Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 282
Filter
1.
Mol Psychiatry ; 29(4): 929-938, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38177349

ABSTRACT

To bring biomarkers closer to clinical application, they should be generalizable, reliable, and maintain performance within the constraints of routine clinical conditions. The functional striatal abnormalities (FSA), is among the most advanced neuroimaging biomarkers in schizophrenia, trained to discriminate diagnosis, with post-hoc analyses indicating prognostic properties. Here, we attempt to replicate its diagnostic capabilities measured by the area under the curve (AUC) in receiver operator characteristic curves discriminating individuals with psychosis (n = 101) from healthy controls (n = 51) in the Human Connectome Project for Early Psychosis. We also measured the test-retest (run 1 vs 2) and phase encoding direction (i.e., AP vs PA) reliability with intraclass correlation coefficients (ICC). Additionally, we measured effects of scan length on classification accuracy (i.e., AUCs) and reliability (i.e., ICCs). Finally, we tested the prognostic capability of the FSA by the correlation between baseline scores and symptom improvement over 12 weeks of antipsychotic treatment in a separate cohort (n = 97). Similar analyses were conducted for the Yeo networks intrinsic connectivity as a reference. The FSA had good/excellent diagnostic discrimination (AUC = 75.4%, 95% CI = 67.0-83.3%; in non-affective psychosis AUC = 80.5%, 95% CI = 72.1-88.0%, and in affective psychosis AUC = 58.7%, 95% CI = 44.2-72.0%). Test-retest reliability ranged between ICC = 0.48 (95% CI = 0.35-0.59) and ICC = 0.22 (95% CI = 0.06-0.36), which was comparable to that of networks intrinsic connectivity. Phase encoding direction reliability for the FSA was ICC = 0.51 (95% CI = 0.42-0.59), generally lower than for networks intrinsic connectivity. By increasing scan length from 2 to 10 min, diagnostic classification of the FSA increased from AUC = 71.7% (95% CI = 63.1-80.3%) to 75.4% (95% CI = 67.0-83.3%) and phase encoding direction reliability from ICC = 0.29 (95% CI = 0.14-0.43) to ICC = 0.51 (95% CI = 0.42-0.59). FSA scores did not correlate with symptom improvement. These results reassure that the FSA is a generalizable diagnostic - but not prognostic - biomarker. Given the replicable results of the FSA as a diagnostic biomarker trained on case-control datasets, next the development of prognostic biomarkers should be on treatment-response data.


Subject(s)
Biomarkers , Corpus Striatum , Magnetic Resonance Imaging , Neuroimaging , Psychotic Disorders , Schizophrenia , Humans , Male , Female , Psychotic Disorders/physiopathology , Adult , Corpus Striatum/diagnostic imaging , Corpus Striatum/physiopathology , Neuroimaging/methods , Reproducibility of Results , Magnetic Resonance Imaging/methods , Schizophrenia/physiopathology , Schizophrenia/diagnostic imaging , Connectome/methods , Young Adult , Adolescent
2.
Mol Psychiatry ; 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38491344

ABSTRACT

Persons diagnosed with schizophrenia (SCZ) or bipolar I disorder (BPI) are at high risk for self-injurious behavior, suicidal ideation, and suicidal behaviors (SB). Characterizing associations between diagnosed health problems, prior pharmacological treatments, and polygenic scores (PGS) has potential to inform risk stratification. We examined self-reported SB and ideation using the Columbia Suicide Severity Rating Scale (C-SSRS) among 3,942 SCZ and 5,414 BPI patients receiving care within the Veterans Health Administration (VHA). These cross-sectional data were integrated with electronic health records (EHRs), and compared across lifetime diagnoses, treatment histories, follow-up screenings, and mortality data. PGS were constructed using available genomic data for related traits. Genome-wide association studies were performed to identify and prioritize specific loci. Only 20% of the veterans who reported SB had a corroborating ICD-9/10 EHR code. Among those without prior SB, more than 20% reported new-onset SB at follow-up. SB were associated with a range of additional clinical diagnoses, and with treatment with specific classes of psychotropic medications (e.g., antidepressants, antipsychotics, etc.). PGS for externalizing behaviors, smoking initiation, suicide attempt, and major depressive disorder were associated with SB. The GWAS for SB yielded no significant loci. Among individuals with a diagnosed mental illness, self-reported SB were strongly associated with clinical variables across several EHR domains. Analyses point to sequelae of substance-related and psychiatric comorbidities as strong correlates of prior and subsequent SB. Nonetheless, past SB was frequently not documented in health records, underscoring the value of regular screening with direct, in-person assessments, especially among high-risk individuals.

3.
Mol Psychiatry ; 28(5): 2030-2038, 2023 May.
Article in English | MEDLINE | ID: mdl-37095352

ABSTRACT

Studies applying Free Water Imaging have consistently reported significant global increases in extracellular free water (FW) in populations of individuals with early psychosis. However, these published studies focused on homogenous clinical participant groups (e.g., only first episode or chronic), thereby limiting our understanding of the time course of free water elevations across illness stages. Moreover, the relationship between FW and duration of illness has yet to be directly tested. Leveraging our multi-site diffusion magnetic resonance imaging(dMRI) harmonization approach, we analyzed dMRI scans collected by 12 international sites from 441 healthy controls and 434 individuals diagnosed with schizophrenia-spectrum disorders at different illness stages and ages (15-58 years). We characterized the pattern of age-related FW changes by assessing whole brain white matter in individuals with schizophrenia and healthy controls. In individuals with schizophrenia, average whole brain FW was higher than in controls across all ages, with the greatest FW values observed from 15 to 23 years (effect size range = [0.70-0.87]). Following this peak, FW exhibited a monotonic decrease until reaching a minima at the age of 39 years. After 39 years, an attenuated monotonic increase in FW was observed, but with markedly smaller effect sizes when compared to younger patients (effect size range = [0.32-0.43]). Importantly, FW was found to be negatively associated with duration of illness in schizophrenia (p = 0.006), independent of the effects of other clinical and demographic data. In summary, our study finds in a large, age-diverse sample that participants with schizophrenia with a shorter duration of illness showed higher FW values compared to participants with more prolonged illness. Our findings provide further evidence that elevations in the FW are present in individuals with schizophrenia, with the greatest differences in the FW being observed in those at the early stages of the disorder, which might suggest acute extracellular processes.

4.
Mol Psychiatry ; 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37985787

ABSTRACT

Neurostimulation is a mainstream treatment option for major depression. Neuromodulation techniques apply repetitive magnetic or electrical stimulation to some neural target but significantly differ in their invasiveness, spatial selectivity, mechanism of action, and efficacy. Despite these differences, recent analyses of transcranial magnetic stimulation (TMS) and deep brain stimulation (DBS)-treated individuals converged on a common neural network that might have a causal role in treatment response. We set out to investigate if the neuronal underpinnings of electroconvulsive therapy (ECT) are similarly associated with this causal depression network (CDN). Our aim here is to provide a comprehensive analysis in three cohorts of patients segregated by electrode placement (N = 246 with right unilateral, 79 with bitemporal, and 61 with mixed) who underwent ECT. We conducted a data-driven, unsupervised multivariate neuroimaging analysis Principal Component Analysis (PCA) of the cortical and subcortical volume changes and electric field (EF) distribution to explore changes within the CDN associated with antidepressant outcomes. Despite the different treatment modalities (ECT vs TMS and DBS) and methodological approaches (structural vs functional networks), we found a highly similar pattern of change within the CDN in the three cohorts of patients (spatial similarity across 85 regions: r = 0.65, 0.58, 0.40, df = 83). Most importantly, the expression of this pattern correlated with clinical outcomes (t = -2.35, p = 0.019). This evidence further supports that treatment interventions converge on a CDN in depression. Optimizing modulation of this network could serve to improve the outcome of neurostimulation in depression.

5.
Neuroimage ; 277: 120238, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37364743

ABSTRACT

The majority of human connectome studies in the literature based on functional magnetic resonance imaging (fMRI) data use either an anterior-to-posterior (AP) or a posterior-to-anterior (PA) phase encoding direction (PED). However, whether and how PED would affect test-retest reliability of functional connectome is unclear. Here, in a sample of healthy subjects with two sessions of fMRI scans separated by 12 weeks (two runs per session, one with AP, the other with PA), we tested the influence of PED on global, nodal, and edge connectivity in the constructed brain networks. All data underwent the state-of-the-art Human Connectome Project (HCP) pipeline to correct for phase-encoding-related distortions before entering analysis. We found that at the global level, the PA scans showed significantly higher intraclass correlation coefficients (ICCs) for global connectivity compared with AP scans, which was particularly prominent when using the Seitzman-300 atlas (versus the CAB-NP-718 atlas). At the nodal level, regions most strongly affected by PED were consistently mapped to the cingulate cortex, temporal lobe, sensorimotor areas, and visual areas, with significantly higher ICCs during PA scans compared with AP scans, regardless of atlas. Better ICCs were also observed during PA scans at the edge level, in particular when global signal regression (GSR) was not performed. Further, we demonstrated that the observed reliability differences between PEDs may relate to a similar effect on the reliability of temporal signal-to-noise ratio (tSNR) in the same regions (that PA scans were associated with higher reliability of tSNR than AP scans). Averaging the connectivity outcome from the AP and PA scans could increase median ICCs, especially at the nodal and edge levels. Similar results at the global and nodal levels were replicated in an independent, public dataset from the HCP-Early Psychosis (HCP-EP) study with a similar design but a much shorter scan session interval. Our findings suggest that PED has significant effects on the reliability of connectomic estimates in fMRI studies. We urge that these effects need to be carefully considered in future neuroimaging designs, especially in longitudinal studies such as those related to neurodevelopment or clinical intervention.


Subject(s)
Connectome , Sensorimotor Cortex , Humans , Connectome/methods , Reproducibility of Results , Rest , Brain/diagnostic imaging , Signal-To-Noise Ratio , Magnetic Resonance Imaging/methods , Transforming Growth Factor beta
6.
Hum Brain Mapp ; 44(15): 5153-5166, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37605827

ABSTRACT

BACKGROUND: Spatial patterns of brain functional connectivity can vary substantially at the individual level. Applying cortical surface-based approaches with individualized rather than group templates may accelerate the discovery of biological markers related to psychiatric disorders. We investigated cortico-subcortical networks from multi-cohort data in people with schizophrenia spectrum disorders (SSDs) and healthy controls (HC) using individualized connectivity profiles. METHODS: We utilized resting-state and anatomical MRI data from n = 406 participants (n = 203 SSD, n = 203 HC) from four cohorts. Functional timeseries were extracted from previously defined intrinsic network subregions of the striatum, thalamus, and cerebellum as well as 80 cortical regions of interest, representing six intrinsic networks using (1) volume-based approaches, (2) a surface-based group atlas approaches, and (3) Personalized Intrinsic Network Topography (PINT). RESULTS: The correlations between all cortical networks and the expected subregions of the striatum, cerebellum, and thalamus were increased using a surface-based approach (Cohen's D volume vs. surface 0.27-1.00, all p < 10-6 ) and further increased after PINT (Cohen's D surface vs. PINT 0.18-0.96, all p < 10-4 ). In SSD versus HC comparisons, we observed robust patterns of dysconnectivity that were strengthened using a surface-based approach and PINT (Number of differing pairwise-correlations: volume: 404, surface: 570, PINT: 628, FDR corrected). CONCLUSION: Surface-based and individualized approaches can more sensitively delineate cortical network dysconnectivity differences in people with SSDs. These robust patterns of dysconnectivity were visibly organized in accordance with the cortical hierarchy, as predicted by computational models.


Subject(s)
Cerebral Cortex , Functional Neuroimaging , Schizophrenia , Humans , Schizophrenia/diagnostic imaging , Male , Female , Adult , Cerebral Cortex/diagnostic imaging , Adolescent , Young Adult , Magnetic Resonance Imaging , Rest , Corpus Striatum/diagnostic imaging , Thalamus/diagnostic imaging , Cerebellum/diagnostic imaging
7.
Mol Psychiatry ; 27(9): 3719-3730, 2022 09.
Article in English | MEDLINE | ID: mdl-35982257

ABSTRACT

Cognitive deficits are among the best predictors of real-world functioning in schizophrenia. However, our understanding of how cognitive deficits relate to neuropathology and clinical presentation over the disease lifespan is limited. Here, we combine multi-site, harmonized cognitive, imaging, demographic, and clinical data from over 900 individuals to characterize a) cognitive deficits across the schizophrenia lifespan and b) the association between cognitive deficits, clinical presentation, and white matter (WM) microstructure. Multimodal harmonization was accomplished using T-scores for cognitive data, previously reported standardization methods for demographic and clinical data, and an established harmonization method for imaging data. We applied t-tests and correlation analysis to describe cognitive deficits in individuals with schizophrenia. We then calculated whole-brain WM fractional anisotropy (FA) and utilized regression-mediation analyses to model the association between diagnosis, FA, and cognitive deficits. We observed pronounced cognitive deficits in individuals with schizophrenia (p < 0.006), associated with more positive symptoms and medication dosage. Regression-mediation analyses showed that WM microstructure mediated the association between schizophrenia and language/processing speed/working memory/non-verbal memory. In addition, processing speed mediated the influence of diagnosis and WM microstructure on the other cognitive domains. Our study highlights the critical role of cognitive deficits in schizophrenia. We further show that WM is crucial when trying to understand the role of cognitive deficits, given that it explains the association between schizophrenia and cognitive deficits (directly and via processing speed).


Subject(s)
Cognition Disorders , Schizophrenia , White Matter , Humans , White Matter/pathology , Schizophrenia/pathology , Diffusion Tensor Imaging , Cognition Disorders/complications , Anisotropy , Cognition , Brain/pathology
8.
Mol Psychiatry ; 26(9): 5357-5370, 2021 09.
Article in English | MEDLINE | ID: mdl-33483689

ABSTRACT

White matter (WM) abnormalities are repeatedly demonstrated across the schizophrenia time-course. However, our understanding of how demographic and clinical variables interact, influence, or are dependent on WM pathologies is limited. The most well-known barriers to progress are heterogeneous findings due to small sample sizes and the confounding influence of age on WM. The present study leverages access to the harmonized diffusion magnetic-resonance-imaging data and standardized clinical data from 13 international sites (597 schizophrenia patients (SCZ)). Fractional anisotropy (FA) values for all major WM structures in patients were predicted based on FA models estimated from a healthy population (n = 492). We utilized the deviations between predicted and real FA values to answer three essential questions. (1) "Which clinical variables explain WM abnormalities?". (2) "Does the degree of WM abnormalities predict symptom severity?". (3) "Does sex influence any of those relationships?". Regression and mediator analyses revealed that a longer duration-of-illness is associated with more severe WM abnormalities in several tracts. In addition, they demonstrated that a higher antipsychotic medication dose is related to more severe corpus callosum abnormalities. A structural equation model revealed that patients with more WM abnormalities display higher symptom severity. Last, the results exhibited sex-specificity. Males showed a stronger association between duration-of-illness and WM abnormalities. Females presented a stronger association between WM abnormalities and symptom severity, with IQ impacting this relationship. Our findings provide clear evidence for the interaction of demographic, clinical, and behavioral variables with WM pathology in SCZ. Our results also point to the need for longitudinal studies, directly investigating the casualty and sex-specificity of these relationships, as well as the impact of cognitive resiliency on structure-function relationships.


Subject(s)
Schizophrenia , White Matter , Anisotropy , Brain/diagnostic imaging , Demography , Diffusion Tensor Imaging , Female , Humans , Male , White Matter/diagnostic imaging
9.
Cereb Cortex ; 31(1): 201-212, 2021 01 01.
Article in English | MEDLINE | ID: mdl-32851404

ABSTRACT

Axonal myelination and repair, critical processes for brain development, maturation, and aging, remain controlled by sexual hormones. Whether this influence is reflected in structural brain differences between sexes, and whether it can be quantified by neuroimaging, remains controversial. Diffusion-weighted magnetic resonance imaging (dMRI) is an in vivo method that can track myelination changes throughout the lifespan. We utilize a large, multisite sample of harmonized dMRI data (n = 551, age = 9-65 years, 46% females/54% males) to investigate the influence of sex on white matter (WM) structure. We model lifespan trajectories of WM using the most common dMRI measure fractional anisotropy (FA). Next, we examine the influence of both age and sex on FA variability. We estimate the overlap between male and female FA and test whether it is possible to label individual brains as male or female. Our results demonstrate regionally and spatially specific effects of sex. Sex differences are limited to limbic structures and young ages. Additionally, not only do sex differences diminish with age, but tracts within each subject become more similar to one another. Last, we show the high overlap in FA between sexes, which implies that determining sex based on WM remains open.


Subject(s)
Sex Characteristics , White Matter/anatomy & histology , White Matter/diagnostic imaging , Adolescent , Adult , Aged , Aging , Anisotropy , Axons/physiology , Child , Diffusion Magnetic Resonance Imaging , Diffusion Tensor Imaging , Female , Humans , Limbic System/diagnostic imaging , Limbic System/physiology , Male , Middle Aged , Myelin Sheath/physiology , Neural Pathways/diagnostic imaging , Neural Pathways/physiology , Young Adult
10.
Hum Brain Mapp ; 42(14): 4658-4670, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34322947

ABSTRACT

Diffusion MRI studies consistently report group differences in white matter between individuals diagnosed with schizophrenia and healthy controls. Nevertheless, the abnormalities found at the group-level are often not observed at the individual level. Among the different approaches aiming to study white matter abnormalities at the subject level, normative modeling analysis takes a step towards subject-level predictions by identifying affected brain locations in individual subjects based on extreme deviations from a normative range. Here, we leveraged a large harmonized diffusion MRI dataset from 512 healthy controls and 601 individuals diagnosed with schizophrenia, to study whether normative modeling can improve subject-level predictions from a binary classifier. To this aim, individual deviations from a normative model of standard (fractional anisotropy) and advanced (free-water) dMRI measures, were calculated by means of age and sex-adjusted z-scores relative to control data, in 18 white matter regions. Even though larger effect sizes are found when testing for group differences in z-scores than are found with raw values (p < .001), predictions based on summary z-score measures achieved low predictive power (AUC < 0.63). Instead, we find that combining information from the different white matter tracts, while using multiple imaging measures simultaneously, improves prediction performance (the best predictor achieved AUC = 0.726). Our findings suggest that extreme deviations from a normative model are not optimal features for prediction. However, including the complete distribution of deviations across multiple imaging measures improves prediction, and could aid in subject-level classification.


Subject(s)
Diffusion Tensor Imaging/standards , Machine Learning , Schizophrenia/classification , Schizophrenia/diagnostic imaging , White Matter/diagnostic imaging , Adult , Diffusion Tensor Imaging/methods , Female , Humans , Male , Middle Aged , Models, Theoretical , Precision Medicine , Predictive Value of Tests , Schizophrenia/pathology , White Matter/pathology , Young Adult
11.
J Clin Psychopharmacol ; 41(4): 421-427, 2021.
Article in English | MEDLINE | ID: mdl-33956703

ABSTRACT

BACKGROUND: Adults with bipolar disorder (BD) often experience neurocognitive impairment that negatively impacts functioning and quality of life. Previous trials have found that dopamine agonist agents improve cognition in healthy volunteers and that adults with BD who have stable mood and mild cognitive deficits may also benefit. We hypothesized that pramipexole, a dopamine agonist, would improve neurocognitive function in patients with BD. METHODS: We recruited 60 adults (aged 18-65 years) with a diagnosis of BD I or II for an 8-week, double-blind, placebo-controlled trial (NCT02397837). All had stable mood and clinically significant neurocognitive impairment at baseline. Participants were randomized to receive pramipexole (n = 31) or a placebo (n = 29), dose was initiated at 0.125 mg 2 times a day and increased to a target of 4.5 mg/d. RESULTS: At trial end, the primary outcome, MATRICS Consensus Cognitive Battery composite score, had not improved more in the pramipexole group (mean [SD] = 1.15 [5.4]) than in the placebo group (mean [SD] = 4.12 [5.2], Cohen's d = 0.56, P = 0.049), and mixed models, controlling for symptoms, showed no association between treatment group and MATRICS Consensus Cognitive Battery scores. No serious adverse events were reported. CONCLUSIONS: These results suggest that pramipexole is not an efficacious cognitive enhancement agent in BD, even in a sample enriched for characteristics that were associated with a beneficial response in prior work. There are distinct cognitive subgroups among adults with BD and may be related differences in neurobiology that affect response to pramipexole. Additional research to better understand the onset and nature of the cognitive deficits in people with BD will be an important step toward a more personalized approach to treatment.


Subject(s)
Bipolar Disorder , Cognition/drug effects , Neurocognitive Disorders , Pramipexole , Quality of Life , Bipolar Disorder/diagnosis , Bipolar Disorder/drug therapy , Bipolar Disorder/psychology , Dopamine Agonists/administration & dosage , Dopamine Agonists/adverse effects , Double-Blind Method , Female , Humans , Male , Middle Aged , Neurocognitive Disorders/diagnosis , Neurocognitive Disorders/drug therapy , Neurocognitive Disorders/etiology , Neuropsychological Tests , Pramipexole/administration & dosage , Pramipexole/adverse effects , Treatment Outcome
12.
Mol Psychiatry ; 25(12): 3208-3219, 2020 12.
Article in English | MEDLINE | ID: mdl-31511636

ABSTRACT

Several prominent theories of schizophrenia suggest that structural white matter pathologies may follow a developmental, maturational, and/or degenerative process. However, a lack of lifespan studies has precluded verification of these theories. Here, we analyze the largest sample of carefully harmonized diffusion MRI data to comprehensively characterize age-related white matter trajectories, as measured by fractional anisotropy (FA), across the course of schizophrenia. Our analysis comprises diffusion scans of 600 schizophrenia patients and 492 healthy controls at different illness stages and ages (14-65 years), which were gathered from 13 sites. We determined the pattern of age-related FA changes by cross-sectionally assessing the timing of the structural neuropathology associated with schizophrenia. Quadratic curves were used to model between-group FA differences across whole-brain white matter and fiber tracts at each age; fiber tracts were then clustered according to both the effect-sizes and pattern of lifespan white matter FA differences. In whole-brain white matter, FA was significantly lower across the lifespan (up to 7%; p < 0.0033) and reached peak maturation younger in patients (27 years) compared to controls (33 years). Additionally, three distinct patterns of neuropathology emerged when investigating white matter fiber tracts in patients: (1) developmental abnormalities in limbic fibers, (2) accelerated aging and abnormal maturation in long-range association fibers, (3) severe developmental abnormalities and accelerated aging in callosal fibers. Our findings strongly suggest that white matter in schizophrenia is affected across entire stages of the disease. Perhaps most strikingly, we show that white matter changes in schizophrenia involve dynamic interactions between neuropathological processes in a tract-specific manner.


Subject(s)
Schizophrenia , White Matter , Adolescent , Adult , Aged , Anisotropy , Brain/diagnostic imaging , Diffusion Magnetic Resonance Imaging , Diffusion Tensor Imaging , Humans , Longevity , Middle Aged , Schizophrenia/diagnostic imaging , White Matter/diagnostic imaging , Young Adult
13.
Neuroimage ; 208: 116469, 2020 03.
Article in English | MEDLINE | ID: mdl-31846756

ABSTRACT

Parasympathetic arousal is associated with states of heightened attention and well-being. Arousal may affect widespread cortical and subcortical systems across the brain, however, little is known about its influence on cognitive task processing and performance. In the current study, healthy adult participants (n â€‹= â€‹20) underwent multi-band echo-planar imaging (TR â€‹= â€‹0.72 â€‹s) with simultaneous pulse oximetry recordings during performance of the Multi Source Interference Task (MSIT), the Oddball Task (OBT), and during rest. Processing speed on both tasks was robustly related to heart rate (HR). Participants with slower HR responded faster on both the MSIT (33% variance explained) and the OBT (25% variance explained). Within all participants, trial-to-trial fluctuations in processing speed were robustly related to the heartbeat-stimulus interval, a metric that is dependent both on the concurrent HR and the stimulus timing with respect to the heartbeat. Models examining the cardiac-BOLD response revealed that a distributed set of regions showed arousal-related activity that was distinct for different task conditions. Across these cortical regions, activity increased with slower HR. Arousal-related activity was distinct from task-evoked activity and it was robust to the inclusion of additional physiological nuisance regressors into the models. For the MSIT, such arousal-related activity occurred across visual and dorsal attention network regions. For the OBT, this activity occurred within fronto-parietal regions. For rest, arousal-related activity also occurred, but was confined to visual regions. The pulvinar nucleus of the thalamus showed arousal-related activity during all three task conditions. Widespread cortical activity, associated with increased parasympathetic arousal, may be propagated by thalamic circuits and contributes to improved attention. This activity is distinct from task-evoked activity, but affects cognitive performance and therefore should be incorporated into neurobiological models of cognition and clinical disorders.


Subject(s)
Arousal/physiology , Cerebral Cortex/physiology , Functional Neuroimaging , Heart Rate/physiology , Nerve Net/physiology , Parasympathetic Nervous System/physiology , Psychomotor Performance/physiology , Pulvinar/physiology , Reaction Time/physiology , Adult , Attention/physiology , Cerebral Cortex/diagnostic imaging , Echo-Planar Imaging , Humans , Magnetic Resonance Imaging , Nerve Net/diagnostic imaging , Oximetry , Pulvinar/diagnostic imaging , Young Adult
14.
Neuropsychobiology ; 79(6): 384-396, 2020.
Article in English | MEDLINE | ID: mdl-31505508

ABSTRACT

Transcranial magnetic stimulation (TMS) has been proposed as a potential treatment add-on for positive symptoms in schizophrenia. To summarize the current evidence for its efficacy, we reviewed clinical trials from the last 20 years that investigated TMS for positive symptoms. We performed a search on the PubMed database for clinical trials that used TMS for the treatment of positive symptoms published in peer-reviewed journals. We excluded reviews, case reports, and opinion papers. Of the 30 studies included, the majority (n = 25) investigated auditory verbal hallucinations. Twelve studies found evidence for a positive treatment effect of TMS on positive symptoms, while 18 did not find enough evidence to conclude that TMS is effective for positive symptoms. However, the small sample size of the majority of studies is a limiting factor for the reliability of previous findings. In conclusion, evidence for an effect of TMS on positive symptoms was mixed. Since most of the studies were performed in patients with auditory verbal hallucinations, further research of TMS for other positive symptoms including thought disorder and delusions is warranted.


Subject(s)
Hallucinations/therapy , Schizophrenia/therapy , Transcranial Magnetic Stimulation , Hallucinations/etiology , Humans , Schizophrenia/complications
15.
Am J Med Genet B Neuropsychiatr Genet ; 183(3): 181-194, 2020 04.
Article in English | MEDLINE | ID: mdl-31872970

ABSTRACT

Cognitive impairment is a frequent and serious problem in patients with various forms of severe mental illnesses (SMI), including schizophrenia (SZ) and bipolar disorder (BP). Recent research suggests genetic links to several cognitive phenotypes in both SMI and in the general population. Our goal in this study was to identify potential genomic signatures of cognitive functioning in veterans with severe mental illness and compare them to previous findings for cognition across different populations. Veterans Affairs (VA) Cooperative Studies Program (CSP) Study #572 evaluated cognitive and functional capacity measures among SZ and BP patients. In conjunction with the VA Million Veteran Program, 3,959 European American (1,095 SZ, 2,864 BP) and 2,601 African American (1,095 SZ, 2,864 BP) patients were genotyped using a custom Affymetrix Axiom Biobank array. We performed a genome-wide association study of global cognitive functioning, constructed polygenic scores for SZ and cognition in the general population, and examined genetic correlations with 2,626 UK Biobank traits. Although no single locus attained genome-wide significance, observed allelic effects were strongly consistent with previous studies. We observed robust associations between global cognitive functioning and polygenic scores for cognitive performance, intelligence, and SZ risk. We also identified significant genetic correlations with several cognition-related traits in UK Biobank. In a diverse cohort of U.S. veterans with SZ or BP, we demonstrate broad overlap of common genetic effects on cognition in the general population, and find that greater polygenic loading for SZ risk is associated with poorer cognitive performance.


Subject(s)
Bipolar Disorder/genetics , Cognition Disorders/genetics , Cognition , Genome-Wide Association Study , Schizophrenia/genetics , Adult , Aged , Alleles , Bipolar Disorder/physiopathology , Cognition Disorders/physiopathology , Female , Genotype , Humans , Male , Middle Aged , Neuropsychological Tests , Oligonucleotide Array Sequence Analysis , Polymorphism, Single Nucleotide , Schizophrenia/physiopathology , United States , United States Department of Veterans Affairs , Veterans
16.
J Neurochem ; 148(1): 127-135, 2019 01.
Article in English | MEDLINE | ID: mdl-30238463

ABSTRACT

In Alzheimer's disease, the phosphorylation of tau is a critical event preceding the formation of neurofibrillary tangles. Previous work exploring the impact of a dopamine blocking antipsychotic on tau phosphorylation in a tau transgenic model suggested that extracellular dopamine may play a regulatory role in the phosphorylation state of tau. In order to test this hypothesis, and in order to develop a mouse model of impaired dopamine metabolism and tauopathy, an extant P301L transgenic tau model of Alzheimer's disease and a novel P301L/catechol-O-methyltransferase deleted model (DM mouse) were treated with the norepinephrine reuptake inhibitor reboxetine, and prefrontal dopamine concentrations and the phosphorylated state of tau was quantified. In two experiments, male and female P301L+/+//COMT+/+ and P301L+/+//COMT-/- (DM) mice were treated with reboxetine 20 mg/kg IP. In one experiment, acutely following reboxetine injection, the prefrontal cortex of mice were microdialyzed for dopamine, and its metabolites, 3,4-dihydroxyphenylacetic acid and homovanillic acid, utilizing the MetaQuant technique. In another experiment, acutely following reboxetine injections, tau phosphorylation was quantified in the frontal cortex, striatum, and hippocampus of the mice. Reboxetine injections were followed by significant increases from baseline in extracellular dopamine concentrations in P301L and DM mice, with significantly higher peak levels in the DM mice. Treatment was also followed by increases in tau phosphorylation spread throughout brain regions, with a larger impact on female mice. Extracellular dopamine concentrations exert an influence on the phosphorylation state of tau, with surges in dopamine associating with acute increases in tau phosphorylation.


Subject(s)
Dopamine/metabolism , Tauopathies/metabolism , tau Proteins/metabolism , Animals , Brain/metabolism , Catechol O-Methyltransferase/deficiency , Disease Models, Animal , Female , Humans , Male , Mice , Mice, Knockout , Mice, Transgenic , Phosphorylation
17.
Pharmacogenomics J ; 19(1): 109-114, 2019 02.
Article in English | MEDLINE | ID: mdl-30032160

ABSTRACT

Voltage-gated calcium channels have been implicated in schizophrenia aetiology; however, little is known about their involvement in antipsychotic treatment response. This study investigated variants within the calcium channel subunit genes for association with antipsychotic treatment response in a first episode schizophrenia cohort. Twelve regulatory variants within seven genes were shown to be significantly associated with treatment outcome. Most notably, the CACNA1B rs2229949 CC genotype was associated with improved negative symptomology, where the C allele was predicted to abolish a miRNA-binding site (has-mir-5002-3p), suggesting a possible mechanism of action through which this variant may have an effect. These results implicate the calcium channel subunits in antipsychotic treatment response and suggest that increased activation of these channels may be explored to enhance or predict antipsychotic treatment outcome.


Subject(s)
Antipsychotic Agents/therapeutic use , Black People/genetics , Calcium Channels/genetics , Polymorphism, Single Nucleotide/genetics , Schizophrenia/genetics , Alleles , Calcium Channels, N-Type/genetics , Cohort Studies , Genotype , Humans , Treatment Outcome
19.
Hum Brain Mapp ; 39(2): 1015-1023, 2018 02.
Article in English | MEDLINE | ID: mdl-29181875

ABSTRACT

A novel mega-analytical approach that reduced methodological variance was evaluated using a multisite diffusion tensor imaging (DTI) fractional anisotropy (FA) data by comparing white matter integrity in people with schizophrenia to controls. Methodological variance was reduced through regression of variance captured from quality assurance (QA) and by using Marchenko-Pastur Principal Component Analysis (MP-PCA) denoising. N = 192 (119 patients/73 controls) data sets were collected at three sites equipped with 3T MRI systems: GE MR750, GE HDx, and Siemens Trio. DTI protocol included five b = 0 and 60 diffusion-sensitized gradient directions (b = 1,000 s/mm2 ). In-house DTI QA protocol data was acquired weekly using a uniform phantom; factor analysis was used to distil into two orthogonal QA factors related to: SNR and FA. They were used as site-specific covariates to perform mega-analytic data aggregation. The effect size of patient-control differences was compared to these reported by the enhancing neuro imaging genetics meta-analysis (ENIGMA) consortium before and after regressing QA variance. Impact of MP-PCA filtering was evaluated likewise. QA-factors explained ∼3-4% variance in the whole-brain average FA values per site. Regression of QA factors improved the effect size of schizophrenia on whole brain average FA values-from Cohen's d = .53 to .57-and improved the agreement between the regional pattern of FA differences observed in this study versus ENIGMA from r = .54 to .70. Application of MP-PCA-denoising further improved the agreement to r = .81. Regression of methodological variances captured by routine QA and advanced denoising that led to a better agreement with a large mega-analytic study.


Subject(s)
Diffusion Tensor Imaging , Meta-Analysis as Topic , Multicenter Studies as Topic/methods , Quality Assurance, Health Care , Adolescent , Adult , Brain/diagnostic imaging , Diffusion Tensor Imaging/instrumentation , Diffusion Tensor Imaging/methods , Humans , Information Dissemination/methods , Magnetic Resonance Imaging/instrumentation , Magnetic Resonance Imaging/methods , Middle Aged , Quality Assurance, Health Care/methods , Regression Analysis , Schizophrenia/diagnostic imaging , Schizophrenia/drug therapy , Young Adult
20.
Curr Psychiatry Rep ; 20(4): 24, 2018 03 27.
Article in English | MEDLINE | ID: mdl-29589131

ABSTRACT

PURPOSE OF REVIEW: Pharmacogenomics (PGx) of antipsychotic drug response is an active area of research in the past few years. We reviewed recent PGx studies with an emphasis of development of new methodologies and new research directions. RECENT FINDINGS: Traditional candidate gene approach continues to generate evidence to support the associations of antipsychotic response with genes coding for drug targets such as DRD2. Genome-wide association studies have found a few novel genes that may be associated with drug efficacy and adverse events. Recent application of polygenic risk score makes it possible to combine many genetic variants to predict clinical response. Finally, epigenetic research including DNA methylation is emerging and promises new findings that potentially can be applied in clinical practice. New methodologies may advance PGx closer to clinical application. Multiple genes and epigenomic markers can be used in prediction of clinical phenotypes.


Subject(s)
Antipsychotic Agents/therapeutic use , Molecular Targeted Therapy/methods , Pharmacogenetics , Psychotic Disorders/drug therapy , Schizophrenia/drug therapy , Genome-Wide Association Study , Humans , Multifactorial Inheritance , Pharmacogenetics/methods , Phenotype , Psychotic Disorders/genetics , Schizophrenia/genetics
SELECTION OF CITATIONS
SEARCH DETAIL