Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Publication year range
1.
Environ Res ; 252(Pt 1): 118782, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38570123

ABSTRACT

Outdoor air pollution in urban areas, especially particulate matter (PM), is harmful to human health. Urban trees and shrubs provide crucial ecosystem services such as air pollution mitigation by acting as natural filters. However, urban greenery comprises a particular biodiversity, and different plant species vary in their capacity to accumulate PM. Twenty-two plant species were analyzed and selected according to their leaf traits, the different fractions of PM accumulated on the leaves (large - PML, coarse - PMC, and fine - PMF) and their chemical composition. The study was conducted in four city zones: urban traffic (UT), urban background (UB), industrial (IND), and rural (RUR), comparing winter (W) and summer (S) seasons. The average PM levels in the air and accumulated on the leaves were higher in W than in S season. During both seasons, the highest PM accumulated on the leaves was recorded at the UT zone. Nine species were selected as the most suitable for accumulating PML, seven as the most efficient for accumulating PMC, and six for accumulating PMF. The leaf area and leaf roundness were correlated negatively with PM accumulation. The evergreen species L. nobilis was indicated as suitable for dealing with air pollution based on PM10 and PM2.5 values recorded in the air. Regarding the PM element and metal composition, L. nobilis, Photinia x fraseri, Olea europaea, Quercus ilex and Nerium oleander were selected as species with notable elements and metal accumulation. In summary, the study identified species with higher PM accumulation capacity and assessed the seasonal PM accumulation patterns in different city zones, providing insights into the species interactions with PM and their potential for monitoring and coping with air pollution.


Subject(s)
Air Pollutants , Cities , Environmental Monitoring , Particulate Matter , Seasons , Trees , Particulate Matter/analysis , Trees/chemistry , Air Pollutants/analysis , Environmental Monitoring/methods , Plant Leaves/chemistry , Air Pollution/analysis
2.
Environ Res ; 252(Pt 1): 118844, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38579998

ABSTRACT

Urban greening can improve cities' air quality by filtering the main gaseous pollutants such as tropospheric ozone (O3). However, the pollutant removal capacity offered by woody species strongly depends on eco-physiological and morphological traits. Woody species with higher stomatal conductance (gs) can remove more gases from the atmosphere, but other species can worsen air quality due to high O3 forming potential (OFP), based on their emitting rates of biogenic volatile organic compounds (bVOCs) and Leaf Mass per Area (LMA). Presently, there is a lack of data on eco-physiological (gs, bVOCs emissions) and foliar traits (LMA) for several ornamental species used in urban greening programs, which does not allow assessment of their O3 removal capacity and OFP. This study aimed to (i) parameterize gs, assess bVOCs emissions and LMA of 14 ornamental woody species commonly used in Mediterranean urban greening, and (ii) model their Net O3 uptake. The gs Jarvis model was parameterized considering various environmental conditions alongside isoprene and monoterpene foliar bVOCs emission rates trapped in the field and quantified by gas chromatography-mass spectrometry. The results are helpful for urban planning and landscaping; suggesting that Catalpa bignonioides and Gleditsia triacanthos have excellent O3 removal capacity due to their high maximum gs (gmax) equal to 0.657 and 0.597 mol H2O m-2 s-1. Regarding bVOCs, high isoprene (16.75 µg gdw-1 h-1) and monoterpene (13.12 µg gdw-1 h-1) emission rates were found for Rhamnus alaternus and Cornus mas. In contrast, no bVOCs emissions were detected for Camellia sasanqua and Paulownia tomentosa. In conclusion, 11 species showed a positive Net O3 uptake, while the use of large numbers of R. alaternus, C. mas, and Chamaerops humilis for urban afforestation planning are not recommended due to their potential to induce a deterioration of outdoor air quality.


Subject(s)
Air Pollutants , Ozone , Volatile Organic Compounds , Ozone/analysis , Air Pollutants/analysis , Volatile Organic Compounds/analysis , Volatile Organic Compounds/metabolism , Plant Leaves/metabolism , Environmental Monitoring/methods
3.
Environ Res ; 257: 119401, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38866310

ABSTRACT

Extreme climatic conditions, like heat waves or cold spells, associated to high concentrations of air pollutants are responsible for a broad range of effects on human health. Consequently, in the recent years, the question on how urban and peri-urban forests may improve both air quality and surface climate conditions at city-scale is receiving growing attention by scientists and policymakers, with previous studies demonstrating how nature-based solutions (NBS) may contribute to reduce the risk of population to be exposed to high pollutant levels and heat stress, preventing, thus, premature mortality. In this study we present a new modeling framework designed to simulate air quality and meteorological conditions from regional to urban scale, allowing thus to assess the impacts of both air pollution and heat stress on human health at urban level. To assess the model reliability, we evaluated the model's performances in reproducing several relevant meteorological, chemical, and biological variables. Results show how our modeling system can reliably reproduce the main meteorological, chemical, and biological variables over our study areas, thus this tool can be used to estimate the impact of air pollution and heat stress on human health. As an example of application, we show how common heat stress and air pollutant indices used for human health protection change when computed from regional to urban scale for the cities of Florence (Italy) and Aix en Provence (France).

4.
Environ Pollut ; 338: 122626, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37778493

ABSTRACT

Tropospheric ozone (O3) is an oxidative air pollutant that promotes damage to several crops, including grapevine, which is considered moderately resistant to O3 stress. To study the O3 effect on this perennial crop species under realistic environmental conditions, a three-year experiment was performed using an innovative O3-FACE facility located in the Mediterranean climate region, where the target species, Vitis vinifera cv. "Cabernet sauvignon", was exposed to three O3 levels: ambient (AA), 1.5 × ambient (×1.5), and 2 × ambient (×2.0). A stomatal conductance model parameterization was conducted, and O3-exposure (AOT40) and flux-based indices (PODy) were estimated. An assessment of O3-induced visible foliar injury (O3_VFI) was conducted by estimating VFI_Incidence (percentage of symptomatic leaves per branch) and VFI_Severity (average percentage of O3_VFI surface in symptomatic leaves). Biomass parameters were used to assess the cumulative O3 effect and calculate the most appropriate critical levels (CL) for a 5% yield loss and for the induction of 5, 10, and 15% of O3_VFI. We confirmed that the O3 effect on this grapevine variety VFI was cumulative and that POD0 values accumulated over the two or three years preceding the assessment were better related to the response variables than single-year values, with the response increasing with increasing O3 level. The estimated CL for 5% yield loss based on the O3-exposure index was 25 ppm h AOT40 and 21 or 23 ppm h for a 10% of VFI_Incidence or VFI_Severity, respectively. The suggested flux-based index value for 5% yield loss was 5.2 POD3 mmol m-2, and for 10% of VFI_Incidence or VFI_Severity, the values were 7.7 or 8.6 POD3 mmol m-2, respectively. The results presented in this study demonstrate that O3 risk assessment for this grapevine varietyproduces consistent and comparable results when using either yield or O3_VFI as response parameter.


Subject(s)
Air Pollutants , Ozone , Vitis , Ozone/analysis , Plant Leaves/chemistry , Biomass , Crops, Agricultural , Air Pollutants/toxicity , Air Pollutants/analysis
5.
Pest Manag Sci ; 2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37801469

ABSTRACT

BACKGROUND: The Eurasian magpie Pica pica is a resident bird species able to colonize farmlands and anthropized environments. This corvid shows a wide trophic spectrum by including fruits, invertebrates, small vertebrates and carcasses in its diet. A camera-trap experiment was carried out to test the effect of different ozone (O3 ) concentrations on potted Vitis vinifera plants, which resulted in different grape consumption rates by suburban birds. The test was performed at an Ozone-Free Air Controlled Exposure (FACE) facility, consisting of nine plots with three ozone (O3 ) levels: AA (ambient O3 concentration); and two elevated O3 levels, 1.5× AA (ambient air with a 50% increase in O3 concentration) and 2.0× AA (ambient air with a 100% increase in O3 concentration). Camera-traps were located in front of each treatment area and kept active for 24 h day-1 and for 5 days at a time over a period of 3 months to monitor grape consumption by birds. RESULTS: We collected a total of 38 videos. Eurasian magpies were the only grape consumers, with a total of 6.7 ± 3.3 passages per hour (mean ± SD) and no differences across the different O3 treatments. Grapes in the AA treatment were consumed significantly more quickly than those in the 1.5× AA treatment, which in turn, were consumed faster than those in the 2.0× AA treatment. At 3 days from the start of treatment, 94%, 53% and 22% berries from the AA, 1.5× AA and 2.0× AA treatments had been eaten, respectively. When the O3 was turned off, berries were consumed at the same rate among treatments. CONCLUSION: Increasing O3 concentrations limited grape consumption by magpies probably because O3 acted as a deterrent for magpies, although the lower sugar content recorded in the 2.0× AA berries did not affect the consumption when O3 was turned off. Our results provided valuable insights to mitigate human-wildlife conflicts in suburban environments. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

SELECTION OF CITATIONS
SEARCH DETAIL