Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Mol Phylogenet Evol ; 65(2): 362-79, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22728909

ABSTRACT

The cyprinid tribe Labeonini (sensuRainboth, 1991) is a large group of freshwater fishes containing around 40 genera and 400 species. They are characterized by an amazing diversity of modifications to their lips and associated structures. In this study, a total of 34 genera and 142 species of putative members of this tribe, which represent most of the generic diversity and more than one third of the species diversity of the group, were sampled and sequenced for four nuclear genes and five mitochondrial genes (totaling 9465bp). Phylogenetic relationships and subdivision of this tribe were investigated and the placement and status of most genera are discussed. Partitioned maximum likelihood analyses were performed based on the nuclear dataset, mitochondrial dataset, combined dataset, and the dataset for each nuclear gene. Inclusion of the genera Paracrossochilus, Barbichthys, Thynnichthys, and Linichthys in the Labeonini was either confirmed or proposed for the first time. None of the genera Labeo, Garra, Bangana, Cirrhinus, and Crossocheilus are monophyletic. Taxonomic revisions of some genera were made: the generic names Gymnostomus Heckel, 1843, Ageneiogarra Garman, 1912 and Gonorhynchus McClelland, 1839 were revalidated; Akrokolioplax Zhang and Kottelat, 2006 becomes a junior synonym of Gonorhynchus; the species Osteochilus nashii was found to be a member of the barbin genus Osteochilichthys. Five historical hypotheses on the classification of the Labeonini were tested and rejected. We proposed to subdivide the tribe, which is strongly supported as monophyletic, into four subtribes: Labeoina, Garraina, Osteochilina, and Semilabeoina. The taxa included in each subtribe were listed and those taxa that need taxonomic revision were discussed.


Subject(s)
Cyprinidae/classification , Phylogeny , Animals , Biological Evolution , Cell Nucleus/genetics , Cyprinidae/genetics , Genes, Mitochondrial , Likelihood Functions , Sequence Analysis, DNA
2.
Pharmaceutics ; 14(12)2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36559315

ABSTRACT

Extracellular vesicles (EVs) are particles that are released from cells into the extracellular space both under pathological and normal conditions. It is now well established that cancer cells secrete more EVs compared to non-cancerous cells and that, captivatingly, several proteins that are involved in EV biogenesis and secretion are upregulated in various tumours. Recent studies have revealed that EVs facilitate the interaction between cancer cells and their microenvironment and play a substantial role in the growth of tumours. As EVs are involved in several aspects of cancer progression including angiogenesis, organotropism, pre-metastatic niche formation, fostering of metastasis, and chemoresistance, inhibiting the release of EVs from cancer and the surrounding tumour microenvironment cells has been proposed as an ideal strategy to treat cancer and associated paraneoplastic syndromes. Lately, EVs have shown immense benefits in preclinical settings as a novel drug delivery vehicle. This review provides a brief overview of the role of EVs in various hallmarks of cancer, focusing on (i) strategies to treat cancer by therapeutically targeting the release of tumour-derived EVs and (ii) EVs as valuable drug delivery vehicles. Furthermore, we also outline the drawbacks of the existing anti-cancer treatments and the future prospective of EV-based therapeutics.

SELECTION OF CITATIONS
SEARCH DETAIL