Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Phys Chem Chem Phys ; 26(11): 9060-9072, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38441809

ABSTRACT

Electrochemical water splitting under acidic conditions is a clean way towards producing hydrogen fuels. The slow kinetics of the oxygen evolution reaction (OER) at the anode is currently a bottleneck for commercial acceptance of this technology. Therefore, arriving at more efficient and sustainable OER electrocatalysts is highly desirable. We here demonstrate the synthesis of iridium-palladium (IrPd) alloy nanoparticles (2-5 nm) with variable average composition (Ir : Pd = 1 : 0, 1 : 1, 1 : 3, 1 : 6, 1 : 9 and 0 : 1) using a facile one-pot microwave-assisted chemical reduction method. The IrPd nanoparticles show structure- and composition-dependent OER performance in acidic media. Utilizing different reduction strengths and precursor ratios, successful alloy catalysts were prepared with Ir-rich skin and sublayers of different Pd compositions. Their structures were revealed using high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, and hydrogen underpotential deposition (Hupd) studies. It turned out that (1) the alloy OER catalyst also has a high electrochemically active surface area for hydrogen adsorption/desorption, (2) the OER performance is strongly dependent on the surface Ir contribution and (3) the intact Ir skin is essential for electrocatalyst stability.

2.
J Nanobiotechnology ; 13: 28, 2015 Mar 28.
Article in English | MEDLINE | ID: mdl-25886274

ABSTRACT

BACKGROUND: We studied the effect of carbon black (CB) agglomerated nanomaterial on biological membranes as revealed by shapes of human erythrocytes, platelets and giant phospholipid vesicles. Diluted human blood was incubated with CB nanomaterial and observed by different microscopic techniques. Giant unilamellar phospholipid vesicles (GUVs) created by electroformation were incubated with CB nanomaterial and observed by optical microscopy. Populations of erythrocytes and GUVs were analyzed: the effect of CB nanomaterial was assessed by the average number and distribution of erythrocyte shape types (discocytes, echinocytes, stomatocytes) and of vesicles in test suspensions, with respect to control suspensions. Ensembles of representative images were created and analyzed using computer aided image processing and statistical methods. In a population study, blood of 14 healthy human donors was incubated with CB nanomaterial. Blood cell parameters (concentration of different cell types, their volumes and distributions) were assessed. RESULTS: We found that CB nanomaterial formed micrometer-sized agglomerates in citrated and phosphate buffered saline, in diluted blood and in blood plasma. These agglomerates interacted with erythrocyte membranes but did not affect erythrocyte shape locally or globally. CB nanomaterial agglomerates were found to mediate attractive interaction between blood cells and to present seeds for formation of agglomerate - blood cells complexes. Distortion of disc shape of resting platelets due to incubation with CB nanomaterial was not observed. CB nanomaterial induced bursting of GUVs while the shape of the remaining vesicles was on the average more elongated than in control suspension, indicating indirect osmotic effects of CB nanomaterial. CONCLUSIONS: CB nanomaterial interacts with membranes of blood cells but does not have a direct effect on local or global membrane shape in physiological in vitro conditions. Blood cells and GUVs are convenient and ethically acceptable methods for the study of effects of various substances on biological membranes and therefrom derived effects on organisms.


Subject(s)
Blood Platelets/drug effects , Cell Membrane/drug effects , Nanostructures , Phospholipids/chemistry , Soot/chemistry , Adult , Blood Cells/drug effects , Buffers , Cell Shape/drug effects , Erythrocyte Membrane/drug effects , Female , Humans , Male , Microscopy, Electron, Scanning , Nanostructures/chemistry , Soot/pharmacology , Suspensions/chemistry
3.
Acta Chim Slov ; 61(3): 488-96, 2014.
Article in English | MEDLINE | ID: mdl-25286204

ABSTRACT

Magnetic CoFe(2)O(4) nanoparticles were synthesized by co-precipitation at 80 °C. This co-precipitation was achieved by the rapid addition of a strong base to an aqueous solution of cations. The investigation of the samples that were quenched at different times after the addition of the base, using transmission electron microscopy (TEM) coupled with energy-dispersive X-ray spectroscopy (EDXS) and X-ray powder diffractometry, revealed the formation of a Co-deficient amorphous phase and Co(OH)(2), which rapidly reacted to form small CoFe(2)O(4) nanoparticles. The nanoparticles grew with the time of aging at elevated temperature. The colloidal suspensions of the nanoparticles were prepared in both an aqueous medium and in a non-polar organic medium, with the adsorption of citric acid and ricinoleic acid on the nanoparticles, respectively. The measurements of the room-temperature magnetization revealed the ferrimagnetic state of the CoFe(2)O(4) nanoparticles, while their suspensions displayed superparamagnetic behaviour.

4.
J Colloid Interface Sci ; 657: 778-787, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38081112

ABSTRACT

Magneto-mechanical actuation (MMA) using the low-frequency alternating magnetic fields (AMFs) of magnetic nanoparticles internalized into cancer cells can be used to irreparably damage these cells. However, nanoparticles in cells usually agglomerate, thus greatly augmenting the delivered force compared to single nanoparticles. Here, we demonstrate that MMA also decreases the cell viability, with the MMA mediated by individual, non-interacting nanoparticles. The effect was demonstrated with ferrimagnetic (i.e., permanently magnetic) barium-hexaferrite nanoplatelets (NPLs, ∼50 nm wide and 3 nm thick) with a unique, perpendicular orientation of the magnetization. Two cancer-cell lines (MDA-MB-231 and HeLa) are exposed to the NPLs in-vitro under different cell-culture conditions and actuated with a uniaxial AMF. TEM analyses show that only a small number of NPLs internalize in the cells, always situated in membrane-enclosed compartments of the endosomal-lysosomal system. Most compartments contain 1-2 NPLs and only seldom are the NPLs found in small groups, but never in close contact or mutually oriented. Even at low concentrations, the single NPLs reduce the cell viability when actuated with AMFs, which is further increased when the cells are in starvation conditions. These results pave the way for more efficient in-vivo MMA at very low particle concentrations.


Subject(s)
Nanoparticles , Neoplasms , Humans , Magnetic Fields , HeLa Cells , Lysosomes
5.
Environ Sci Technol ; 47(10): 5400-8, 2013 May 21.
Article in English | MEDLINE | ID: mdl-23578201

ABSTRACT

With a model invertebrate animal, we have assessed the fate of magnetic nanoparticles in biologically relevant media, i.e., digestive juices. The toxic potential and the internalization of such nanoparticles by nontarget cells were also examined. The aim of this study was to provide experimental evidence on the formation of Co(2+), Fe(2+), and Fe(3+) ions from CoFe2O4 nanoparticles in the digestive juices of a model organism. Standard toxicological parameters were assessed. Cell membrane stability was tested with a modified method for measurement of its quality. Proton-induced X-ray emission and low energy synchrotron radiation X-ray fluorescence were used to study internalization and distribution of Co and Fe. Co(2+) ions were found to be more toxic than nanoparticles. We confirmed that Co(2+) ions accumulate in the hepatopancreas, but Fe(n+) ions or CoFe2O4 nanoparticles are not retained in vivo. A model biological system with a terrestrial isopod is suited to studies of the potential dissolution of ions and other products from metal-containing nanoparticles in biologically complex media.


Subject(s)
Cobalt/metabolism , Crustacea/metabolism , Ferric Compounds/metabolism , Metal Nanoparticles/toxicity , Administration, Oral , Animals , Cations , Spectrophotometry, Atomic
6.
BMC Vet Res ; 9: 7, 2013 Jan 11.
Article in English | MEDLINE | ID: mdl-23311901

ABSTRACT

BACKGROUND: Massive industrial production of engineered nanoparticles poses questions about health risks to living beings. In order to understand the underlying mechanisms, we studied the effects of TiO2 and ZnO agglomerated engineered nanoparticles (EPs) on erythrocytes, platelet-rich plasma and on suspensions of giant unilamelar phospholipid vesicles. RESULTS: Washed erythrocytes, platelet-rich plasma and suspensions of giant unilamelar phospholipid vesicles were incubated with samples of EPs. These samples were observed by different microscopic techniques. We found that TiO2 and ZnO EPs adhered to the membrane of washed human and canine erythrocytes. TiO2 and ZnO EPs induced coalescence of human erythrocytes. Addition of TiO2 and ZnO EPs to platelet-rich plasma caused activation of human platelets after 24 hours and 3 hours, respectively, while in canine erythrocytes, activation of platelets due to ZnO EPs occurred already after 1 hour. To assess the effect of EPs on a representative sample of giant unilamelar phospholipid vesicles, analysis of the recorded populations was improved by applying the principles of statistical physics. TiO2 EPs did not induce any notable effect on giant unilamelar phospholipid vesicles within 50 minutes of incubation, while ZnO EPs induced a decrease in the number of giant unilamelar phospholipid vesicles that was statistically significant (p < 0,001) already after 20 minutes of incubation. CONCLUSIONS: These results indicate that TiO2 and ZnO EPs cause erythrocyte aggregation and could be potentially prothrombogenic, while ZnO could also cause membrane rupture.


Subject(s)
Erythrocytes/drug effects , Metal Nanoparticles/adverse effects , Platelet-Rich Plasma/drug effects , Unilamellar Liposomes/metabolism , Animals , Dogs , Erythrocyte Membrane/drug effects , Humans , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Phospholipids/chemistry , Titanium/chemistry , Zinc Oxide/chemistry
7.
Acta Chim Slov ; 60(4): 750-5, 2013.
Article in English | MEDLINE | ID: mdl-24362977

ABSTRACT

A chemical and a physical method have been applied for the preparation of chromium-nickel alloy nanoparticles. These particles were designed to be used for controlled magnetic hyperthermia applications. Microemulsions with Ni2+ and Cr3+ and/or NaBH4 as precursors were prepared using the isooctane/CTAB, n-butanol/H2O system. The samples of CrxNi1-x nanoparticles with the desired composition were obtained after the reduction of their salts with NaBH4 and afterwards heat treated in a TGA in a N2 atmosphere at various temperatures. The CrxNi1-x materials were also prepared by mechanical milling. Utilizing a ball-to-powder mass ratio of 20 : 1 and selecting the proper alloy compositions we were able to obtain nanocrystalline CrxNi1-x particles. Thermal demagnetization in the vicinity of the Curie temperature of the nanoparticles was studied using a modified TGA-SDTA method. The alloy's phase composition, size and morphology were determined with XRD measurements and TEM analyses.


Subject(s)
Alloys/chemistry , Chromium/chemistry , Nanoparticles/chemistry , Nickel/chemistry , Emulsions , Powder Diffraction , X-Ray Diffraction
8.
Sci Rep ; 13(1): 1092, 2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36658162

ABSTRACT

Barium hexaferrite nanoplatelets (BHF NPLs) are permanent nanomagnets with the magnetic easy axis aligned perpendicular to their basal plane. By combining this specific property with optimised surface chemistry, novel functional materials were developed, e.g., ferromagnetic ferrofluids and porous nanomagnets. We compared the interaction of chemically different phosphonic acids, hydrophobic and hydrophilic with 1-4 phosphonic groups, with BHF NPLs. A decrease in the saturation magnetisation after functionalising the BHF NPLs was correlated with the mass fraction of the nonmagnetic coating, whereas the saturation magnetisation of the NPLs coated with a tetraphosphonic acid at 80 °C was significantly lower than expected. We showed that such a substantial decrease in the saturation magnetisation originates from the disintegration of BHF NPLs, which was observed with atomic-resolution scanning transmission electron microscopy and confirmed by a computational study based on state-of-the-art first-principles calculations. Fe K-edge XANES (X-ray absorption near-edge structure) and EXAFS (Extended X-ray absorption fine structure) combined with Fourier-transformed infrared (FTIR) spectroscopy confirmed the formation of an Fe-phosphonate complex on the partly decomposed NPLs. Comparing our results with other functionalised magnetic nanoparticles confirmed that saturation magnetisation can be exploited to identify the disintegration of magnetic nanoparticles when insoluble disintegration products are formed.

9.
Materials (Basel) ; 16(9)2023 Apr 22.
Article in English | MEDLINE | ID: mdl-37176169

ABSTRACT

We studied inflammatory and oxidative stress-related parameters and cytotoxic response of human umbilical vein endothelial cells (HUVEC) to a 24 h treatment with milled particles simulating debris involved in sandblasting of orthopedic implants (OI). We used different abrasives (corundum-(Al2O3), used corundum retrieved from removed OI (u. Al2O3), and zirconia/silica composite (ZrO2/SiO2)). Morphological changes were observed by scanning electron microscopy (SEM). Concentration of Interleukins IL-6 and IL-1ß and Tumor Necrosis Factor α (TNF)-α was assessed by enzyme-linked immunosorbent assay (ELISA). Activity of Cholinesterase (ChE) and Glutathione S-transferase (GST) was measured by spectrophotometry. Reactive oxygen species (ROS), lipid droplets (LD) and apoptosis were measured by flow cytometry (FCM). Detachment of the cells from glass and budding of the cell membrane did not differ in the treated and untreated control cells. Increased concentration of IL-1ß and of IL-6 was found after treatment with all tested particle types, indicating inflammatory response of the treated cells. Increased ChE activity was found after treatment with u. Al2O3 and ZrO2/SiO2. Increased GST activity was found after treatment with ZrO2/SiO2. Increased LD quantity but not ROS quantity was found after treatment with u. Al2O3. No cytotoxicity was detected after treatment with u. Al2O3. The tested materials in concentrations added to in vitro cell lines were found non-toxic but bioactive and therefore prone to induce a response of the human body to OI.

10.
Acta Chim Slov ; 59(2): 366-74, 2012 Jun.
Article in English | MEDLINE | ID: mdl-24061254

ABSTRACT

CM-dextran-covered maghemite particles for applications in magnetic hyperthermia treatments were synthesized and their physical, magnetic and morphological properties were examined. Magnetic fluids were prepared and their heating properties in an alternating magnetic field were studied. The results reveal that the particle size and the thickness of the carboxy-methyl-dextran (CM-dextran) coatings have a decisive influence on the heating properties: specific absorption rate (SAR). The majority of the magnetic dissipation comes from the Neel relaxation, while the Brown contribution is small. A thermal steady state at the selected temperature (42 °C) can be achieved using synthesized maghemite particles with proper particle morphology and by controlling the magnetic field intensity or the frequency.

11.
Acta Chim Slov ; 69(4): 756-771, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36562168

ABSTRACT

Chemical composition and crystal structure are central to defining the functional properties of materials. But when a material is prepared in the form of nanoparticles, the structure and, as a consequence, the composition will also frequently change. Understanding these changes in the crystal structure at the nanoscale is therefore essential not only for expanding fundamental knowledge, but also for designing novel nanostructures for diverse technological and medical applications. The changes can originate from two thermodynamically driven phenomena: (i) a crystal structure will adapt to the restricted size of the nanoparticles, and (ii) metastable structural polymorphs that form during the synthesis due to a lower nucleation barrier (compared to the equilibrium phase) can be stabilized at the nanoscale. The changes to the crystal structure at the nanoscale are especially pronounced for inorganic materials with a complex structure and composition, such as mixed oxides with a structure built from alternating layers of several structural blocks. In this article the complex structure of nanoparticles will be presented based on two examples of well-known and technologically important materials with layered structures: magnetic hexaferrites (BaFe12O19 and SrFe12O19) and ferroelectric Aurivillius layered-perovskite bismuth titanate (Bi4Ti3O12).

12.
Nanoscale ; 14(9): 3537-3544, 2022 Mar 07.
Article in English | MEDLINE | ID: mdl-35174842

ABSTRACT

Two different morphologies of ferroelectric bismuth titanate (Bi4Ti3O12) nanoparticles, i.e., nanoplatelets and nanowires, were synthesized by changing the concentration of NaOH during a hydrothermal treatment of precipitated Ti4+ and Bi3+ ions. The nanoparticles' crystal structures were characterized using atomic-resolution imaging with a CS-probe-corrected scanning-transmission electron microscope in combination with X-ray diffractometry and Raman spectroscopy. The nanoplatelets (10 nm thick and from 50 nm to 200 nm wide) exhibit the Aurivillius-type layered-perovskite crystal structure that is characteristic of Bi4Ti3O12, whereas the nanowires (from 15 nm to 35 nm wide and from several hundreds of nm to several µm long) exhibit an entirely new structure with an orthorhombic unit cell (a = 3.804(1) Å, b = 11.816(3) Å, and c = 9.704(1) Å). The nanowire structure is composed of two structural layers alternating along the orthorhombic c-direction: a structural layer composed of two parallel layers of Bi atoms that resembles the (Bi2O2)2+ layer of the Aurivillius structure, and a structural layer composed of two parallel layers of Ti atoms, where every sixth Ti is replaced with Bi. Observations of the ferroelectric domains with transmission electron and piezo-response force microscopy indicated the ferroelectric nature of both nanostructures. The nanowire structure is a metastable polymorph of the bismuth titanate stabilized at the nanoscale. With annealing at temperatures above 500 °C the nanowire structure topotactically transforms into the Aurivillius structure.

13.
J Synchrotron Radiat ; 18(Pt 4): 557-63, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21685671

ABSTRACT

The approximate barium X-ray atomic absorption in the energy region of L-edges is reconstructed from the absorption spectrum of an aqueous solution of BaCl(2). The result is corroborated by comparison with pure atomic absorption spectra of neighbour elements Xe and Cs. The application of the atomic absorption signal as a proper EXAFS background is demonstrated and discussed in the analysis of Ba hexaferrite nanoparticles with a very weak structural signal. The essential gain is found in the decrease of uncertainty intervals of structural parameters and their correlations. A simple analytical model of the absorption background for the practical EXAFS analysis is demonstrated.

14.
Sci Rep ; 11(1): 6664, 2021 03 23.
Article in English | MEDLINE | ID: mdl-33758229

ABSTRACT

FLO-1 cell line represents an important tool in esophageal adenocarcinoma (EAC) research as a verified and authentic cell line to study the disease pathophysiology and antitumor drug screenings. Since in vitro characteristics of cells depend on the microenvironment and culturing conditions, we performed a thorough characterization of the FLO-1 cell line under different culturing conditions with the aim of (1) examining the effect of serum-free growth medium and air-liquid interface (A-L) culturing, which better reflect physiological conditions in vivo and (2) investigating the differentiation potential of FLO-1 cells to mimic the properties of the in vivo esophageal epithelium. Our study shows that the composition of the media influenced the morphological, ultrastructural and molecular characteristics of FLO-1 cells, such as the expression of junctional proteins. Importantly, FLO-1 cells formed spheres at the A-L interface, recapitulating key elements of tumors in the esophageal tube, i.e., direct contact with the gas phase and three-dimensional architecture. On the other hand, FLO-1 models exhibited high permeability to model drugs and zero permeability markers, and low transepithelial resistance, and therefore poorly mimicked normal esophageal epithelium. In conclusion, the identified effect of culture conditions on the characteristics of FLO-1 cells should be considered for standardization, data reproducibility and validity of the in vitro EAC model. Moreover, the sphere-forming ability of FLO-1 cells at the A-L interface should be considered in EAC tumor biology and anticancer drug studies as a reliable and straightforward model with the potential to increase the predictive efficiency of the current in vitro approaches.


Subject(s)
Adenocarcinoma/ultrastructure , Antineoplastic Agents/pharmacology , Cell Culture Techniques , Drug Screening Assays, Antitumor/methods , Drug Screening Assays, Antitumor/standards , Esophageal Neoplasms/ultrastructure , Adenocarcinoma/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Culture Media , Drug Discovery/methods , Esophageal Neoplasms/pathology , Humans , Immunohistochemistry , Intercellular Junctions/ultrastructure
15.
PLoS One ; 16(4): e0250513, 2021.
Article in English | MEDLINE | ID: mdl-33886681

ABSTRACT

Fructose-6-phosphate aldolase (FSA) is an important enzyme for the C-C bond-forming reactions in organic synthesis. The present work is focused on the synthesis of a precursor of D-fagomine catalyzed by a mutant FSA. The biocatalyst has been immobilized onto several supports: magnetic nanoparticle clusters (mNC), cobalt-chelated agarose (Co-IDA), amino-functionalized agarose (MANA-agarose) and glyoxal-agarose, obtaining a 29.0%, 93.8%, 89.7% and 53.9% of retained activity, respectively. Glyoxal-agarose FSA derivative stood up as the best option for the synthesis of the precursor of D-fagomine due to the high reaction rate, conversion, yield and operational stability achieved. FSA immobilized in glyoxal-agarose could be reused up to 6 reaction cycles reaching a 4-fold improvement in biocatalyst yield compared to the non-immobilized enzyme.


Subject(s)
Aldehyde-Lyases/chemistry , Enzymes, Immobilized/chemistry , Imino Pyranoses/chemistry , Magnetite Nanoparticles/chemistry , Aldehyde-Lyases/metabolism , Catalysis , Cobalt/chemistry , Enzymes, Immobilized/metabolism , Escherichia coli/enzymology , Fructosephosphates/metabolism , Imino Pyranoses/chemical synthesis , Sepharose/chemistry
16.
Nanomaterials (Basel) ; 10(6)2020 Jun 10.
Article in English | MEDLINE | ID: mdl-32532039

ABSTRACT

Utilization of magnetic nanoparticle-mediated conversion of electromagnetic energy into heat is gaining attention in catalysis as a source of heat needed for a substrate's chemical reaction (electrification of chemical conversions). We demonstrate that rapid and selective heating of magnetic nanoparticles opens a way to the rapid synthesis of a nanocatalyst. Magnetic heating caused rapid reduction of Ru3+ cations in the vicinity of the support material and enabled preparation of a Ru nanoparticle-bearing nanocatalyst. Comparative synthesis conducted under conventional heating revealed significantly faster Ru3+ reduction under magnetic heating. The faster kinetic was ascribed to the higher surface temperature of the support material caused by rapid magnetic heating. The nanocatalyst was rigorously tested in the hydrotreatment of furfural. The activity, selectivity and stability for furfural hydrogenation to furfuryl alcohol, a valuable biobased monomer, remained high even after four magnetic recycles.

17.
J Colloid Interface Sci ; 579: 508-519, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-32623117

ABSTRACT

HYPOTHESIS: The magneto-mechanical actuation (MMA) of magnetic nanoparticles with a low-frequency alternating magnetic field (AMF) can be used to destroy cancer cells. So far, MMA was tested on different cells using different nanoparticles and different field characteristics, which makes comparisons and any generalizations about the results of MMA difficult. In this paper we propose the use of giant unilamellar vesicles (GUVs) as a simple model system to study the effect of MMA on a closed lipid bilayer membrane, i.e., a basic building block of any cell. EXPERIMENTS: The GUVs were exposed to barium-hexaferrite nanoplatelets (NPLs, ~50 nm wide and 3 nm thick) with unique magnetic properties dominated by a permanent magnetic moment that is perpendicular to the platelet, at different concentrations (1-50 µg/mL) and pH values (4.2-7.4) of the aqueous suspension. The GUVs were observed with an optical microscope while being exposed to a uniaxial AMF (3-100 Hz, 2.2-10.6 mT). FINDINGS: When the NPLs were electrostatically attached to the GUV membranes, the MMA induced cyclic fluctuations of the GUVs' shape corresponding to the AMF frequency at the low NPL concentration (1 µm/mL), whereas the GUVs were bursting at the higher concentration (10 µg/mL). Theoretical considerations suggested that the bursting of the GUVs is a consequence of the local action of an assembly of several NPLs, rather than a collective effect of all the absorbed NPLs.


Subject(s)
Nanoparticles , Phospholipids , Barium , Lipid Bilayers , Unilamellar Liposomes
18.
ACS Omega ; 5(23): 14086-14095, 2020 Jun 16.
Article in English | MEDLINE | ID: mdl-32566875

ABSTRACT

Amorphous coatings formed with mono-, di-, and tetra-phosphonic acids on barium hexaferrite (BHF) nanoplatelets using various synthesis conditions. The coatings, synthesized in water with di- or tetra-phosphonic acids, were thicker than that could be expected from the ligand size and the surface coverage, as determined by thermogravimetric analysis. Here, we propose a mechanism for coating formation based on direct evidence of the surface dissolution/precipitation of the BHF nanoplatelets. The partial dissolution of the nanoplatelets was observed with atomic-resolution scanning transmission electron microscopy, and the released Fe(III) ions were detected with energy-dispersive X-ray spectroscopy and electron energy loss spectroscopy in amorphous coating. The strong chemical interaction between the surface Fe(III) ions with phosphonic ligands induces the dissolution of BHF nanoplatelets and the consequent precipitation of the Fe(III)-phosphonates that assemble into a porous coating. The so-obtained porous nanomagnets are highly responsive to a very weak magnetic field (in the order of Earth's magnetic field) at room temperature, which is a major advantage over the classic mesoporous nanomaterials and metal-organo-phosphonic frameworks with only a weak magnetic response at a few kelvins. The combination of porosity with the intrinsic magneto-crystalline anisotropy of BHF can be exploited, for example, as sorbents for heavy metals from contaminated water.

19.
Article in English | MEDLINE | ID: mdl-18400567

ABSTRACT

The aim of this study was to be able to reversibly bind histidine-rich proteins to the surface of maghemite magnetic nanoparticles via coordinative bonding using Zn ions as the anchoring points. We showed that in order to adsorb Zn ions on the maghemite, the surface of the latter needs to be modified. As silica is known to strongly adsorb zinc ions, we chose to modify the maghemite nanoparticles with a nanometre-thick silica layer. This layer appeared to be thin enough for the maghemite nanoparticles to preserve their superparamagnetic nature. As a model the histidine-rich protein bovine serum albumin (BSA) was used. The release of the BSA bound to Zn-decorated silica-coated maghemite nanoparticles was analysed using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). We demonstrated that the bonding of the BSA to such modified magnetic nanoparticles is highly reversible and can be controlled by an appropriate change of the external conditions, such as a pH decrease or the presence/supply of other chelating compounds.


Subject(s)
Magnetics , Nanoparticles , Silicon Dioxide/chemistry , Zinc/chemistry , Electrophoresis, Polyacrylamide Gel , Protein Binding
20.
Beilstein J Nanotechnol ; 9: 1613-1622, 2018.
Article in English | MEDLINE | ID: mdl-29977695

ABSTRACT

Nanocomposites with a high, uniform loading of magnetic nanoparticles are very desirable for applications such as electromagnetic shielding and cancer treatment based on magnetically induced hyperthermia. In this study, a simple and scalable route for preparing nanocomposites with a high, uniform loading of magnetic nanoparticles is presented. The magnetic iron-oxide nanoparticles were functionalized with a methacrylate-based monomer that copolymerized in a toluene solution with the methyl methacrylate (MMA) monomer. The resulting suspension of magnetic nanoparticles decorated with poly(methyl methacrylate) (PMMA) chains in toluene were colloidal, even in the presence of a magnetic field gradient. Nanocomposites were precipitated from these suspensions. The transmission electron microscopy investigation of the prepared nanocomposites revealed that the magnetic nanoparticles were homogeneously dispersed in the PMMA matrix, even in amounts up to 53 wt %. The uniform dispersion of the nanoparticles in the PMMA matrix was attributed to the good solvation of the grafted PMMA chains from the magnetic nanoparticles by the PMMA chains of the matrix. The nanocomposites were superparamagnetic and exhibited large values for the saturation magnetization of up to 36 emu/g. Moreover, the nanocomposite with the largest amount of incorporated nanoparticles exhibited relatively large values for the specific power loss when subjected to alternating magnetic fields, giving this material great potential for the magnetically induced hyperthermia-based treatment of cancer.

SELECTION OF CITATIONS
SEARCH DETAIL