Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 301
Filter
1.
Diabetologia ; 67(5): 908-927, 2024 May.
Article in English | MEDLINE | ID: mdl-38409439

ABSTRACT

AIMS/HYPOTHESIS: The proinflammatory cytokines IFN-α, IFN-γ, IL-1ß and TNF-α may contribute to innate and adaptive immune responses during insulitis in type 1 diabetes and therefore represent attractive therapeutic targets to protect beta cells. However, the specific role of each of these cytokines individually on pancreatic beta cells remains unknown. METHODS: We used deep RNA-seq analysis, followed by extensive confirmation experiments based on reverse transcription-quantitative PCR (RT-qPCR), western blot, histology and use of siRNAs, to characterise the response of human pancreatic beta cells to each cytokine individually and compared the signatures obtained with those present in islets of individuals affected by type 1 diabetes. RESULTS: IFN-α and IFN-γ had a greater impact on the beta cell transcriptome when compared with IL-1ß and TNF-α. The IFN-induced gene signatures have a strong correlation with those observed in beta cells from individuals with type 1 diabetes, and the level of expression of specific IFN-stimulated genes is positively correlated with proteins present in islets of these individuals, regulating beta cell responses to 'danger signals' such as viral infections. Zinc finger NFX1-type containing 1 (ZNFX1), a double-stranded RNA sensor, was identified as highly induced by IFNs and shown to play a key role in the antiviral response in beta cells. CONCLUSIONS/INTERPRETATION: These data suggest that IFN-α and IFN-γ are key cytokines at the islet level in human type 1 diabetes, contributing to the triggering and amplification of autoimmunity.


Subject(s)
Diabetes Mellitus, Type 1 , Islets of Langerhans , Humans , Cytokines/metabolism , Diabetes Mellitus, Type 1/metabolism , Interferons/metabolism , Tumor Necrosis Factor-alpha/metabolism , Interferon-gamma/metabolism , Islets of Langerhans/metabolism
2.
Diabetologia ; 67(6): 1079-1094, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38512414

ABSTRACT

AIMS/HYPOTHESIS: Beta cells within the pancreatic islet represent a heterogenous population wherein individual sub-groups of cells make distinct contributions to the overall control of insulin secretion. These include a subpopulation of highly connected 'hub' cells, important for the propagation of intercellular Ca2+ waves. Functional subpopulations have also been demonstrated in human beta cells, with an altered subtype distribution apparent in type 2 diabetes. At present, the molecular mechanisms through which beta cell hierarchy is established are poorly understood. Changes at the level of the epigenome provide one such possibility, which we explore here by focusing on the imprinted gene Nnat (encoding neuronatin [NNAT]), which is required for normal insulin synthesis and secretion. METHODS: Single-cell RNA-seq datasets were examined using Seurat 4.0 and ClusterProfiler running under R. Transgenic mice expressing enhanced GFP under the control of the Nnat enhancer/promoter regions were generated for FACS of beta cells and downstream analysis of CpG methylation by bisulphite sequencing and RNA-seq, respectively. Animals deleted for the de novo methyltransferase DNA methyltransferase 3 alpha (DNMT3A) from the pancreatic progenitor stage were used to explore control of promoter methylation. Proteomics was performed using affinity purification mass spectrometry and Ca2+ dynamics explored by rapid confocal imaging of Cal-520 AM and Cal-590 AM. Insulin secretion was measured using homogeneous time-resolved fluorescence imaging. RESULTS: Nnat mRNA was differentially expressed in a discrete beta cell population in a developmental stage- and DNA methylation (DNMT3A)-dependent manner. Thus, pseudo-time analysis of embryonic datasets demonstrated the early establishment of Nnat-positive and -negative subpopulations during embryogenesis. NNAT expression is also restricted to a subset of beta cells across the human islet that is maintained throughout adult life. NNAT+ beta cells also displayed a discrete transcriptome at adult stages, representing a subpopulation specialised for insulin production, and were diminished in db/db mice. 'Hub' cells were less abundant in the NNAT+ population, consistent with epigenetic control of this functional specialisation. CONCLUSIONS/INTERPRETATION: These findings demonstrate that differential DNA methylation at Nnat represents a novel means through which beta cell heterogeneity is established during development. We therefore hypothesise that changes in methylation at this locus may contribute to a loss of beta cell hierarchy and connectivity, potentially contributing to defective insulin secretion in some forms of diabetes. DATA AVAILABILITY: The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD048465.


Subject(s)
CpG Islands , DNA Methylation , Insulin-Secreting Cells , Insulin-Secreting Cells/metabolism , Animals , Mice , CpG Islands/genetics , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Mice, Transgenic , DNA Methyltransferase 3A/metabolism , Humans , Insulin/metabolism , Insulin Secretion/physiology
3.
Cardiovasc Diabetol ; 23(1): 85, 2024 02 28.
Article in English | MEDLINE | ID: mdl-38419065

ABSTRACT

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD), identified by the Fatty Liver Index (FLI), is associated with increased mortality and cardiovascular (CV) outcomes. Whether this also applies to type 1 diabetes (T1D) has not been yet reported. METHODS: We prospectively observed 774 subjects with type 1 diabetes (males 52%, 30.3 ± 11.1 years old, diabetes duration (DD) 18.5 ± 11.6 years, HbA1c 7.8 ± 1.2%) to assess the associations between FLI (based on BMI, waist circumference, gamma-glutamyl transferase and triglycerides) and all-cause death and first CV events. RESULTS: Over a median 11-year follow-up, 57 subjects died (7.4%) and 49 CV events (6.7%) occurred among 736 individuals with retrievable incidence data. At baseline, FLI was < 30 in 515 subjects (66.5%), 30-59 in 169 (21.8%), and ≥ 60 in 90 (11.6%). Mortality increased steeply with FLI: 3.9, 10.1, 22.2% (p < 0.0001). In unadjusted Cox analysis, compared to FLI < 30, risk of death increased in FLI 30-59 (HR 2.85, 95% CI 1.49-5.45, p = 0.002) and FLI ≥ 60 (6.07, 3.27-11.29, p < 0.0001). Adjusting for Steno Type 1 Risk Engine (ST1-RE; based on age, sex, DD, systolic BP, LDL cholesterol, HbA1c, albuminuria, eGFR, smoking and exercise), HR was 1.52 (0.78-2.97) for FLI 30-59 and 3.04 (1.59-5.82, p = 0.001) for FLI ≥ 60. Inclusion of prior CV events slightly modified HRs. FLI impact was confirmed upon adjustment for EURODIAB Risk Engine (EURO-RE; based on age, HbA1c, waist-to-hip ratio, albuminuria and HDL cholesterol): FLI 30-59: HR 1.24, 0.62-2.48; FLI ≥ 60: 2.54, 1.30-4.95, p = 0.007), even after inclusion of prior CVD. CV events incidence increased with FLI: 3.5, 10.5, 17.2% (p < 0.0001). In unadjusted Cox, HR was 3.24 (1.65-6.34, p = 0.001) for FLI 30-59 and 5.41 (2.70-10.83, p < 0.0001) for FLI ≥ 60. After adjustment for ST1-RE or EURO-RE, FLI ≥ 60 remained statistically associated with risk of incident CV events, with trivial modification with prior CVD inclusion. CONCLUSIONS: This observational prospective study shows that FLI is associated with higher all-cause mortality and increased risk of incident CV events in type 1 diabetes.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 1 , Non-alcoholic Fatty Liver Disease , Male , Humans , Young Adult , Adult , Diabetes Mellitus, Type 1/diagnosis , Diabetes Mellitus, Type 1/epidemiology , Diabetes Mellitus, Type 1/complications , Prospective Studies , Glycated Hemoglobin , Albuminuria/diagnosis , Albuminuria/epidemiology , Albuminuria/complications , Risk Factors , Non-alcoholic Fatty Liver Disease/epidemiology , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/complications
4.
Diabetologia ; 66(8): 1544-1556, 2023 08.
Article in English | MEDLINE | ID: mdl-36988639

ABSTRACT

AIMS/HYPOTHESIS: TNF-α plays a role in pancreatic beta cell loss in type 1 diabetes mellitus. In clinical interventions, TNF-α inhibition preserves C-peptide levels in early type 1 diabetes. In this study we evaluated the crosstalk of TNF-α, as compared with type I IFNs, with the type 1 diabetes candidate gene PTPN2 (encoding protein tyrosine phosphatase non-receptor type 2 [PTPN2]) in human beta cells. METHODS: EndoC-ßH1 cells, dispersed human pancreatic islets or induced pluripotent stem cell (iPSC)-derived islet-like cells were transfected with siRNAs targeting various genes (siCTRL, siPTPN2, siJNK1, siJNK3 or siBIM). Cells were treated for 48 h with IFN-α (2000 U/ml) or TNF-α (1000 U/ml). Cell death was evaluated using Hoechst 33342 and propidium iodide staining. mRNA levels were assessed by quantitative reverse transcription PCR (qRT-PCR) and protein expression by immunoblot. RESULTS: PTPN2 silencing sensitised beta cells to cytotoxicity induced by IFN-α and/or TNF-α by 20-50%, depending on the human cell model utilised; there was no potentiation between the cytokines. We silenced c-Jun N-terminal kinase (JNK)1 or Bcl-2-like protein 2 (BIM), and this abolished the proapoptotic effects of IFN-α, TNF-α or the combination of both after PTPN2 inhibition. We further observed that PTPN2 silencing increased TNF-α-induced JNK1 and BIM phosphorylation and that JNK3 is necessary for beta cell resistance to IFN-α cytotoxicity. CONCLUSIONS/INTERPRETATION: We show that the type 1 diabetes candidate gene PTPN2 is a key regulator of the deleterious effects of TNF-α in human beta cells. It is conceivable that people with type 1 diabetes carrying risk-associated PTPN2 polymorphisms may particularly benefit from therapies inhibiting TNF-α.


Subject(s)
Diabetes Mellitus, Type 1 , Insulin-Secreting Cells , Humans , Tumor Necrosis Factor-alpha/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 2/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 2/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 2/pharmacology , Cytokines/metabolism , Cell Death , Insulin-Secreting Cells/metabolism , Interferon-alpha/pharmacology
5.
Diabetologia ; 66(7): 1306-1321, 2023 07.
Article in English | MEDLINE | ID: mdl-36995380

ABSTRACT

AIMS/HYPOTHESIS: Wolfram syndrome is a rare autosomal recessive disorder caused by pathogenic variants in the WFS1 gene. It is characterised by insulin-dependent diabetes mellitus, optic nerve atrophy, diabetes insipidus, hearing loss and neurodegeneration. Considering the unmet treatment need for this orphan disease, this study aimed to evaluate the therapeutic potential of glucagon-like peptide 1 receptor (GLP-1R) agonists under wolframin (WFS1) deficiency with a particular focus on human beta cells and neurons. METHODS: The effect of the GLP-1R agonists dulaglutide and exenatide was examined in Wfs1 knockout mice and in an array of human preclinical models of Wolfram syndrome, including WFS1-deficient human beta cells, human induced pluripotent stem cell (iPSC)-derived beta-like cells and neurons from control individuals and individuals affected by Wolfram syndrome, and humanised mice. RESULTS: Our study shows that the long-lasting GLP-1R agonist dulaglutide reverses impaired glucose tolerance in WFS1-deficient mice, and that exenatide and dulaglutide improve beta cell function and prevent apoptosis in different human WFS1-deficient models including iPSC-derived beta cells from people with Wolfram syndrome. Exenatide improved mitochondrial function, reduced oxidative stress and prevented apoptosis in Wolfram syndrome iPSC-derived neural precursors and cerebellar neurons. CONCLUSIONS/INTERPRETATION: Our study provides novel evidence for the beneficial effect of GLP-1R agonists on WFS1-deficient human pancreatic beta cells and neurons, suggesting that these drugs may be considered as a treatment for individuals with Wolfram syndrome.


Subject(s)
Induced Pluripotent Stem Cells , Insulin-Secreting Cells , Optic Atrophy , Wolfram Syndrome , Humans , Animals , Mice , Wolfram Syndrome/drug therapy , Wolfram Syndrome/genetics , Exenatide/therapeutic use , Optic Atrophy/pathology , Insulin-Secreting Cells/pathology , Mice, Knockout
6.
Diabetologia ; 66(7): 1273-1288, 2023 07.
Article in English | MEDLINE | ID: mdl-37148359

ABSTRACT

AIMS/HYPOTHESIS: The Latino population has been systematically underrepresented in large-scale genetic analyses, and previous studies have relied on the imputation of ungenotyped variants based on the 1000 Genomes (1000G) imputation panel, which results in suboptimal capture of low-frequency or Latino-enriched variants. The National Heart, Lung, and Blood Institute (NHLBI) Trans-Omics for Precision Medicine (TOPMed) released the largest multi-ancestry genotype reference panel representing a unique opportunity to analyse rare genetic variations in the Latino population. We hypothesise that a more comprehensive analysis of low/rare variation using the TOPMed panel would improve our knowledge of the genetics of type 2 diabetes in the Latino population. METHODS: We evaluated the TOPMed imputation performance using genotyping array and whole-exome sequence data in six Latino cohorts. To evaluate the ability of TOPMed imputation to increase the number of identified loci, we performed a Latino type 2 diabetes genome-wide association study (GWAS) meta-analysis in 8150 individuals with type 2 diabetes and 10,735 control individuals and replicated the results in six additional cohorts including whole-genome sequence data from the All of Us cohort. RESULTS: Compared with imputation with 1000G, the TOPMed panel improved the identification of rare and low-frequency variants. We identified 26 genome-wide significant signals including a novel variant (minor allele frequency 1.7%; OR 1.37, p=3.4 × 10-9). A Latino-tailored polygenic score constructed from our data and GWAS data from East Asian and European populations improved the prediction accuracy in a Latino target dataset, explaining up to 7.6% of the type 2 diabetes risk variance. CONCLUSIONS/INTERPRETATION: Our results demonstrate the utility of TOPMed imputation for identifying low-frequency variants in understudied populations, leading to the discovery of novel disease associations and the improvement of polygenic scores. DATA AVAILABILITY: Full summary statistics are available through the Common Metabolic Diseases Knowledge Portal ( https://t2d.hugeamp.org/downloads.html ) and through the GWAS catalog ( https://www.ebi.ac.uk/gwas/ , accession ID: GCST90255648). Polygenic score (PS) weights for each ancestry are available via the PGS catalog ( https://www.pgscatalog.org , publication ID: PGP000445, scores IDs: PGS003443, PGS003444 and PGS003445).


Subject(s)
Diabetes Mellitus, Type 2 , Population Health , Humans , Genome-Wide Association Study , Diabetes Mellitus, Type 2/genetics , Precision Medicine , Genotype , Hispanic or Latino/genetics , Polymorphism, Single Nucleotide/genetics
7.
Diabetes Metab Res Rev ; 39(8): e3696, 2023 11.
Article in English | MEDLINE | ID: mdl-37466955

ABSTRACT

AIMS: Angiotensin I-converting enzyme type 2 (ACE2), a pivotal SARS-CoV-2 receptor, has been shown to be expressed in multiple cells, including human pancreatic beta-cells. A putative bidirectional relationship between SARS-CoV-2 infection and diabetes has been suggested, confirming the hypothesis that viral infection in beta-cells may lead to new-onset diabetes or worse glycometabolic control in diabetic patients. However, whether ACE2 expression levels are altered in beta-cells of diabetic patients has not yet been investigated. Here, we aimed to elucidate the in situ expression pattern of ACE2 in Type 2 diabetes (T2D) with respect to non-diabetic donors which may account for a higher susceptibility to SARS-CoV-2 infection in beta-cells. MATERIAL AND METHODS: Angiotensin I-converting enzyme type 2 immunofluorescence analysis using two antibodies alongside insulin staining was performed on formalin-fixed paraffin embedded pancreatic sections obtained from n = 20 T2D and n = 20 non-diabetic (ND) multiorgan donors. Intensity and colocalisation analyses were performed on a total of 1082 pancreatic islets. Macrophage detection was performed using anti-CD68 immunohistochemistry on serial sections from the same donors. RESULTS: Using two different antibodies, ACE2 expression was confirmed in beta-cells and in pancreas microvasculature. Angiotensin I-converting enzyme type 2 expression was increased in pancreatic islets of T2D donors in comparison to ND controls alongside with a higher colocalisation rate between ACE2 and insulin using both anti-ACE2 antibodies. CD68+ cells tended to be increased in T2D pancreata, in line with higher ACE2 expression observed in serial sections. CONCLUSIONS: Higher ACE2 expression in T2D islets might increase their susceptibility to SARS-CoV-2 infection during COVID-19 in T2D patients, thus worsening glycometabolic outcomes and disease severity.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Islets of Langerhans , Humans , Angiotensin-Converting Enzyme 2 , COVID-19/metabolism , Diabetes Mellitus, Type 2/metabolism , Insulin/metabolism , Islets of Langerhans/metabolism , Peptidyl-Dipeptidase A
8.
Proc Natl Acad Sci U S A ; 117(16): 9022-9031, 2020 04 21.
Article in English | MEDLINE | ID: mdl-32284404

ABSTRACT

The vast majority of type 1 diabetes (T1D) genetic association signals lie in noncoding regions of the human genome. Many have been predicted to affect the expression and secondary structure of long noncoding RNAs (lncRNAs), but the contribution of these lncRNAs to the pathogenesis of T1D remains to be clarified. Here, we performed a complete functional characterization of a lncRNA that harbors a single nucleotide polymorphism (SNP) associated with T1D, namely, Lnc13 Human pancreatic islets harboring the T1D-associated SNP risk genotype in Lnc13 (rs917997*CC) showed higher STAT1 expression than islets harboring the heterozygous genotype (rs917997*CT). Up-regulation of Lnc13 in pancreatic ß-cells increased activation of the proinflammatory STAT1 pathway, which correlated with increased production of chemokines in an allele-specific manner. In a mirror image, Lnc13 gene disruption in ß-cells partially counteracts polyinosinic-polycytidylic acid (PIC)-induced STAT1 and proinflammatory chemokine expression. Furthermore, we observed that PIC, a viral mimetic, induces Lnc13 translocation from the nucleus to the cytoplasm promoting the interaction of STAT1 mRNA with (poly[rC] binding protein 2) (PCBP2). Interestingly, Lnc13-PCBP2 interaction regulates the stability of the STAT1 mRNA, sustaining inflammation in ß-cells in an allele-specific manner. Our results show that the T1D-associated Lnc13 may contribute to the pathogenesis of T1D by increasing pancreatic ß-cell inflammation. These findings provide information on the molecular mechanisms by which disease-associated SNPs in lncRNAs influence disease pathogenesis and open the door to the development of diagnostic and therapeutic approaches based on lncRNA targeting.


Subject(s)
Diabetes Mellitus, Type 1/genetics , Insulin-Secreting Cells/immunology , RNA, Long Noncoding/metabolism , RNA-Binding Proteins/metabolism , STAT1 Transcription Factor/genetics , 3' Untranslated Regions/genetics , Cell Survival/genetics , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/virology , Genetic Predisposition to Disease , HEK293 Cells , Humans , Insulin-Secreting Cells/pathology , Insulin-Secreting Cells/virology , Jurkat Cells , Poly I-C/immunology , Polymorphism, Single Nucleotide , Primary Cell Culture , RNA Stability/genetics , RNA, Messenger/metabolism , RNA, Viral/immunology , STAT1 Transcription Factor/immunology , STAT1 Transcription Factor/metabolism , Signal Transduction/genetics , Signal Transduction/immunology , Up-Regulation/immunology
9.
Semin Cell Dev Biol ; 103: 83-93, 2020 07.
Article in English | MEDLINE | ID: mdl-32417220

ABSTRACT

ß cells uniquely produce and secrete insulin under the control of several, integrated signals, to maintain blood glucose concentrations within a narrow physiological interval. ß cell failure is key to the onset and progression of type 2 diabetes, due to impaired function and reduced mass. In this review we focus on several features of human ß cell dysfunction and pathology in type 2 diabetes, as revealed by direct assessment of isolated islet traits and examination of pancreatic tissue from organ donors, surgical samples or autoptic specimens. Insulin secretion defects and pathology findings are discussed in relation to some of the major underlying mechanisms, to also provide clues for conceiving better prevention and treatment of type 2 diabetes by targeting the pancreatic ß cells.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Insulin-Secreting Cells/metabolism , Humans
10.
Diabetes Obes Metab ; 24(11): 2090-2101, 2022 11.
Article in English | MEDLINE | ID: mdl-35676825

ABSTRACT

AIMS: To describe the in vitro characteristics and antidiabetic in vivo efficacy of the novel glucagon-like peptide-1 receptor agonist (GLP-1RA) GL0034. MATERIALS AND METHODS: Glucagon-like peptide-1 receptor (GLP-1R) kinetic binding parameters, cyclic adenosine monophosphate (cAMP) signalling, endocytosis and recycling were measured using HEK293 and INS-1832/3 cells expressing human GLP-1R. Insulin secretion was measured in vitro using INS-1832/3 cells, mouse islets and human islets. Chronic administration studies to evaluate weight loss and glycaemic effects were performed in db/db and diet-induced obese mice. RESULTS: Compared to the leading GLP-1RA semaglutide, GL0034 showed increased binding affinity and potency-driven bias in favour of cAMP over GLP-1R endocytosis and ß-arrestin-2 recruitment. Insulin secretory responses were similar for both ligands. GL0034 (6 nmol/kg) led to at least as much weight loss and lowering of blood glucose as did semaglutide at a higher dose (14 nmol/kg). CONCLUSIONS: GL0034 is a G protein-biased agonist that shows powerful antidiabetic effects in mice, and may serve as a promising new GLP-1RA for obese patients with type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Insulins , Adenosine Monophosphate , Animals , Blood Glucose , Cyclic AMP/metabolism , Diabetes Mellitus, Type 2/drug therapy , Glucagon-Like Peptide-1 Receptor/agonists , HEK293 Cells , Humans , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Ligands , Mice , Weight Loss , beta-Arrestins/metabolism
11.
Int J Mol Sci ; 23(13)2022 Jul 04.
Article in English | MEDLINE | ID: mdl-35806437

ABSTRACT

Type 2 diabetes (T2D) has been considered a relentlessly worsening disease, due to the progressive deterioration of the pancreatic beta cell functional mass. Recent evidence indicates, however, that remission of T2D may occur in variable proportions of patients after specific treatments that are associated with recovery of beta cell function. Here we review the available information on the recovery of beta cells in (a) non-diabetic individuals previously exposed to metabolic stress; (b) T2D patients following low-calorie diets, pharmacological therapies or bariatric surgery; (c) human islets isolated from non-diabetic organ donors that recover from "lipo-glucotoxic" conditions; and (d) human islets isolated from T2D organ donors and exposed to specific treatments. The improvement of insulin secretion reported by these studies and the associated molecular traits unveil the possibility to promote T2D remission by directly targeting pancreatic beta cells.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin-Secreting Cells , Diabetes Mellitus, Type 2/metabolism , Humans , Insulin/metabolism , Insulin Secretion , Insulin-Secreting Cells/metabolism
12.
Am J Transplant ; 21 Suppl 3: 1-16, 2021 09.
Article in English | MEDLINE | ID: mdl-34245116

ABSTRACT

Comprehensive evidence-based guidelines for the practice of pancreas transplantation are yet to be established. The First World Consensus Conference on Pancreas Transplantation was convened for this purpose. A steering committee selected the participants and defined the questions to be addressed. A group of literature reviewers identified 597 studies to be included in summaries for guidelines production. Expert groups formulated the first draft of recommendations. Two rounds of discussion and voting occurred online, using the Delphi method (agreement rate ≥85%). After each round, critical responses of experts were reviewed, and recommendations were amended accordingly. Recommendations were finalized after live discussions. Each session was preceded by expert presentations and a summary of results of systematic literature review. Up to three voting rounds were allowed for each recommendation. To avoid potential conflicts of interest, deliberations on issues regarding the impact of pancreas transplantation on the management of diabetes were conducted by an independent jury. Recommendations on technical issues were determined by experts and validated using the Appraisal of Guidelines for Research and Evaluation (AGREE) II instrument. Quality of evidence was assessed using the Scottish Intercollegiate Guidelines Network (SIGN) methodology. Each recommendation received a GRADE rating (Grading of Recommendations, Assessment, Development and Evaluations).


Subject(s)
Pancreas Transplantation , Consensus , Humans
13.
Int J Mol Sci ; 22(23)2021 Nov 26.
Article in English | MEDLINE | ID: mdl-34884624

ABSTRACT

ß-cells convert glucose (input) resulting in the controlled release of insulin (output), which in turn has the role to maintain glucose homeostasis. ß-cell function is regulated by a complex interplay between the metabolic processing of the input, its transformation into second-messenger signals, and final mobilization of insulin-containing granules towards secretion of the output. Failure at any level in this process marks ß-cell dysfunction in diabetes, thus making ß-cells obvious potential targets for therapeutic purposes. Addressing quantitatively ß-cell (dys)function at the molecular level in living samples requires probing simultaneously the spatial and temporal dimensions at the proper resolution. To this aim, an increasing amount of research efforts are exploiting the potentiality of biophysical techniques. In particular, using excitation light in the visible/infrared range, a number of optical-microscopy-based approaches have been tailored to the study of ß-cell-(dys)function at the molecular level, either in label-free mode (i.e., exploiting intrinsic autofluorescence of cells) or by the use of organic/genetically-encoded fluorescent probes. Here, relevant examples from the literature are reviewed and discussed. Based on this, new potential lines of development in the field are drawn.


Subject(s)
Fluorescent Dyes/chemistry , Glucose/metabolism , Insulin-Secreting Cells/pathology , Microscopy, Fluorescence/methods , Animals , Homeostasis , Humans , Insulin-Secreting Cells/metabolism
14.
Int J Mol Sci ; 22(22)2021 Nov 09.
Article in English | MEDLINE | ID: mdl-34829980

ABSTRACT

Arginase 2 (ARG2) is a manganese metalloenzyme involved in several tissue specific processes, from physiology to pathophysiology. It is variably expressed in extra-hepatic tissues and is located in the mitochondria. In human pancreatic beta cells, ARG2 is downregulated in type 2 diabetes. The enzyme regulates the synthesis of polyamines, that are involved in pancreas development and regulation of beta cell function. Here, we discuss several features of ARG2 and polyamines, which can be relevant to the pathophysiology of type 2 diabetes.


Subject(s)
Arginase/genetics , Diabetes Mellitus, Type 2/genetics , Insulin-Secreting Cells/metabolism , Polyamines/metabolism , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Humans , Insulin-Secreting Cells/pathology , Mitochondria/metabolism , Mitochondria/pathology
15.
Diabetologia ; 63(4): 825-836, 2020 04.
Article in English | MEDLINE | ID: mdl-31873789

ABSTRACT

AIMS/HYPOTHESIS: Type 1 diabetes is characterised by a progressive decline in beta cell mass. This is also observed following implantation of pancreatic islet allografts, but there is no reliable information regarding the time course of beta cell loss. This is due to the limited availability of non-invasive pancreatic islet imaging techniques. We have previously described that dipeptidyl peptidase 6 (DPP6) is an alpha and beta cell-specific biomarker, and developed a camelid antibody (nanobody '4hD29') against it. We demonstrated the possibility to detect DPP6-expressing cells by single-photon emission computed tomography (SPECT)/ computed tomography (CT), but the correlation between the number of cells grafted and the SPECT signal was not assessed. Here, we investigate whether the 4hD29 nanobody allows us to detect different amounts of human pancreatic islets implanted into immune-deficient mice. In addition, we also describe the adaptation of the probe for use with positron emission tomography (PET). METHODS: DPP6 expression was assessed in human samples using tissue arrays and immunohistochemistry. The effect of the 4hD29 nanobody on cell death and glucose-stimulated insulin secretion was measured in EndoC-ßH1 cells and in human islets using Hoechst/propidium iodide staining and an anti-insulin ELISA, respectively. We performed in vivo SPECT imaging on severe combined immunodeficient (SCID) mice transplanted with different amounts of EndoC-ßH1 cells (2 × 106, 5 × 106 and 10 × 106 cells), human islets (1000 and 3000) or pancreatic exocrine tissue using 99mTc-labelled 4hD29 nanobody. This DPP6 nanobody was also conjugated to N-chlorosuccinimide (NCS)-1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA), radiolabelled with either 67Ga (SPECT) or 68Ga (PET) and used in a proof-of-principle experiment to detect DPP6-expressing cells (Kelly neuroblastoma) grafted in SCID mice. RESULTS: The DPP6 protein is mainly expressed in pancreatic islets. Importantly, the anti-DPP6 nanobody 4hD29 allows non-invasive detection of high amounts of EndoC-ßH1 cells or human islets grafted in immunodeficient mice. This suggests that the probe must be further improved to detect lower numbers of islet cells. The 4hD29 nanobody neither affected beta cell viability nor altered insulin secretion in EndoC-ßH1 cells and human islets. The conversion of 4hD29 nanobody into a PET probe was successful and did not alter its specificity. CONCLUSIONS/INTERPRETATION: These findings suggest that the anti-DPP6 4hD29 nanobody may become a useful tool for the quantification of human islet grafts in mice and, pending future development, islet mass in individuals with diabetes.


Subject(s)
Cell Tracking/methods , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/immunology , Insulin-Secreting Cells/metabolism , Islets of Langerhans Transplantation , Islets of Langerhans/diagnostic imaging , Single-Domain Antibodies/pharmacology , Animals , Cell Count , Cells, Cultured , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/antagonists & inhibitors , Female , Gallium Radioisotopes/analysis , Gallium Radioisotopes/pharmacokinetics , Heterografts , Humans , Insulin-Secreting Cells/cytology , Islets of Langerhans/cytology , Islets of Langerhans/metabolism , Mice , Mice, Inbred C57BL , Mice, SCID , Mice, Transgenic , Molecular Imaging/methods , Organotechnetium Compounds/chemistry , Organotechnetium Compounds/pharmacokinetics , Radioactive Tracers , Single Photon Emission Computed Tomography Computed Tomography/methods , Single-Domain Antibodies/analysis , Single-Domain Antibodies/chemistry
16.
Diabetologia ; 63(2): 395-409, 2020 02.
Article in English | MEDLINE | ID: mdl-31796987

ABSTRACT

AIMS/HYPOTHESIS: During the onset of type 2 diabetes, excessive dietary intake of saturated NEFA and fructose lead to impaired insulin production and secretion by insulin-producing pancreatic beta cells. The majority of data on the deleterious effects of lipids on functional beta cell mass were obtained either in vivo in rodent models or in vitro using rodent islets and beta cell lines. Translating data from rodent to human beta cells remains challenging. Here, we used the human beta cell line EndoC-ßH1 and analysed its sensitivity to a lipotoxic and glucolipotoxic (high palmitate with or without high glucose) insult, as a way to model human beta cells in a type 2 diabetes environment. METHODS: EndoC-ßH1 cells were exposed to palmitate after knockdown of genes related to saturated NEFA metabolism. We analysed whether and how palmitate induces apoptosis, stress and inflammation and modulates beta cell identity. RESULTS: EndoC-ßH1 cells were insensitive to the deleterious effects of saturated NEFA (palmitate and stearate) unless stearoyl CoA desaturase (SCD) was silenced. SCD was abundantly expressed in EndoC-ßH1 cells, as well as in human islets and human induced pluripotent stem cell-derived beta cells. SCD silencing induced markers of inflammation and endoplasmic reticulum stress and also IAPP mRNA. Treatment with the SCD products oleate or palmitoleate reversed inflammation and endoplasmic reticulum stress. Upon SCD knockdown, palmitate induced expression of dedifferentiation markers such as SOX9, MYC and HES1. Interestingly, SCD knockdown by itself disrupted beta cell identity with a decrease in mature beta cell markers INS, MAFA and SLC30A8 and decreased insulin content and glucose-stimulated insulin secretion. CONCLUSIONS/INTERPRETATION: The present study delineates an important role for SCD in the protection against lipotoxicity and in the maintenance of human beta cell identity. DATA AVAILABILITY: Microarray data and all experimental details that support the findings of this study have been deposited in in the GEO database with the GSE130208 accession code.


Subject(s)
Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Palmitic Acid/pharmacology , Stearoyl-CoA Desaturase/metabolism , Apoptosis/drug effects , Cells, Cultured , Diabetes Mellitus, Type 2/metabolism , Humans , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/metabolism , Insulin Secretion/drug effects , Proto-Oncogene Proteins c-myc/metabolism , SOX9 Transcription Factor/metabolism , Transcription Factor HES-1/metabolism
17.
BMC Genomics ; 21(1): 590, 2020 Aug 26.
Article in English | MEDLINE | ID: mdl-32847508

ABSTRACT

BACKGROUND: Prolonged exposure to elevated free fatty acids induces ß-cell failure (lipotoxicity) and contributes to the pathogenesis of type 2 diabetes. In vitro exposure of ß-cells to the saturated free fatty acid palmitate is a valuable model of lipotoxicity, reproducing features of ß-cell failure observed in type 2 diabetes. In order to map the ß-cell response to lipotoxicity, we combined RNA-sequencing of palmitate-treated human islets with iTRAQ proteomics of insulin-secreting INS-1E cells following a time course exposure to palmitate. RESULTS: Crossing transcriptome and proteome of palmitate-treated ß-cells revealed 85 upregulated and 122 downregulated genes at both transcript and protein level. Pathway analysis identified lipid metabolism, oxidative stress, amino-acid metabolism and cell cycle pathways among the most enriched palmitate-modified pathways. Palmitate induced gene expression changes compatible with increased free fatty acid mitochondrial import and ß-oxidation, decreased lipogenesis and modified cholesterol transport. Palmitate modified genes regulating endoplasmic reticulum (ER) function, ER-to-Golgi transport and ER stress pathways. Furthermore, palmitate modulated cAMP/protein kinase A (PKA) signaling, inhibiting expression of PKA anchoring proteins and downregulating the GLP-1 receptor. SLC7 family amino-acid transporters were upregulated in response to palmitate but this induction did not contribute to ß-cell demise. To unravel critical mediators of lipotoxicity upstream of the palmitate-modified genes, we identified overrepresented transcription factor binding sites and performed network inference analysis. These identified LXR, PPARα, FOXO1 and BACH1 as key transcription factors orchestrating the metabolic and oxidative stress responses to palmitate. CONCLUSIONS: This is the first study to combine transcriptomic and sensitive time course proteomic profiling of palmitate-exposed ß-cells. Our results provide comprehensive insight into gene and protein expression changes, corroborating and expanding beyond previous findings. The identification of critical drivers and pathways of the ß-cell lipotoxic response points to novel therapeutic targets for type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin-Secreting Cells , Apoptosis , Humans , Palmitates/toxicity , Proteome , Proteomics , Transcriptome
18.
Am J Hum Genet ; 100(2): 238-256, 2017 02 02.
Article in English | MEDLINE | ID: mdl-28132686

ABSTRACT

Genetic variants near ARAP1 (CENTD2) and STARD10 influence type 2 diabetes (T2D) risk. The risk alleles impair glucose-induced insulin secretion and, paradoxically but characteristically, are associated with decreased proinsulin:insulin ratios, indicating improved proinsulin conversion. Neither the identity of the causal variants nor the gene(s) through which risk is conferred have been firmly established. Whereas ARAP1 encodes a GTPase activating protein, STARD10 is a member of the steroidogenic acute regulatory protein (StAR)-related lipid transfer protein family. By integrating genetic fine-mapping and epigenomic annotation data and performing promoter-reporter and chromatin conformational capture (3C) studies in ß cell lines, we localize the causal variant(s) at this locus to a 5 kb region that overlaps a stretch-enhancer active in islets. This region contains several highly correlated T2D-risk variants, including the rs140130268 indel. Expression QTL analysis of islet transcriptomes from three independent subject groups demonstrated that T2D-risk allele carriers displayed reduced levels of STARD10 mRNA, with no concomitant change in ARAP1 mRNA levels. Correspondingly, ß-cell-selective deletion of StarD10 in mice led to impaired glucose-stimulated Ca2+ dynamics and insulin secretion and recapitulated the pattern of improved proinsulin processing observed at the human GWAS signal. Conversely, overexpression of StarD10 in the adult ß cell improved glucose tolerance in high fat-fed animals. In contrast, manipulation of Arap1 in ß cells had no impact on insulin secretion or proinsulin conversion in mice. This convergence of human and murine data provides compelling evidence that the T2D risk associated with variation at this locus is mediated through reduction in STARD10 expression in the ß cell.


Subject(s)
Diabetes Mellitus, Type 2/genetics , Insulin/metabolism , Phosphoproteins/genetics , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Alleles , Animals , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cloning, Molecular , Diabetes Mellitus, Type 2/blood , GTPase-Activating Proteins/genetics , GTPase-Activating Proteins/metabolism , Gene Expression Regulation , Genetic Variation , Homeostasis , Humans , Insulin/blood , Insulin Secretion , Insulin-Secreting Cells/metabolism , Liver/metabolism , Mice , Proinsulin/blood , Proinsulin/metabolism , Quantitative Trait Loci , Transcriptome
19.
Int J Obes (Lond) ; 44(2): 539-543, 2020 02.
Article in English | MEDLINE | ID: mdl-31388097

ABSTRACT

BACKGROUND: Genome-wide association studies (GWAS) have identified more than 250 loci associated with body mass index (BMI) and obesity. However, post-GWAS functional genomic investigations have been inadequate for understanding how these genetic loci physiologically impact disease development. METHODS: We performed a PCR-free expression assay targeting genes located nearby the GWAS-identified SNPs associated with BMI/obesity in a large panel of human tissues. Furthermore, we analyzed several genetic risk scores (GRS) summing GWAS-identified alleles associated with increased BMI in 4236 individuals. RESULTS: We found that the expression of BMI/obesity susceptibility genes was strongly enriched in the brain, especially in the insula (p = 4.7 × 10-9) and substantia nigra (p = 6.8 × 10-7), which are two brain regions involved in addiction and reward. Inversely, we found that top obesity/BMI-associated loci, including FTO, showed the strongest gene expression enrichment in the two brain regions. CONCLUSIONS: Our data suggest for the first time that the susceptibility genes for common obesity may have an effect on eating addiction and reward behaviors through their high expression in substantia nigra and insula, i.e., a different pattern from monogenic obesity genes that act in the hypothalamus and cause hyperphagia. Further epidemiological studies with relevant food behavior phenotypes are necessary to confirm these findings.


Subject(s)
Behavior, Addictive/genetics , Cerebral Cortex/metabolism , Obesity , Reward , Substantia Nigra/metabolism , Adult , Body Mass Index , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study , Humans , Hyperphagia , Middle Aged , Obesity/genetics , Obesity/metabolism , Polymorphism, Single Nucleotide
20.
Diabetes Obes Metab ; 22(10): 1827-1836, 2020 10.
Article in English | MEDLINE | ID: mdl-32476252

ABSTRACT

AIM: Type 1 diabetes (T1D) is a chronic autoimmune disease leading to progressive loss of pancreatic beta cells. Interferon (IFN)-α plays a critical role in the crosstalk between pancreatic beta cells and the immune system in early insulitis. In human beta cells IFNα signals through JAK1 and TYK2, leading to endoplasmic reticulum stress, inflammation and HLA class I overexpression. IFNα, acting synergistically with IL-1ß, induces apoptosis. Polymorphisms in TYK2 that decrease its activity are associated with protection against T1D, and we hypothesized that pharmacological inhibitors that specifically target TYK2 could protect human beta cells against the deleterious effects of IFNα. MATERIALS AND METHODS: Two TYK2 inhibitors provided by Nimbus Lakshmi were tested in human insulin-producing EndoC-ßH1 cells and human islets to evaluate their effect on IFNα signalling, beta-cell function and susceptibility to viral infection using RT-qPCR, western blot, immunofluorescence, ELISA and nuclear dyes. RESULTS: The two TYK2 inhibitors tested prevented IFNα-induced human beta-cell gene expression in a dose-dependent manner. They also protected human islets against IFNα + IL-1ß-induced apoptosis. Importantly, these inhibitors did not modify beta-cell function or their survival following infection with the potential diabetogenic coxsackieviruses CVB1 and CVB5. CONCLUSIONS: The two TYK2 inhibitors tested inhibit the IFNα signalling pathway in human beta cells, decreasing its pro-inflammatory and pro-apoptotic effects without sensitizing the cells to viral infection. The preclinical findings could pave the way for future clinical trials with TYK2 inhibitors for the prevention and treatment of type 1 diabetes.


Subject(s)
Diabetes Mellitus, Type 1 , Insulin-Secreting Cells , Apoptosis , Cytoprotection , Diabetes Mellitus, Type 1/drug therapy , Endoplasmic Reticulum Stress , Humans , TYK2 Kinase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL