Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Bioorg Med Chem Lett ; 88: 129280, 2023 05 15.
Article in English | MEDLINE | ID: mdl-37054759

ABSTRACT

Starting from the dialkylaniline indoleamine 2,3-dioxygenase 1 (IDO1) inhibitor lead 3 (IDO1 HeLa IC50Ā =Ā 7.0Ā nM), an iterative process of synthesis and screening led to cyclized analog 21 (IDO1 HeLa IC50Ā =Ā 3.6Ā nM) which maintained the high potency of 3 while addressing issues of lipophilicity, cytochrome P450 (CYP) inhibition, hERG (human potassium ion channel Kv11.1) inhibition, Pregnane X Receptor (PXR) transactivation, and oxidative metabolic stability. An x-ray crystal structure of a biaryl alkyl ether 11 bound to IDO1 was obtained. Consistent with our earlier results, compound 11 was shown to bind to the apo form of the enzyme.


Subject(s)
Enzyme Inhibitors , Ethers , Humans , Structure-Activity Relationship , Enzyme Inhibitors/chemistry , HeLa Cells , Indoleamine-Pyrrole 2,3,-Dioxygenase
2.
Bioorg Med Chem Lett ; 44: 128108, 2021 07 15.
Article in English | MEDLINE | ID: mdl-33991625

ABSTRACT

We describe our efforts to identify structurally diverse leads in the triazole-containing N1-carboline series of bromodomain and extra-terminal inhibitors. Replacement of the N5 "cap" phenyl moiety with various heteroaryls, coupled with additional modifications to the carboline core, provided analogs with similar potency, improved pharmacokinetic properties, and increased solubility compared to our backup lead, BMS-986225 (2). Rapid SAR exploration was enabled by a convergent, synthetic route. These efforts provided a potent BET inhibitor, 3-fluoropyridyl 12, that demonstrated robust efficacy in a multiple myeloma mouse tumor model at 1Ā mg/kg.


Subject(s)
Antineoplastic Agents/pharmacology , Carbolines/pharmacology , Drug Development , Multiple Myeloma/diet therapy , Proteins/antagonists & inhibitors , Triazoles/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Carbolines/chemical synthesis , Carbolines/chemistry , Dose-Response Relationship, Drug , Humans , Mice , Molecular Structure , Multiple Myeloma/metabolism , Proteins/metabolism , Structure-Activity Relationship , Triazoles/chemical synthesis , Triazoles/chemistry
3.
Bioorg Med Chem Lett ; 51: 128376, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34560263

ABSTRACT

We describe our efforts to introduce structural diversity to a previously described triazole-containing N1-carboline series of bromodomain and extra-terminal (BET) inhibitors. N9 carbolines were designed to retain favorable binding interactions that the N1-carbolines possess. A convergent synthetic route enabled modifications to reduce clearance, enhance physicochemical properties, and improve the overall in vitro profile. This work led to the identification of a potent BET inhibitor, (S)-2-{8-fluoro-5-[(3-fluoropyridin-2-yl)(oxan-4-yl)methyl]-7-[4-(2H3)methyl-1-methyl-1H-1,2,3-triazol-5-yl]-5H-pyrido[3,2-b]indol-3-yl}propan-2-ol (10), a compound with enhanced oral exposure in mice. Subsequent evaluation in a mouse triple-negative breast cancer tumor model revealed efficacy at 4Ā mg/kg of N9-carboline 10.


Subject(s)
Antineoplastic Agents/pharmacology , Carbolines/pharmacology , Drug Development , Proteins/antagonists & inhibitors , Triple Negative Breast Neoplasms/drug therapy , Administration, Oral , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Carbolines/administration & dosage , Carbolines/chemistry , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Mammary Neoplasms, Experimental/drug therapy , Mammary Neoplasms, Experimental/pathology , Mice , Molecular Structure , Proteins/metabolism , Structure-Activity Relationship , Triple Negative Breast Neoplasms/pathology
4.
J Biomol NMR ; 68(4): 237-247, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28711957

ABSTRACT

An improved expression protocol is proposed for amino acid type-specific [13C], [15N]-isotope labeling of proteins in baculovirus-infected (BV) insect cell cultures. This new protocol modifies the methods published by Gossert et al. (J Biomol NMR 51(4):449-456, 2011) and provides efficient incorporation of isotopically labeled amino acids, with similar yields per L versus unlabeled expression in rich media. Gossert et al. identified the presence of unlabeled amino acids in the yeastolate of the growth medium as a major limitation in isotope labeling using BV-infected insect cells. By reducing the amount of yeastolate in the growth medium ten-fold, a significant improvement in labeling efficiency was demonstrated, while maintaining good protein expression yield. We report an alternate approach to improve isotope labeling efficiency using BV-infected insect cells namely by replacing the yeast extracts in the medium with dialyzed yeast extracts to reduce the amount of low molecular weight peptides and amino acids. We report the residual levels of amino acids in various media formulations and the amino acid consumption during fermentation, as determined by NMR. While direct replacement of yeastolate with dialyzed yeastolate delivered moderately lower isotope labeling efficiencies compared to the use of ten-fold diluted undialized yeastolate, we show that the use of dialyzed yeastolate combined with a ten-fold dilution delivered enhanced isotope labeling efficiency and at least a comparable level of protein expression yield, all at a scale which economizes use of these costly reagents.


Subject(s)
Isotope Labeling/methods , Amino Acids/analysis , Amino Acids/chemistry , Animals , Baculoviridae , CD4 Antigens/biosynthesis , CD4 Antigens/chemistry , CD4 Antigens/isolation & purification , Carbon Isotopes , Culture Media/analysis , Culture Media/chemistry , Focal Adhesion Kinase 1/biosynthesis , Focal Adhesion Kinase 1/chemistry , Focal Adhesion Kinase 1/isolation & purification , Nitrogen Isotopes , Nuclear Magnetic Resonance, Biomolecular , Protein Biosynthesis , Sf9 Cells , Spodoptera
5.
Article in English | MEDLINE | ID: mdl-39397789

ABSTRACT

Heat-shock protein 47 (HSP47) is a potential target for inhibitors that ameliorate fibrosis by reducing collagen assembly. In an effort to develop a structure-based drug-design system, it was not possible to replicate a previous literature result (PDB entry 4au4) for apo dog HSP47; instead, crystal forms were obtained in which pairs of dog HSP47 molecules interacted through a noncleavable C-terminal His-tag to build up tetramers, all of which had multiple molecules of HSP47 in the asymmetric unit and none of which diffracted as wellĀ as the literature precedent. To overcome these difficulties, a two-pronged approach was followed: (i) the His-tag was moved from the C-terminus to the N-terminus and was made cleavable, and (ii) Adnectin (derived from the tenth domain of human fibronectin type III) crystallization chaperones were developed. Both approaches provided well diffracting crystals, but the latter approach yielded crystal forms with only one or two HSP47 complexes per asymmetric unit, which made model building less onerous.

6.
J Biol Chem ; 287(16): 12657-67, 2012 Apr 13.
Article in English | MEDLINE | ID: mdl-22378791

ABSTRACT

The enzyme MurA has been an established antibiotic target since the discovery of fosfomycin, which specifically inhibits MurA by covalent modification of the active site residue Cys-115. Early biochemical studies established that Cys-115 also covalently reacts with substrate phosphoenolpyruvate (PEP) to yield a phospholactoyl adduct, but the structural and functional consequences of this reaction remained obscure. We captured and depicted the Cys-115-PEP adduct of Enterobacter cloacae MurA in various reaction states by X-ray crystallography. The data suggest that cellular MurA predominantly exists in a tightly locked complex with UDP-N-acetylmuramic acid (UNAM), the product of the MurB reaction, with PEP covalently attached to Cys-115. The uniqueness and rigidity of this "dormant" complex was previously not recognized and presumably accounts for the failure of drug discovery efforts toward the identification of novel and effective MurA inhibitors. We demonstrate that recently published crystal structures of MurA from various organisms determined by different laboratories were indeed misinterpreted and actually contain UNAM and covalently bound PEP. The Cys-115-PEP adduct was also captured in vitro during the reaction of free MurA and substrate UDP-N-acetylglucosamine or isomer UDP-N-acetylgalactosamine. The now available series of crystal structures allows a comprehensive view of the reaction cycle of MurA. It appears that the covalent reaction of MurA with PEP fulfills dual functions by tightening the complex with UNAM for the efficient feedback regulation of murein biosynthesis and by priming the PEP molecule for instantaneous reaction with substrate UDP-N-acetylglucosamine.


Subject(s)
Alkyl and Aryl Transferases/chemistry , Alkyl and Aryl Transferases/metabolism , Enterobacter cloacae/enzymology , Phosphoenolpyruvate/metabolism , Alkyl and Aryl Transferases/genetics , Crystallography, X-Ray , DNA Adducts/metabolism , Enterobacter cloacae/genetics , Enzyme Activation/physiology , Escherichia coli/genetics , Muramic Acids/metabolism , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Structure-Activity Relationship , Substrate Specificity/physiology
7.
Acta Crystallogr F Struct Biol Commun ; 77(Pt 1): 22-28, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33439152

ABSTRACT

Hematopoietic progenitor kinase 1 (HPK1) is an intracellular kinase that plays an important role in modulating tumor immune response and thus is an attractive target for drug discovery. Crystallization of the wild-type HPK1 kinase domain has been hampered by poor expression in recombinant systems and poor solubility. In this study, yeast surface display was applied to a library of HPK1 kinase-domain variants in order to select variants with an improved expression level and solubility. The HPK1 variant with the most improved properties contained two mutations, crystallized readily in complex with several small-molecule inhibitors and provided valuable insight to guide structure-based drug design. This work exemplifies the benefit of yeast surface display towards engineering crystallizable proteins and thus enabling structure-based drug discovery.


Subject(s)
Protein Engineering/methods , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/genetics , Cell Surface Display Techniques , Crystallization , Crystallography, X-Ray , Humans , Models, Molecular , Mutagenesis , Mutation , Protein Domains , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/metabolism , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/genetics
8.
J Med Chem ; 64(19): 14247-14265, 2021 10 14.
Article in English | MEDLINE | ID: mdl-34543572

ABSTRACT

Inhibition of the bromodomain and extra-terminal (BET) family of adaptor proteins is an attractive strategy for targeting transcriptional regulation of key oncogenes, such as c-MYC. Starting with the screening hit 1, a combination of structure-activity relationship and protein structure-guided drug design led to the discovery of a differently oriented carbazole 9 with favorable binding to the tryptophan, proline, and phenylalanine (WPF) shelf conserved in the BET family. Identification of an additional lipophilic pocket and functional group optimization to optimize pharmacokinetic (PK) properties culminated in the discovery of 18 (BMS-986158) with excellent potency in binding and functional assays. On the basis of its favorable PK profile and robust in vivo activity in a panel of hematologic and solid tumor models, BMS-986158 was selected as a candidate for clinical evaluation.


Subject(s)
Antineoplastic Agents/pharmacology , Carbazoles/pharmacology , Drug Discovery , Phenylalanine/pharmacology , Proline/pharmacology , Tryptophan/pharmacology , Administration, Oral , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Carbazoles/administration & dosage , Carbazoles/chemistry , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/metabolism , Dose-Response Relationship, Drug , Humans , Molecular Structure , Phenylalanine/administration & dosage , Phenylalanine/chemistry , Proline/administration & dosage , Proline/chemistry , Structure-Activity Relationship , Transcription Factors/antagonists & inhibitors , Transcription Factors/metabolism , Tryptophan/administration & dosage , Tryptophan/chemistry
9.
Biotechniques ; 69(3): 200-205, 2020 09.
Article in English | MEDLINE | ID: mdl-32672060

ABSTRACT

Advances in in vitro display and protein engineering yield therapeutics with affinities in the picomolar range. The GyrolabĀ® microfluidics platform uses the kinetic exclusion assay principle to measure subnanomolar solution affinities. This work describes application of the Gyrolab solution affinity module and the new multi-curve analysis feature to determine affinity of the PD-L1 Adnectin™ positron emission tomography radioligand, which was measured asĀ 20Ā pM for human PD-L1. We also report key parameters that affect assay signal-to-background ratio and data quality, such as detection reagent concentration. Gyrolab offers the necessary throughput for rapid assay development with low sample consumption, as demonstrated in this study, whichĀ also provides helpful tips for assay optimization for solution affinity measurement.


Subject(s)
B7-H1 Antigen/isolation & purification , Microfluidics/methods , Positron-Emission Tomography/methods , B7-H1 Antigen/chemistry , B7-H1 Antigen/genetics , Humans , Ligands , Protein Binding/genetics
10.
J Med Chem ; 48(1): 141-51, 2005 Jan 13.
Article in English | MEDLINE | ID: mdl-15634008

ABSTRACT

A novel series of beta-amino amides incorporating fused heterocycles, i.e., triazolopiperazines, were synthesized and evaluated as inhibitors of dipeptidyl peptidase IV (DPP-IV) for the treatment of type 2 diabetes. (2R)-4-Oxo-4-[3-(trifluoromethyl)-5,6-dihydro[1,2,4]triazolo[4,3-a]pyrazin-7(8H)-yl]-1-(2,4,5-trifluorophenyl)butan-2-amine (1) is a potent, orally active DPP-IV inhibitor (IC(50) = 18 nM) with excellent selectivity over other proline-selective peptidases, oral bioavailability in preclinical species, and in vivo efficacy in animal models. MK-0431, the phosphate salt of compound 1, was selected for development as a potential new treatment for type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Dipeptidyl Peptidase 4/drug effects , Enzyme Inhibitors/pharmacology , Hypoglycemic Agents/pharmacology , Pyrazines/chemistry , Pyrazines/pharmacology , Triazoles/chemistry , Triazoles/pharmacology , Administration, Oral , Animals , Binding Sites , Biochemistry/methods , Blood Glucose/analysis , Crystallography, X-Ray , Dipeptidyl Peptidase 4/chemistry , Dipeptidyl Peptidase 4/metabolism , Dogs , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical/methods , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacokinetics , Glucagon/blood , Glucagon/drug effects , Glucagon-Like Peptide 1 , Glucose Tolerance Test , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacokinetics , Mice , Mice, Inbred C57BL , Models, Molecular , Peptide Fragments/blood , Peptide Fragments/drug effects , Protein Conformation , Protein Precursors/blood , Protein Precursors/drug effects , Pyrazines/pharmacokinetics , Rats , Sitagliptin Phosphate , Structure-Activity Relationship , Triazoles/pharmacokinetics
11.
AAPS J ; 17(4): 976-87, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25924887

ABSTRACT

Programmed death-1 (PD-1) protein is a co-inhibitory receptor which negatively regulates immune cell activation and permits tumors to evade normal immune defense. Anti-PD-1 antibodies have been shown to restore immune cell activation and effector function-an exciting breakthrough in cancer immunotherapy. Recent reports have documented a soluble form of PD-1 (sPD-1) in the circulation of normal and disease state individuals. A clinical assay to quantify sPD-1 would contribute to the understanding of sPD-1-function and facilitate the development of anti-PD-1 drugs. Here, we report the development and validation of a sPD-1 protein assay. The assay validation followed the framework for full validation of a biotherapeutic pharmacokinetic assay. A purified recombinant human PD-1 protein was characterized extensively and was identified as the assay reference material which mimics the endogenous analyte in structure and function. The lower limit of quantitation (LLOQ) was determined to be 100Ā pg/mL, with a dynamic range spanning three logs to 10,000Ā pg/mL. The intra- and inter-assay imprecision were ≤15%, and the assay bias (percent deviation) was ≤10%. Potential matrix effects were investigated in sera from both normal healthy volunteers and selected cancer patients. Bulk-prepared frozen standards and pre-coated Streptavidin plates were used in the assay to ensure consistency in assay performance over time. This assay appears to specifically measure total sPD-1 protein since the human anti-PD-1 antibody, nivolumab, and the endogenous ligands of PD-1 protein, PDL-1 and PDL-2, do not interfere with the assay.


Subject(s)
Biological Assay/methods , Programmed Cell Death 1 Receptor/analysis , Recombinant Proteins/analysis , Antibodies, Monoclonal/administration & dosage , Case-Control Studies , HEK293 Cells , Humans , Limit of Detection , Neoplasms/blood , Nivolumab
12.
J Med Chem ; 56(10): 3783-805, 2013 May 23.
Article in English | MEDLINE | ID: mdl-23547706

ABSTRACT

Screening of the 50000 ChemBridge compound library led to the identification of the oxadiazole-isopropylamide 1 (PI-1833) which inhibited chymotrypsin-like (CT-L) activity (IC50 = 0.60 ĀµM) with little effects on the other two major proteasome proteolytic activities, trypsin-like (T-L) and postglutamyl-peptide-hydrolysis-like (PGPH-L). LC-MS/MS and dialysis show that 1 is a noncovalent and rapidly reversible CT-L inhibitor. Focused library synthesis provided 11ad (PI-1840) with CT-L activity (IC50 = 27 nM). Detailed SAR studies indicate that the amide moiety and the two phenyl rings are sensitive toward modifications. Hydrophobic residues, such as propyl or butyl in the para position (not ortho or meta) of the A-ring and a m-pyridyl group as B-ring, significantly improve activity. Compound 11ad (IC50 = 0.37 ĀµM) is more potent than 1 (IC50 = 3.5 ĀµM) at inhibiting CT-L activity in intact MDA-MB-468 human breast cancer cells and inhibiting their survival. The activity of 11ad warrants further preclinical investigation of this class as noncovalent proteasome inhibitors.


Subject(s)
Oxadiazoles/chemical synthesis , Oxadiazoles/pharmacology , Proteasome Inhibitors/chemical synthesis , Proteasome Inhibitors/pharmacology , Acetylcysteine/analogs & derivatives , Acetylcysteine/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Chromatography, High Pressure Liquid , Chymotrypsin/antagonists & inhibitors , Cysteine Proteinase Inhibitors/pharmacology , Drug Screening Assays, Antitumor , High-Throughput Screening Assays , Humans , Indicators and Reagents , Mass Spectrometry , Structure-Activity Relationship , Trypsin/metabolism
13.
J Med Chem ; 55(5): 1978-98, 2012 Mar 08.
Article in English | MEDLINE | ID: mdl-22220566

ABSTRACT

Screening efforts led to the identification of PI-8182 (1), an inhibitor of the chymotrypsin-like (CT-L) activity of the proteasome. Compound 1 contains a hydronaphthoquinone pharmacophore with a thioglycolic acid side chain at position 2 and thiophene sulfonamide at position 4. An efficient synthetic route to the hydronaphthoquinone sulfonamide scaffold was developed, and compound 1 was synthesized in-house to confirm the structure and activity (IC(50) = 3.0 Ā± 1.6 ĀµM [n = 25]). Novel hydronaphthoquinone derivatives of 1 were designed, synthesized, and evaluated as proteasome inhibitors. The structure-activity relationship (SAR) guided synthesis of more than 170 derivatives revealed that the thioglycolic acid side chain is required and the carboxylic acid group of this side chain is critical to the CT-L inhibitory activity of compound 1. Furthermore, replacement of the carboxylic acid with carboxylic acid isosteres such as tetrazole or triazole greatly improves potency. Compounds with a thio-tetrazole or thio-triazole side chain in position 2, where the thiophene was replaced by hydrophobic aryl moieties, were the most active compounds with up to 20-fold greater CT-L inhibition than compound 1 (compounds 15e, 15f, 15h, 15j, IC(50) values around 200 nM, and compound 29, IC(50) = 150 nM). The synthetic iterations described here not only led to improving potency in vitro but also resulted in the identification of compounds that are more active such as 39 (IC(50) = 0.44 to 1.01 ĀµM) than 1 (IC(50) = 3.54 to 7.22 ĀµM) at inhibiting the proteasome CT-L activity in intact breast cancer cells. Treatment with 39 also resulted in the accumulation of ubiquitinated cellular proteins and inhibition of tumor cell proliferation of breast cancer cells. The hit 1 and its analogue 39 inhibited proteasome CT-L activity irreversibly.


Subject(s)
Antineoplastic Agents/chemical synthesis , Naphthoquinones/chemical synthesis , Proteasome Inhibitors , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Chymotrypsin/metabolism , Drug Stability , Humans , Naphthoquinones/chemistry , Naphthoquinones/pharmacology , Rabbits , Small Molecule Libraries , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/chemistry , Sulfonamides/pharmacology , Tetrazoles/chemical synthesis , Tetrazoles/chemistry , Tetrazoles/pharmacology , Thioglycolates/chemical synthesis , Thioglycolates/chemistry , Thioglycolates/pharmacology , Thiophenes/chemical synthesis , Thiophenes/chemistry , Thiophenes/pharmacology , Triazoles/chemical synthesis , Triazoles/chemistry , Triazoles/pharmacology
14.
Bioorg Med Chem Lett ; 17(21): 5853-7, 2007 Nov 01.
Article in English | MEDLINE | ID: mdl-17869513

ABSTRACT

A series of substituted imidazopiperidine amides has been prepared and evaluated for inhibition of dipeptidyl peptidase IV (DPP-4). Substitution at the 1- and 3-positions produced increased selectivity for DPP-4 relative to DPP-8 and DPP-9. Compounds in this series had IC(50) values as low as 5.8 nM for inhibition of DPP-4.


Subject(s)
Diabetes Mellitus/drug therapy , Dipeptidyl-Peptidase IV Inhibitors , Hypoglycemic Agents/pharmacology , Piperidines/pharmacology , Protease Inhibitors/pharmacology , Amides/chemistry , Humans , Hypoglycemic Agents/therapeutic use , Piperidines/chemistry , Piperidines/therapeutic use , Protease Inhibitors/chemistry , Protease Inhibitors/therapeutic use
15.
Bioorg Med Chem Lett ; 17(21): 5934-9, 2007 Nov 01.
Article in English | MEDLINE | ID: mdl-17827003

ABSTRACT

Various beta-amino amides containing triazolopiperazine heterocycles have been prepared and evaluated as potent, selective, orally active dipeptidyl peptidase IV (DPP-4) inhibitors. These compounds display excellent oral bioavailability and good overall pharmacokinetic profiles in preclinical species. Moreover, in vivo efficacy in an oral glucose tolerance test in lean mice is demonstrated.


Subject(s)
Amides/chemistry , Amides/pharmacology , Dipeptidyl-Peptidase IV Inhibitors , Piperazines/chemistry , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Amides/chemical synthesis , Amides/pharmacokinetics , Animals , Crystallography, X-Ray , Drug Design , Drug Evaluation, Preclinical , Models, Molecular , Protease Inhibitors/chemical synthesis , Protease Inhibitors/pharmacokinetics , Rats
18.
Bioorg Med Chem Lett ; 15(10): 2533-6, 2005 May 16.
Article in English | MEDLINE | ID: mdl-15863311

ABSTRACT

anti-Substituted beta-methylphenylalanine derived amides have been shown to be potent DPP-IV inhibitors exhibiting excellent selectivity over both DPP8 and DPP9. These are among the most potent compounds reported to date lacking an electrophilic trap. The most potent compound among these is 5-oxo-1,2,4-oxadiazole 44, which is a 3 nM DPP-IV inhibitor.


Subject(s)
Dipeptidyl Peptidase 4/drug effects , Phenylalanine/pharmacology , Protease Inhibitors/pharmacology , Phenylalanine/chemistry , Protease Inhibitors/chemistry
19.
Bioorg Med Chem Lett ; 15(9): 2253-8, 2005 May 02.
Article in English | MEDLINE | ID: mdl-15837304

ABSTRACT

A series of beta-aminoacylpiperidines bearing various fused five-membered heterocyclic rings was synthesized as dipeptidyl peptidase IV inhibitors. Potent and relatively selective inhibition could be obtained, depending on choice of heterocycle, regioisomerism, and substitution. In particular, one analog (74, DPP-IV IC50=26 nM) exhibited good oral bioavailability and acceptable half-life in the rat, albeit with rather high clearance.


Subject(s)
Dipeptidyl Peptidase 4/metabolism , Piperidines/chemical synthesis , Piperidines/pharmacology , Protease Inhibitors/chemical synthesis , Protease Inhibitors/pharmacology , Isoxazoles , Oxazoles , Piperidines/chemistry , Protease Inhibitors/chemistry , Pyrazoles , Thiazoles
20.
Biochem J ; 371(Pt 2): 525-32, 2003 Apr 15.
Article in English | MEDLINE | ID: mdl-12529175

ABSTRACT

There is currently intense interest in the emerging group of proline-specific dipeptidases, and their roles in the regulation of biological processes. Dipeptidyl peptidase IV (DPP-IV) is involved in glucose metabolism by contributing to the regulation of glucagon family peptides and has emerged as a potential target for the treatment of metabolic diseases. Two other proline-specific dipeptidases, DPP-VII (also known as quiescent cell proline dipeptidase) and DPP-II, have unknown functions and have recently been suggested to be identical proteases based on a sequence comparison of human DPP-VII and rat DPP-II (78% identity) [Araki, Li, Yamamoto, Haneda, Nishi, Kikkawa and Ohkubo (2001) J. Biochem. 129, 279-288; Fukasawa, Fukasawa, Higaki, Shiina, Ohno, Ito, Otogoto and Ota (2001) Biochem. J. 353, 283-290]. To facilitate the identification of selective substrates and inhibitors for these enzymes, a complete biochemical profile of these enzymes was obtained. The pH profiles, substrate specificities as determined by positional scanning, Michaelis-Menten constants and inhibition profiles for DPP-VII and DPP-II were shown to be virtually identical, strongly supporting the hypothesis that they are the same protease. In addition, substrate specificities, catalytic constants and IC(50) values were shown to be markedly different from those of DPP-IV. Selective DPP-IV and DPP-VII substrates were identified and they can be used to design selective inhibitors and probe further into the biology of these enzymes.


Subject(s)
Dipeptidyl Peptidase 4/metabolism , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/metabolism , Proline , Base Sequence , Catalysis , Cloning, Molecular , DNA Primers , Dipeptides/metabolism , Dipeptidyl Peptidase 4/chemistry , Dipeptidyl Peptidase 4/isolation & purification , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/chemistry , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/isolation & purification , Female , Humans , Hydrogen-Ion Concentration , Kinetics , Placenta/enzymology , Polymerase Chain Reaction , Pregnancy , Recombinant Proteins/metabolism , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL