Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Publication year range
1.
Environ Monit Assess ; 195(9): 1042, 2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37589790

ABSTRACT

Worldwide, there has been an increase in the presence of potentially toxic cyanobacterial blooms in drinking water sources and within drinking water treatment plants (DWTPs). The objective of this study is to validate the use of in situ probes for the detection and management of cyanobacterial breakthrough in high and low-risk DWTPs. In situ phycocyanin YSI EXO2 probes were devised for remote control and data logging to monitor the cyanobacteria in raw, clarified, filtered, and treated water in three full-scale DWTPs. An additional probe was installed inside the sludge holding tank to measure the water quality of the surface of the sludge storage tank in a high-risk DWTP. Simultaneous grab samplings were carried out for taxonomic cell counts and toxin analysis. A total of 23, 9, and 4 field visits were conducted at the three DWTPs. Phycocyanin readings showed a 93-fold fluctuation within 24 h in the raw water of the high cyanobacterial risk plant, with higher phycocyanin levels during the afternoon period. These data provide new information on the limitations of weekly or daily grab sampling. Also, different moving averages for the phycocyanin probe readings can be used to improve the interpretation of phycocyanin signal trends. The in situ probe successfully detected high cyanobacterial biovolumes entering the clarification process in the high-risk plant. Grab sampling results revealed high cyanobacterial biovolumes in the sludge for both high and low-risk plants.


Subject(s)
Cyanobacteria , Drinking Water , Phycocyanin , Sewage , Environmental Monitoring
2.
Sci Total Environ ; : 175136, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39084374

ABSTRACT

Precise and rapid methods are needed to improve monitoring approaches of L. pneumophila (Lp) in cooling towers (CTs) to allow timely operational adjustments and prevent outbreaks. The performance of liquid culture (ASTM D8429-21) and an online qPCR device were first compared to conventional filter plate culture (ISO 11731-2017), qPCR and semi-automated qPCR at three spiked concentrations of Lp (serogroup 1) validated by flow cytometry (total/viable cell count). The most accurate was qPCR, followed by liquid culture, online and semi-automated qPCR, and lastly, by a significant margin, filter plate culture. An industrial CT system was monitored using liquid and direct plate culture by the facility, qPCR and online qPCR. Direct plate and liquid culture results agreed at regulatory sampling point, supporting the use of the faster liquid culture for monitoring culturable Lp. During initial operation, qPCR and online qPCR results were within one log of culture at the primary pump before deviating after first cleaning. Other points revealed high spatial variability of Lp. The secondary pumps and chiller had the most positivity and highest concentrations by both qPCR and liquid culture compared to the basin and infeed tank. Altogether, this suggests that results from monthly compliance sampling at a single location with plate culture are not representative of Lp risks in this CT due to the high temporal and spatial variability. The primary pump, rather than the CT basin, should be designated for sampling, as it is representative of the health risk. An annual multi point survey of the system should be conducted to identify and target Lp hot spots. Generally, a combination of liquid culture for compliance and frequent qPCR for process control provides a more agile and robust monitoring scheme than plate culture alone, enabling early treatment adjustments, due to lower limit of detection (LOD) and turnover time.

3.
Toxins (Basel) ; 14(11)2022 10 31.
Article in English | MEDLINE | ID: mdl-36355999

ABSTRACT

Health-related concerns about cyanobacteria-laden sludge of drinking water treatment plants (DWTPs) have been raised in the past few years. Microscopic taxonomy, shotgun metagenomic sequencing, and microcystin (MC) measurement were applied to study the fate of cyanobacteria and cyanotoxins after controlled sludge storage (stagnation) in the dark in a full-scale drinking water treatment plant within 7 to 38 days. For four out of eight dates, cyanobacterial cell growth was observed by total taxonomic cell counts during sludge stagnation. The highest observed cell growth was 96% after 16 days of stagnation. Cell growth was dominated by potential MC producers such as Microcystis, Aphanocapsa, Chroococcus, and Dolichospermum. Shotgun metagenomic sequencing unveiled that stagnation stress shifts the cyanobacterial communities from the stress-sensitive Nostocales (e.g., Dolichospermum) order towards less compromised orders and potential MC producers such as Chroococcales (e.g., Microcystis) and Synechococcales (e.g., Synechococcus). The relative increase of cyanotoxin producers presents a health challenge when the supernatant of the stored sludge is recycled to the head of the DWTP or discharged into the source. These findings emphasize the importance of a strategy to manage cyanobacteria-laden sludge and suggest practical approaches should be adopted to control health/environmental impacts of cyanobacteria and cyanotoxins in sludge.


Subject(s)
Cyanobacteria , Drinking Water , Microcystis , Water Purification , Sewage , Microcystins , Cyanobacteria/genetics
4.
Toxins (Basel) ; 14(10)2022 Oct 07.
Article in English | MEDLINE | ID: mdl-36287957

ABSTRACT

The excessive proliferation of cyanobacteria in surface waters is a widespread problem worldwide, leading to the contamination of drinking water sources. Short- and long-term solutions for managing cyanobacterial blooms are needed for drinking water supplies. The goal of this research was to investigate the cyanobacteria community composition using shotgun metagenomics in a short term, in situ mesocosm experiment of two lakes following their coagulation with ferric sulfate (Fe2(SO4)3) as an option for source water treatment. Among the nutrient paramenters, dissolved nitrogen was related to Microcystis in both Missisquoi Bay and Petit Lac St. François, while the presence of Synechococcus was related to total nitrogen, dissolved nitrogen, dissolved organic carbon, and dissolved phosphorus. Results from the shotgun metagenomic sequencing showed that Dolichospermum and Microcystis were the dominant genera in all of the mesocosms in the beginning of the sampling period in Missisquoi Bay and Petit Lac St. François, respectively. Potentially toxigenic genera such as Microcystis were correlated with intracellular microcystin concentrations. A principal component analysis showed that there was a change of the cyanobacterial composition at the genus level in the mesocosms after two days, which varied across the studied sites and sampling time. The cyanobacterial community richness and diversity did not change significantly after its coagulation by Fe2(SO4)3 in all of the mesocosms at either site. The use of Fe2(SO4)3 for an onsite source water treatment should consider its impact on cyanobacterial community structure and the reduction of toxin concentrations.


Subject(s)
Cyanobacteria , Drinking Water , Microcystis , Microcystins/analysis , Drinking Water/analysis , Cyanobacteria/genetics , Microcystis/genetics , Lakes/microbiology , Nitrogen/analysis , Phosphorus/analysis
SELECTION OF CITATIONS
SEARCH DETAIL