is a univoltine species. Eggs are laid in masses on twigs and branches in the summer and larvae hatch the following spring to feed on buds and fresh leaves. Host plants can be completely defoliated. Plants for planting and cut branches provide pathways for entry, especially if infested with egg masses. Host availability and climate suitability suggest that parts of the EU would be suitable for establishment. Adults can fly and the pest could spread naturally within the EU although adults only live for a few days. Faster and more extensive spread is therefore more likely via egg masses moved on plants for planting. The introduction of M. parallela into the EU could lead to outbreaks causing damage to deciduous trees and shrubs in forests and orchards. Phytosanitary measures are available to inhibit the entry and spread of this species. M. parallela satisfies all the criteria that are within the remit of EFSA to assess for it to be regarded as a potential Union quarantine pest.

14.
EFSA J ; 22(5): e8805, 2024 May.
Article in English | MEDLINE | ID: mdl-38784846

ABSTRACT

The EFSA Panel on Plant Health performed a pest categorisation of Shirahoshizo patruelis (Voss, 1937) (Coleoptera: Curculionidae), following the commodity risk assessment of bonsai plants from China consisting of Pinus parviflora grafted on P. thunbergii, in which S. patruelis was identified as a pest of possible concern to the European Union (EU). This categorisation refers to S. flavonotatus, which is the pest's current valid scientific name. It is native to China and has never been recorded in the EU. It completes from 2 to 3 generations per year. Eggs are laid in cracks and crevices of trunks and branches with bark thickness of approximately 0.6-1.2 cm. The pest overwinters as an adult or as a mature larva under the bark. Plants for planting, wood with bark and wood products provide pathways for entry. Although the weevil has been reported to carry the nematode Bursaphelenchus xylophilus, it is not considered a vector. Climatic conditions and availability of host plants in some EU countries would allow S. flavonotatus to establish and spread. Impact on Pinus spp. is anticipated. Recognising that the weevil is reported to attack both weakened and healthy trees, there is uncertainty on the magnitude of impact. Its recorded capacity to attack non-Asian Pinus species also indicates its ability to adapt and expand the range of trees it can utilise as hosts, which could include European Pinus species. Phytosanitary measures are available to reduce the likelihood of entry and spread. S. flavonotatus meets the criteria that are within the remit of EFSA to assess for this species to be regarded as a potential Union quarantine pest.

15.
EFSA J ; 22(5): e8804, 2024 May.
Article in English | MEDLINE | ID: mdl-38784845

ABSTRACT

The EFSA Panel on Plant Health performed a pest categorisation of Bailey's rust mite, Calepitrimerus baileyi Keifer (Acariformes: Eriophyidae), following the commodity risk assessment of Malus domestica plants from Türkiye performed by EFSA, in which C. baileyi was identified as a pest of possible concern to the European Union. This mite is not listed in Annex II of Commission Implementing Regulation (EU) 2019/2072. The eriophyid is known to occur in Africa, America, Asia, Europe (Greece and Serbia) and Oceania on Malus spp., which is the only confirmed host genus for C. baileyi. Plants for planting of Malus spp. are the main potential pathway for entry into the EU. However, plants for planting of the genus Malus Mill. are considered as high-risk plants (EU 2018/2019) and therefore prohibited from entering the EU unless granted a country-specific derogation. This is the case for the import of Malus spp. plants for planting from Serbia ((EU) 2020/1361 corrected by 2022/1309). Therefore, this derogation could provide a plausible entry pathway for C. baileyi into the EU. Climatic conditions and the ample availability of the host, Malus spp., in the EU are conducive for establishment, as proven by the occurrence of C. baileyi in Greece. However, the species is not reported as having an impact in Greece, despite reports of damage outside the EU. Measures to prevent further entry and spread of C. baileyi in the EU are available. C. baileyi satisfies all the criteria that are within the remit of EFSA to assess for it to be regarded as a potential Union quarantine pest. However, uncertainties about the distribution of C. baileyi within the EU and its impact on apples in the EU are considered key and affect the confidence of conclusions for this categorisation.

16.
EFSA J ; 22(7): e8832, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38974924

ABSTRACT

Following a request from the European Commission, the EFSA Panel on Plant Health performed a quantitative risk assessment for the EU of Phlyctinus callosus (Coleoptera: Curculionidae), a polyphagous pest occurring in Australia, New Zealand and South Africa. The current risk assessment focused on potential pathways for entry, the climatic conditions allowing establishment, the expected spread capacity and the impact considering a time horizon of 10 years (2023-2032). The Panel identified the import of apples, cut flowers and table grapes as the most relevant entry pathways. Over the next 10 years, an annual median estimate of approximately 49.5 (90% certainty range, CR, ranging from 4.0 to 881.2) potential P. callosus founder populations are expected. When the probability of establishment is considered and climatic indicators are used to define the areas in the EU where establishment is possible, the model estimated a median of 1 founder population every 1.3 years (90% CR: 1 every 30.8 years to 23.3 per year) in the scenario where the areas are defined by the union of all the climatic indicators and 1 founder population every 11.9 years (90% CR: 1 every 256.6 years to 2.5 per year) in the scenario where establishment is possible only in the areas defined by the climatic indicator of minimum soil temperature. The estimated number of founder populations per year is mostly driven by the probability of establishment in the rural areas, infestation rate in table grapes and the probability of transfer to a suitable host in the rural area. The risk of entry for cut flowers and apples is substantially lower than the risk from the table grapes. If such founder populations were to establish, P. callosus is estimated to spread by natural dispersal and common agricultural practices at a rate of 15.5 m/year (90% CR 5.1-46.8 m/year) after a lag phase of 4.0 years (90% CR 1.3-8.7 years). The impact, expressed as percentage loss of the production directly attributable to P. callosus in the areas where establishment is possible and assuming farmers do not apply specific control measures was estimated at 0.5% (90% CR 0.01%-2.8%) for cut flowers/foliage, 5.2% (90% CR 2.2%-11.7%) for apples and 2% (90% CR 1.3%-5.2%) for table grapes. Options for risk reduction are discussed, but their effectiveness is not quantified.

17.
EFSA J ; 22(6): e8830, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38946916

ABSTRACT

The EFSA Panel on Plant Health performed a pest categorisation of Popillia quadriguttata (Coleoptera: Scarabaeidae), following a commodity risk assessment of bonsai Pinus parviflora grafted onto P. thunbergii from China, in which P. quadriguttata was identified as a pest of possible concern for the territory of the European Union. This is a univoltine polyphagous pest that occurs in eastern Asia from Vietnam northwards through eastern China and Taiwan, South Korea and into Far East Russia. Hosts include species of fruit trees within the genera Malus and Prunus, trees of forestry and environmental importance such as Quercus and Ulmus, shrubs such as Wisteria, soft fruit such as Rubus, grasses, including amenity turf and field crops such as potatoes, maize and soybean. Adults feed on host leaves, tender stems, flower buds, flowers and fruits; larvae feed on host roots. In northern China P. quadriguttata is a major pest of soybean; in South Korea, P. quadriguttata is one of the most serious insect pests of golf course turf. P. quadriguttata could enter the EU on various pathways including infested soil and growing media accompanying host plants for planning. Biotic factors (host availability) and abiotic factors (climate suitability) suggest that large parts of the EU would be suitable for establishment. Local spread would be mainly via natural dispersal of adults. Long distance spread would be facilitated by the movement of eggs, larvae and pupae infesting soil especially with plants for planting; adults could spread on plants for planting without soil. Economic and or environmental impacts would be expected on a range of plants if P. quadriguttata were to establish in the EU. Phytosanitary measures are available to reduce the likelihood of its introduction. P. quadriguttata satisfies all of the criteria that are within the remit of EFSA to assess for it to be regarded as a potential Union quarantine pest.

18.
EFSA J ; 22(3): e8667, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38505477

ABSTRACT

Following the commodity risk assessment of bonsai plants (Pinus parviflora grafted on Pinus thunbergii) from China performed by EFSA, the EFSA Plant Health Panel performed a pest categorisation of Pyrrhoderma noxium, a clearly defined plant pathogenic basidiomycete fungus of the order Hymenochaetales and the family Hymenochaetaceae. The pathogen is considered as opportunistic and has been reported on a wide range of hosts, mainly broad-leaved and coniferous woody plants, causing root rots. In addition, the fungus was reported to live saprophytically on woody substrates and was isolated as an endophyte from a few plant species. This pest categorisation focuses on the hosts that are relevant for the EU (e.g. Citrus, Ficus, Pinus, Prunus, Pyrus, Quercus and Vitis vinifera). Pyrrhoderma noxium is present in Africa, Central and South America, Asia and Oceania. It has not been reported in the EU. Pyrrhoderma noxium is not included in Commission Implementing Regulation (EU) 2019/2072. Plants for planting (excluding seeds), bark and wood of host plants as well as soil and other growing media associated with plant debris are the main pathways for the entry of the pathogen into the EU. Host availability and climate suitability factors occurring in parts of the EU are favourable for the establishment and spread of the pathogen. The introduction and spread of the pathogen into the EU are expected to have an economic and environmental impact in parts of the territory where hosts are present. Phytosanitary measures are available to prevent the introduction and spread of the pathogen into the EU. Pyrrhoderma noxium satisfies all the criteria that are within the remit of EFSA to assess for this species to be regarded as potential Union quarantine pest.

19.
EFSA J ; 22(7): e8890, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38984216

ABSTRACT

The European Commission requested the EFSA Panel on Plant Health to conduct a pest categorisation of Coniella castaneicola (Ellis & Everh) Sutton, following commodity risk assessments of Acer campestre, A. palmatum, A. platanoides, A. pseudoplatanus, Quercus petraea and Q. robur plants from the UK, in which C. castaneicola was identified as a pest of possible concern to the EU. When first described, Coniella castaneicola was a clearly defined fungus of the family Schizoparmaceae, but due to lack of a curated type-derived DNA sequence, current identification based only on DNA sequence is uncertain and taxa previously reported to be this fungus based on molecular identification must be confirmed. The uncertainty on the reported identification of this species translates into uncertainty on all the sections of this categorisation. The fungus has been reported on several plant species associated with leaf spots, leaf blights and fruit rots, and as an endophyte in asymptomatic plants. The species is reported from North and South America, Africa, Asia, non-EU Europe and Oceania. Coniella castaneicola is not known to occur in the EU. However, there is a key uncertainty on its presence and geographical distribution worldwide and in the EU due to its endophytic nature, the lack of systematic surveys and possible misidentifications. Coniella castaneicola is not included in Commission Implementing Regulation (EU) 2019/2072 and there are no interceptions in the EU. Plants for planting, fresh fruits and soil and other growing media associated with infected plant debris are the main pathways for its entry into the EU. Host availability and climate suitability in parts of the EU are favourable for the establishment and spread of the fungus. Based on the scarce information available, the introduction and spread of C. castaneicola in the EU is not expected to cause substantial impacts, with a key uncertainty. Phytosanitary measures are available to prevent its introduction and spread in the EU. Because of lack of documented impacts, Coniella castaneicola does not satisfy all the criteria that are within the remit of EFSA to assess for this species to be regarded as potential Union quarantine pest.

20.
EFSA J ; 22(4): e8739, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38686343

ABSTRACT

Following a request from the European Commission, the EFSA Panel on Plant Health performed a quantitative risk assessment for the EU of African Leucinodes species (Lepidoptera: Crambidae), which are fruit and shoot borers, especially of eggplant type fruit. The assessment focused on (i) potential pathways for entry, (ii) distribution of infested imports within EU, (iii) climatic conditions favouring establishment, (iv) spread and (v) impact. Options for risk reduction are discussed, but their effectiveness was not quantified. Leucinodes spp. are widely distributed across sub-Saharan Africa but are little studied and they could be much more widespread in Africa than reported. Much African literature erroneously reports them as Leucinodes orbonalis which is restricted to Asia. The import of eggplant type fruit from sub-Saharan Africa consists of special fruit types and caters mostly to niche markets in the EU. The main pathway for entry is fruit of Solanum aethiopicum and exotic varieties of eggplant (S. melongena). CLIMEX modelling was used with two possible thresholds of ecoclimatic index (EI) to assess establishment potential. Climates favouring establishment occur mostly in southern Europe, where, based on human population, 14% of the imported produce is distributed across NUTS2 regions where EI ≥ 30; or where 23% of the produce is distributed where EI ≥ 15. Over the next 5 years, an annual median estimate of ~ 8600 fruits, originating from Africa, and infested with African Leucinodes spp. are expected to enter EU NUTS2 regions where EI ≥ 15 (90% CR ~ 570-52,700); this drops to ~ 5200 (90% CR ~ 350-32,100) in NUTS2 regions where EI ≥ 30. Escape of adult moths occurs mostly from consumer waste; considering uncertainties in pathway transfer, such as adult emergence, mate finding and survival of progeny, the annual median probability of a mated female establishing a founder population in NUTS regions where EI ≥ 15 was estimated to be 0.0078 (90% CR 0.00023-0.12125). This equates to a median estimate of one founder population ~ every 128 years (90% CR approximately one every 8-4280 years). Using an EI ≥ 30, the median number of founder populations establishing in the EU annually is 0.0048 (90% CR 0.0001-0.0739), equating to a median estimate of one founder population approximately every 210 years (90% CR approximately one every 14-7020 years). Under climate change for the period 2040-2059, the percent of infested produce going to suitable areas would be increased to 33% for EI ≥ 15 and to 21% for EI ≥ 30. Accordingly, the waiting time until the next founder population would be reduced to median estimates of 89 years for EI ≥ 15 (90% CR ~ 6-2980 years) and 139 years for EI ≥ 30 (90% CR 9-4655 years). If a founder population were to establish, it is estimated to spread at a rate of 0.65-7.0 km per year after a lag phase of 5-92 years. Leucinodes spp. are estimated to reduce eggplant yield by a median value of 4.5% (90% CR 0.67%-13%) if growers take no specific action, or 0.54% (90% CR between 0.13% and 1.9%) if they do take targeted action, matching previous estimates made during a risk assessment of L. orbonalis from Asia.

SELECTION OF CITATIONS
SEARCH DETAIL