Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Immunity ; 53(6): 1258-1271.e5, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33296686

ABSTRACT

CD4+ T cells reactive against SARS-CoV-2 can be found in unexposed individuals, and these are suggested to arise in response to common cold coronavirus (CCCoV) infection. Here, we utilized SARS-CoV-2-reactive CD4+ T cell enrichment to examine the antigen avidity and clonality of these cells, as well as the relative contribution of CCCoV cross-reactivity. SARS-CoV-2-reactive CD4+ memory T cells were present in virtually all unexposed individuals examined, displaying low functional avidity and multiple, highly variable cross-reactivities that were not restricted to CCCoVs. SARS-CoV-2-reactive CD4+ T cells from COVID-19 patients lacked cross-reactivity to CCCoVs, irrespective of strong memory T cell responses against CCCoV in all donors analyzed. In severe but not mild COVID-19, SARS-CoV-2-specific T cells displayed low functional avidity and clonality, despite increased frequencies. Our findings identify low-avidity CD4+ T cell responses as a hallmark of severe COVID-19 and argue against a protective role for CCCoV-reactive T cells in SARS-CoV-2 infection.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , COVID-19/immunology , Receptors, Antigen, T-Cell/metabolism , Rhinovirus/immunology , SARS-CoV-2/immunology , Antigens, Viral/immunology , Cells, Cultured , Cross Reactions , Disease Progression , Environmental Exposure , Humans , Immunologic Memory , Lymphocyte Activation , Protein Binding , Severity of Illness Index , T-Cell Antigen Receptor Specificity
2.
Immunity ; 53(6): 1296-1314.e9, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33296687

ABSTRACT

Temporal resolution of cellular features associated with a severe COVID-19 disease trajectory is needed for understanding skewed immune responses and defining predictors of outcome. Here, we performed a longitudinal multi-omics study using a two-center cohort of 14 patients. We analyzed the bulk transcriptome, bulk DNA methylome, and single-cell transcriptome (>358,000 cells, including BCR profiles) of peripheral blood samples harvested from up to 5 time points. Validation was performed in two independent cohorts of COVID-19 patients. Severe COVID-19 was characterized by an increase of proliferating, metabolically hyperactive plasmablasts. Coinciding with critical illness, we also identified an expansion of interferon-activated circulating megakaryocytes and increased erythropoiesis with features of hypoxic signaling. Megakaryocyte- and erythroid-cell-derived co-expression modules were predictive of fatal disease outcome. The study demonstrates broad cellular effects of SARS-CoV-2 infection beyond adaptive immune cells and provides an entry point toward developing biomarkers and targeted treatments of patients with COVID-19.


Subject(s)
COVID-19/metabolism , Erythroid Cells/pathology , Megakaryocytes/physiology , Plasma Cells/physiology , SARS-CoV-2/physiology , Adult , Aged , Aged, 80 and over , Biomarkers , Blood Circulation , COVID-19/immunology , Cells, Cultured , Cohort Studies , Disease Progression , Female , Gene Expression Profiling , Humans , Male , Middle Aged , Proteomics , Sequence Analysis, RNA , Severity of Illness Index , Single-Cell Analysis
3.
Brain ; 146(2): 600-611, 2023 02 13.
Article in English | MEDLINE | ID: mdl-35259208

ABSTRACT

Anti-IgLON5 disease is a newly defined clinical entity characterized by a progressive course with high disability and mortality rate. While precise pathogenetic mechanisms remain unclear, features characteristic of both autoimmune and neurodegenerative diseases were reported. Data on immunotherapy are limited, and its efficacy remains controversial. In this study, we retrospectively investigated an anti-IgLON5 disease cohort with special focus on clinical, serological and genetic predictors of the immunotherapy response and long-term outcome. Patients were recruited from the GENERATE (German Network for Research on Autoimmune Encephalitis) registry. Along with clinical parameters, anti-IgLON5 immunoglobulin (Ig)G in serum and CSF, anti-IgLON5 IgG1-4, IgA and IgM in serum, neurofilament light chain and glial fibrillary acidic protein in serum as well as human leukocyte antigen-genotypes were determined. We identified 53 patients (symptom onset 63.8 ± 10.3 years, female:male 1:1.5). The most frequent initial clinical presentations were bulbar syndrome, hyperkinetic syndrome or isolated sleep disorder [at least one symptom present in 38% (20/53)]. At the time of diagnosis, the majority of patients had a generalized multi-systemic phenotype; nevertheless, 21% (11/53) still had an isolated brainstem syndrome and/or a characteristic sleep disorder only. About one third of patients [28% (15/53)] reported subacute disease onset and 51% (27/53) relapse-like exacerbations during the disease course. Inflammatory CSF changes were evident in 37% (19/51) and increased blood-CSF-barrier permeability in 46% (21/46). CSF cell count significantly decreased, while serum anti-IgLON5 IgG titre increased with disease duration. The presence of human leukocyte antigen-DRB1*10:01 [55% (24/44)] was associated with higher serum anti-IgLON5 IgG titres. Neurofilament light chain and glial fibrillary acidic protein in serum were substantially increased (71.1 ± 103.9 pg/ml and 126.7 ± 73.3 pg/ml, respectively). First-line immunotherapy of relapse-like acute-to-subacute exacerbation episodes resulted in improvement in 41% (11/27) of patients and early initiation within the first 6 weeks was a predictor for therapy response. Sixty-eight per cent (36/53) of patients were treated with long-term immunotherapy and 75% (27/36) of these experienced no further disease progression (observation period of 20.2 ± 15.4 months). Long-term immunotherapy initiation during the first year after onset and low pre-treatment neurofilament light chain were significant predictors for a better outcome. In conclusion, subacute disease onset and early inflammatory CSF changes support the primary role of autoimmune mechanisms at least at initial stages of anti-IgLON5 disease. Early immunotherapy, prior to advanced neurodegeneration, is associated with a better long-term clinical outcome. Low serum neurofilament light chain at treatment initiation may serve as a potential biomarker of the immunotherapy response.


Subject(s)
Sleep Wake Disorders , Humans , Male , Female , Glial Fibrillary Acidic Protein , Retrospective Studies , Immunoglobulin G/metabolism , Disease Progression , Immunotherapy
4.
Brain ; 146(3): 977-990, 2023 03 01.
Article in English | MEDLINE | ID: mdl-35348614

ABSTRACT

Autoimmune neurological syndromes (AINS) with autoantibodies against the 65 kDa isoform of the glutamic acid decarboxylase (GAD65) present with limbic encephalitis, including temporal lobe seizures or epilepsy, cerebellitis with ataxia, and stiff-person-syndrome or overlap forms. Anti-GAD65 autoantibodies are also detected in autoimmune diabetes mellitus, which has a strong genetic susceptibility conferred by human leukocyte antigen (HLA) and non-HLA genomic regions. We investigated the genetic predisposition in patients with anti-GAD65 AINS. We performed a genome-wide association study (GWAS) and an association analysis of the HLA region in a large German cohort of 1214 individuals. These included 167 patients with anti-GAD65 AINS, recruited by the German Network for Research on Autoimmune Encephalitis (GENERATE), and 1047 individuals without neurological or endocrine disease as population-based controls. Predictions of protein expression changes based on GWAS findings were further explored and validated in the CSF proteome of a virtually independent cohort of 10 patients with GAD65-AINS and 10 controls. Our GWAS identified 16 genome-wide significant (P < 5 × 10-8) loci for the susceptibility to anti-GAD65 AINS. The top variant, rs2535288 [P = 4.42 × 10-16, odds ratio (OR) = 0.26, 95% confidence interval (CI) = 0.187-0.358], localized to an intergenic segment in the middle of the HLA class I region. The great majority of variants in these loci (>90%) mapped to non-coding regions of the genome. Over 40% of the variants have known regulatory functions on the expression of 48 genes in disease relevant cells and tissues, mainly CD4+ T cells and the cerebral cortex. The annotation of epigenomic marks suggested specificity for neural and immune cells. A network analysis of the implicated protein-coding genes highlighted the role of protein kinase C beta (PRKCB) and identified an enrichment of numerous biological pathways participating in immunity and neural function. Analysis of the classical HLA alleles and haplotypes showed no genome-wide significant associations. The strongest associations were found for the DQA1*03:01-DQB1*03:02-DRB1*04:01HLA haplotype (P = 4.39 × 10-4, OR = 2.5, 95%CI = 1.499-4.157) and DRB1*04:01 allele (P = 8.3 × 10-5, OR = 2.4, 95%CI = 1.548-3.682) identified in our cohort. As predicted, the CSF proteome showed differential levels of five proteins (HLA-A/B, C4A, ATG4D and NEO1) of expression quantitative trait loci genes from our GWAS in the CSF proteome of anti-GAD65 AINS. These findings suggest a strong genetic predisposition with direct functional implications for immunity and neural function in anti-GAD65 AINS, mainly conferred by genomic regions outside the classical HLA alleles.


Subject(s)
Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Genetic Predisposition to Disease/genetics , Proteome/genetics , Histocompatibility Antigens Class II , HLA Antigens , Haplotypes , Alleles , Autoantibodies , HLA-DRB1 Chains/genetics
5.
Ann Rheum Dis ; 80(10): 1306-1311, 2021 10.
Article in English | MEDLINE | ID: mdl-33762264

ABSTRACT

INTRODUCTION: In light of the SARS-CoV-2 pandemic, protecting vulnerable groups has become a high priority. Persons at risk of severe disease, for example, those receiving immunosuppressive therapies for chronic inflammatory cdiseases (CIDs), are prioritised for vaccination. However, data concerning generation of protective antibody titres in immunosuppressed patients are scarce. Additionally, mRNA vaccines represent a new vaccine technology leading to increased insecurity especially in patients with CID. OBJECTIVE: Here we present for the first time, data on the efficacy and safety of anti-SARS-CoV-2 mRNA vaccines in a cohort of immunosuppressed patients as compared with healthy controls. METHODS: 42 healthy controls and 26 patients with CID were included in this study (mean age 37.5 vs 50.5 years). Immunisations were performed according to national guidelines with mRNA vaccines. Antibody titres were assessed by ELISA before initial vaccination and 7 days after secondary vaccination. Disease activity and side effects were assessed prior to and 7 days after both vaccinations. RESULTS: Anti-SARS-CoV-2 antibodies as well as neutralising activity could be detected in all study participants. IgG titres were significantly lower in patients as compared with controls (2053 binding antibody units (BAU)/mL ±1218 vs 2685±1102). Side effects were comparable in both groups. No severe adverse effects were observed, and no patients experienced a disease flare. CONCLUSION: We show that SARS-CoV-2 mRNA vaccines lead to development of antibodies in immunosuppressed patients without considerable side effects or induction of disease flares. Despite the small size of this cohort, we were able to demonstrate the efficiency and safety of mRNA vaccines in our cohort.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Immunocompromised Host/immunology , Immunogenicity, Vaccine/immunology , Inflammation/drug therapy , Adult , Aged , Aged, 80 and over , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Cohort Studies , Female , Humans , Immunosuppressive Agents/therapeutic use , Inflammation/immunology , Male , Middle Aged , Rheumatic Diseases/drug therapy , Rheumatic Diseases/immunology , SARS-CoV-2 , Vaccines, Synthetic/immunology , mRNA Vaccines
7.
9.
Brain Topogr ; 32(3): 343-353, 2019 05.
Article in English | MEDLINE | ID: mdl-30584648

ABSTRACT

Paired associative stimulation (PAS), a form of non-invasive cortical stimulation pairing transcranial magnetic stimulation (TMS) with a peripheral sensory stimulus, has been shown to induce neuroplastic effects in the human motor, somatosensory and auditory cortex. The current study investigated the effects of acoustic PAS on late auditory evoked potentials (LAEP) and the influence of tone duration and placebo stimulation. In two experiments, 18 participants underwent a PAS with a 4 kHz paired tone of 400 ms duration using 200 pairs of stimuli (TMS-pulse over the left auditory cortex 45 ms after tone-onset) presented at 0.1 Hz. In Experiment 1 this protocol was contrasted with a protocol using a short paired tone of 23 ms duration (PAS-23 ms vs. PAS-400 ms). In Experiment 2 this PAS protocol was contrasted with sham stimulation (PAS-400 ms-sham vs. PAS-400 ms). Before and after PAS, LAEP were recorded for tones of 4 kHz (same carrier frequency as the paired tone) and 1 kHz as control tone. In Experiment 1, there was a significant difference between LAEP amplitudes of the 4 kHz tone after PAS-23 ms and PAS-400 ms with higher LAEP amplitudes after PAS-23 ms. Before both conditions, no difference could be detected. In Experiment 2 we observed a significant overall decrease in LAEP amplitudes pre to post PAS. Unspecific decreases of LAEP following PAS with a long paired tone (PAS-400 ms) might be related to habituation effects due to repeated presentation of sound stimuli which are not evident for PAS with a short paired tone (PAS-23 ms). Interpreting this result using the concept of temporal integration time allows us to discuss it in the context of spike-timing dependent plasticity.


Subject(s)
Acoustic Stimulation , Association , Evoked Potentials, Auditory/physiology , Neuronal Plasticity/physiology , Transcranial Magnetic Stimulation , Adult , Auditory Cortex , Female , Humans , Male , Young Adult
11.
N Engl J Med ; 382(24): 2379-2380, 2020 06 11.
Article in English | MEDLINE | ID: mdl-32521147
13.
Sci Rep ; 14(1): 2423, 2024 01 29.
Article in English | MEDLINE | ID: mdl-38287120

ABSTRACT

SARS-CoV-2 RT-PCR is a critical and, at times, limited resource. Frequent Retesting of patients may strain testing infrastructure unduly. Recommendations that include cycle threshold (Ct) cutoffs may incentivize early retesting when the Ct value is reported. We aimed to investigate patterns of retesting in association with initial Ct-values. We performed a retrospective analysis of RT-PCR results (including Ct-values) for patients from whom ≥ 2 samples were collected within 14 days, the first of which had to be positive. We calculated absolute and baseline-corrected kinetics of Ct-values over time, as well as the median initial Ct-values in dependence of the timing of the first retesting and the time until RT-PCR negativity for SARS-CoV-2. Retesting after an initial positive SARS-CoV-2 RT-PCR was most commonly performed on day 7, with patients being retested as early as day 1. The majority of patients retested within 14 days remained SARS-CoV-2 positive in the RT-PCR. Baseline-corrected Ct-values showed a quasi-linear increase over 14 days since the initial positive result. Both the timing until the first retesting and until RT-PCR negativity were inversely correlated with the initial Ct-value. The timing of retesting after a positive SARS-CoV-2 RT-PCR appears to be significantly influenced by the initial Ct-value. Although it can be assumed that Ct-values will increase steadily over time, strategies that rely on rigid Ct-cutoffs should be discussed critically, not only because of methodological caveats but also because of the strain on testing infrastructure caused by the incentive for early retesting that Ct-values apparently represent.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , Retrospective Studies , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/genetics , Kinetics , COVID-19 Testing
14.
Seizure ; 121: 91-94, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39137477

ABSTRACT

PURPOSE: To detect possible neuronal damage due to recurrent isolated seizures in patients with epilepsy in a clinical routine setting. METHODS: We measured the serum concentrations of neurofilament light chain (sNfL) in 46 outpatients with an at least monthly occurrence (self-reported) of generalized tonic-clonic seizures in the six months prior to the study and in 49 patients who had been seizure free (self-reported) for at least one year. We assigned the patients with seizure activity into groups with moderate and high seizure frequency. We measured sNfL with a highly sensitive single molecule array (Simoa). RESULTS: The majority (94 %) of all patients with epilepsy had sNfL values within the age adjusted reference ranges of our laboratory. Three patients with and three patients without seizure activity (each 3 %) showed elevated sNfL concentrations. Age adjusted sNfL concentrations did not differ significantly between patients with and without seizure activity in the total sample or in the female subgroup. In contrast, NfL concentrations were significantly higher in male patients with seizure activity and highest in the subgroup of those with high seizure activity, but were only above the reference range in two patients. sNfL concentrations did not differ between focal and generalized epilepsies and between genetic and structural etiologies. CONCLUSIONS: The sNfL concentrations in patients with epilepsy and healthy patients did not differ significantly. The finding of higher sNfL concentrations in males with self-reported seizure activity should be viewed with utmost caution because the difference was small and only two male patients showed sNfL concentrations above the reference range.

15.
Ann Clin Transl Neurol ; 11(3): 806-811, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38186185

ABSTRACT

Differential diagnosis between Alzheimer's disease (AD) and cerebral amyloid angiopathy (CAA) using cerebrospinal fluid (CSF) biomarkers is challenging. A recent study suggested that the addition of Aß38 and Aß43 to a standard AD biomarker panel (Aß40, Aß42, t-tau, p-tau) to improve the differential diagnosis. We tested this hypothesis in an independent German cohort of CAA and AD patients and controls using the same analytical techniques. We found excellent discrimination between AD and controls and between CAA and controls, but not between AD and CAA. Adding Aß38 and Aß43 to the panel did not improve the discrimination between AD and CAA.


Subject(s)
Alzheimer Disease , Cerebral Amyloid Angiopathy , Humans , Alzheimer Disease/diagnosis , Alzheimer Disease/cerebrospinal fluid , Amyloid beta-Peptides/cerebrospinal fluid , Peptide Fragments/cerebrospinal fluid , Cerebral Amyloid Angiopathy/diagnosis , Biomarkers/cerebrospinal fluid
16.
Article in English | MEDLINE | ID: mdl-37914416

ABSTRACT

OBJECTIVES: Neurodegeneration is considered a relevant pathophysiologic feature in neurologic disorders associated with antibodies against glutamic acid decarboxylase 65 (GAD65). In this study, we investigate surrogates of neuroaxonal damage in relation to disease duration and clinical presentation. METHODS: In a multicentric cohort of 50 patients, we measured serum neurofilament light chain (sNfL) in relation to disease duration and disease phenotypes, applied automated MRI volumetry, and analyzed clinical characteristics. RESULTS: In patients with neurologic disorders associated with GAD65 antibodies, we detected elevated sNfL levels early in the disease course. By contrast, this elevation of sNfL levels was less pronounced in patients with long-standing disease. Increased sNfL levels were observed in patients presenting with cerebellar ataxia and limbic encephalitis, but not in those with stiff person syndrome. Using MRI volumetry, we identified atrophy predominantly of the cerebellar cortex, cerebellar superior posterior lobe, and cerebral cortex with similar atrophy patterns throughout all clinical phenotypes. DISCUSSION: Together, our data provide evidence for early neuroaxonal damage and support the need for timely therapeutic interventions in GAD65 antibody-associated neurologic disorders.


Subject(s)
Cerebellar Ataxia , Nervous System Diseases , Stiff-Person Syndrome , Humans , Atrophy , Autoantibodies
17.
Neurol Res Pract ; 4(1): 43, 2022 Sep 22.
Article in English | MEDLINE | ID: mdl-36131297

ABSTRACT

Autoimmune-mediated neural inflammation can affect both the central and the peripheral nervous system. Recently, antibodies against the peripheral membrane protein flotillin have been described in patients with multiple sclerosis, limbic encephalitis and sensorimotor demyelinating polyneuropathy. Here, we report the case of a 75-year-old male patient presenting with slowly progressive muscle weakness, as well as mild cognitive impairment. MR neurography of the leg showed fascicular enlargement and inflammation of ischiadic nerve fibers, while cerebral MRI showed bilateral hippocampal atrophy. Serological testing revealed positive anti-flotillin-1/2 antibodies in serum (1:100) and CSF (1:1). Assuming autoimmune anti-flotillin antibody-associated neurogenic muscle atrophy, the patient was treated with immunoglobulins, which led to a clinical improvement of muscle weakness. In light of the positive anti-flotillin antibodies and the local CNS immunoglobulin production, the mild cognitive impairment and hippocampal atrophy were interpreted as a cerebral involvement in the sense of a subclinical limbic encephalitis. We conclude that anti-flotillin antibodies can be associated with central and peripheral nervous system autoimmunity and should be considered in diagnostical workup.

18.
Neurol Res Pract ; 4(1): 54, 2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36310162

ABSTRACT

Seizure Related 6 Homolog Like 2 (SEZ6L2) protein has been shown to have implications in neuronal and especially motor function development. In oncology, overexpression of SEZ6L2 serves as a negative prognostic marker in several tumor entities. Recently, few cases of anti-SEZ6L2 antibody mediated cerebellar syndromes were reported. In this article, we present a case of a 70-year-old woman with subacute onset of gait disturbance, dysarthria and limb ataxia. Serum anti-SEZ6L2 antibodies were markedly increased, and further diagnostic workup revealed left sided breast cancer. Neurological symptoms and SEZ6L2 titer significantly improved after curative tumor therapy. This is a very rare and educationally important report of anti-SEZ6L2 autoimmune cerebellar syndrome with a paraneoplastic etiology. Additionally, we performed a review of the current literature for SEZ6L2, focusing on comparing the published cases on autoimmune cerebellar syndrome.

19.
Clin Microbiol Infect ; 28(5): 701-709, 2022 May.
Article in English | MEDLINE | ID: mdl-34547457

ABSTRACT

OBJECTIVES: To investigate the response of the immune system (and its influencing factors) to vaccination with BNT162b2 or mRNA-1273. METHODS: 531 vaccinees, recruited from healthcare professionals, donated samples before, in between, and after the administration of the two doses of the vaccine. T- and B-cell responses were examined via interferon-γ (IFN-γ) release assay, and antibodies against different epitopes of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (S1 and NCP) were detected via ELISA and surrogate neutralization assay. Results were correlated with influencing factors such as age, sex, prior infection, vaccine received (BNT162b2 or mRNA-1273), and immunosuppression. Furthermore, antinuclear antibodies (ANAs) were measured to screen for autoimmune responses following vaccination with an mRNA vaccine. RESULTS: No markers of immunity against SARS-CoV-2 were found before the first vaccination. Two weeks after it, specific responses against SARS-CoV-2 were already measurable (median ± median absolute deviation (MAD): anti-S1 IgG 195.5 ± 172.7 BAU/mL; IgA 6.7 ± 4.9 OD; surrogate neutralization 39 ± 23.7%), and were significantly increased two weeks after the second dose (anti-S1 IgG 3744 ± 2571.4 BAU/mL; IgA 12 ± 0 OD; surrogate neutralization 100 ± 0%, IFN-γ 1897.2 ± 886.7 mIU/mL). Responses were stronger for younger participants (this difference decreasing after the second dose). Further influences were previous infection with SARS-CoV-2 (causing significantly stronger responses after the first dose compared to unexposed individuals (p ≤ 0.0001)) and the vaccine received (significantly stronger reactions for recipients of mRNA-1273 after both doses, p < 0.05-0.0001). Some forms of immunosuppression significantly impeded the immune response to the vaccination (with no observable immune response in three immunosuppressed participants). There was no significant induction of ANAs by the vaccination (no change in qualitative ANA results (p 0.2592) nor ANA titres (p 0.08) from pre-to post-vaccination. CONCLUSIONS: Both vaccines elicit strong and specific immune responses against SARS-CoV-2 which become detectable one week (T-cell response) or two weeks (B-cell response) after the first dose.


Subject(s)
COVID-19 , SARS-CoV-2 , 2019-nCoV Vaccine mRNA-1273 , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunoglobulin A , Immunoglobulin G , Vaccination , Vaccines, Synthetic , mRNA Vaccines
20.
Clin Microbiol Infect ; 28(7): 1024.e1-1024.e6, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35259531

ABSTRACT

OBJECTIVES: To examine the state of B-cell immunity 6 months after the second vaccination against SARS-CoV-2 in comparison to the state observed 2 weeks after vaccination. METHODS: Sera of 439 participants, whose immune responses to two doses of an mRNA-based vaccine (BNT162b2 or mRNA-1273) were previously characterized, was examined for anti-S1 IgG and IgA, anti-NCP IgG and neutralizing antibodies (nAb), and antinuclear antibodies (ANA). RESULTS: Levels of all examined markers decreased significantly from 2 weeks to 6 months after second vaccination (anti-S1 IgG: 3744 ± 2571.4 vs. 253 ± 144 binding antibody units (BAU)/mL; anti-S1 IgA: 12 ± 0 vs. 1.98 ± 1.75 optical density (OD) ratio; nAb: 100% ± 0% vs. 82% ± 19.3%), the vast majority of participants retaining reactive levels of anti-S1 IgG (436/439) and anti-S1 IgA (334/439) at 6 months. Immune responses were stronger for mRNA-1273 compared with BNT162b2 (anti-S1 IgG: 429 ± 289 vs. 243 ± 143 BAU/mL; anti-S1 IgA: 5.38 ± 3.91 vs. 1.89 ± 1.53 OD ratio; nAb: 90.5% ± 12.6% vs. 81% ± 19.3%). There was no meaningful influence of sex and age on the examined markers. There was a strong correlation between anti-S1 IgG and the surrogate neutralization assay (rho = 0.91, p <0.0001), but not for for IgA and the surrogate neutralization assay (rho = 0.52, p <0.0001). There was a ceiling effect for the association between anti-S1 IgG titres and the inhibition of binding between S1 and ACE2. ANA prevalence was unchanged from 2 weeks to 6 months after the second vaccination (87/498 vs. 77/435), as were the median ANA titres (1:160 vs. 1:160). DISCUSSION: Although the clinical consequences of decreasing anti-SARS-CoV-2 antibody titres cannot be estimated with certainty, a lowered degree of clinical protection against SARS-CoV-2 is possible. Persistently stronger responses to mRNA-1273 suggest that it might confer greater protection than BNT162b2, even 6 months after the second vaccination. Neither examined vaccinations induced ANA within the examined time frame.


Subject(s)
BNT162 Vaccine , COVID-19 , 2019-nCoV Vaccine mRNA-1273 , Antibodies, Viral , COVID-19/prevention & control , Humans , Immunoglobulin A , Immunoglobulin G , SARS-CoV-2 , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL