Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Int J Mol Sci ; 23(1)2021 Dec 21.
Article in English | MEDLINE | ID: mdl-35008441

ABSTRACT

Ly6c is an antigen commonly used to differentiate between classical and non-classical monocytes/macrophages. Here we show its potential as a marker of the mouse vasculature, particularly of the retinal vascular plexuses. Ly6c was immunodetected in several tissues of C57BL/6 mice using isolectin IB4 as the control of vasculature staining. In the retina, Ly6c expression was analyzed qualitatively and quantitatively in intact, ischemic, and contralateral retinas from 0 to 30 days after the insult. Ly6c expression was observed in all organs and tissues tested, with a brighter signal and more homogeneous staining than the IB4. In the retinas, Ly6c was well expressed, allowing a detailed study of their anatomy. The three retinal plexuses were morphologically different, and from the superficial to the deep one occupied 15 ± 2, 24 ± 7, and 38 ± 1.4 percent of the retinal surface, respectively. In the injured retinas, there was extravasation of the classically activated monocyte/macrophages (Ly6chigh) and the formation of new vessels in the superficial plexus, increasing the area occupied by it to 25 ± 1%. In the contralateral retinas, the superficial plexus area decreased gradually, reaching significance at 30 days, and Ly6c expression progressively disappeared in the intermediate and deep plexuses. Although the role of Ly6c in vascular endothelial cell function is still not completely understood, we demonstrate here that Ly6c can be used as a new specific marker of the mouse vasculature and to assess, qualitatively and quantitatively, vascular changes in health and disease.


Subject(s)
Antigens, Ly/metabolism , Biomarkers/metabolism , Ischemia/pathology , Retinal Vessels/pathology , Animals , Disease Models, Animal , Ischemia/metabolism , Mice , Mice, Inbred C57BL , Qualitative Research , Retinal Vessels/metabolism , Up-Regulation
2.
Int J Mol Sci ; 22(16)2021 Aug 07.
Article in English | MEDLINE | ID: mdl-34445225

ABSTRACT

BACKGROUND: To analyze the course of microglial and macroglial activation in injured and contralateral retinas after unilateral optic nerve crush (ONC). METHODS: The left optic nerve of adult pigmented C57Bl/6 female mice was intraorbitally crushed and injured, and contralateral retinas were analyzed from 1 to 45 days post-lesion (dpl) in cross-sections and flat mounts. As controls, intact retinas were studied. Iba1+ microglial cells (MCs), activated phagocytic CD68+MCs and M2 CD206+MCs were quantified. Macroglial cell changes were analyzed by GFAP and vimentin signal intensity. RESULTS: After ONC, MC density increased significantly from 5 to 21 dpl in the inner layers of injured retinas, remaining within intact values in the contralateral ones. However, in both retinas there was a significant and long-lasting increase of CD68+MCs. Constitutive CD206+MCs were rare and mostly found in the ciliary body and around the optic-nerve head. While in the injured retinas their number increased in the retina and ciliary body, in the contralateral retinas decreased. Astrocytes and Müller cells transiently hypertrophied in the injured retinas and to a lesser extent in the contralateral ones. CONCLUSIONS: Unilateral ONC triggers a bilateral and persistent activation of MCs and an opposed response of M2 MCs between both retinas. Macroglial hypertrophy is transient.


Subject(s)
Axons/metabolism , Axotomy , Microglia/metabolism , Optic Nerve Injuries/metabolism , Retinal Ganglion Cells/metabolism , Animals , Axons/pathology , Female , Mice , Microglia/pathology , Optic Nerve Injuries/pathology , Retinal Ganglion Cells/pathology
3.
Inorg Chem ; 59(14): 10275-10284, 2020 Jul 20.
Article in English | MEDLINE | ID: mdl-32628466

ABSTRACT

In the process of synthesis of a new drug, as important as the drug itself is the formulation used, because the same compound can present a very different efficacy depending on how it is administered. In this work, we demonstrate how the antitumor capacity of a new octahedral organoruthenium complex, [Ru(ppy-CHO)(phen)2][PF6] is affected by its encapsulation in different types of mesoporous silica nanoparticles. The interactions between the Ru complex and the silica matrix and how these interactions are affected at two different pHs (7.4 and 5.4, mimicking physiological and endolysosomal acidic conditions, respectively) have been studied. The encapsulation has also been shown to affect the induction of apoptosis and necrosis and progression of the cell cycle compared to the free drug. The encapsulation of the Ru complex in nanoparticles functionalized with amino groups produced very high anticancer activity in cancer cells in vitro, especially against U87 glioblastoma cells, favoring cellular internalization and significantly increasing the anticancer capacity of the initial non-encapsulated Ru complex.


Subject(s)
Antineoplastic Agents/pharmacology , Coordination Complexes/pharmacology , Drug Carriers/chemistry , Nanoparticles/chemistry , Silicon Dioxide/chemistry , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Line, Tumor , Coordination Complexes/chemistry , Drug Screening Assays, Antitumor , Humans , Ruthenium/chemistry
4.
Nanoscale Horiz ; 9(6): 1013-1022, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38597212

ABSTRACT

In recent years, extensive research efforts have been dedicated to the investigation of CdSe/CdS-based quantum-confined nanostructures, driven by their distinctive properties. The morphologies of these nanostructures have been shown to directly affect their properties, an area which has proven to be an important field of study. Herein, we report a new morphology of CdSe/CdS core-shell heterostructures in the form of a 'nanonail' - a modified nanorod-like morphology, in which a distinctive triangular head can be observed at one end of the structure. In-depth studies of this morphology reveal a material with tuneable rod length and width, as well as exceptional photoluminescent properties. Following this, we have demonstrated the ability to induce chiroptical activity via ligand exchange, revealing the important role of the specific morphology, shell thickness and chiral ligand concentration in the effect of ligand induced chirality. In addition, the cellular uptake and cytotoxicity of obtained chiral nanostructures were evaluated on human lung-derived A549 cancer cells, revealing a significant enantioselectivity in biological activity. Finally, analysis on monolayers of the material demonstrate the complete absence of FRET processes. Overall, this CdSe/CdS heterostructure is another tuneable morphology of a very important nanomaterial, one which shows great advantages and a range of potential applications.

5.
J Mater Chem B ; 9(16): 3544-3553, 2021 04 28.
Article in English | MEDLINE | ID: mdl-33909741

ABSTRACT

Chirality is a fundamental phenomenon in biological systems, since most of the biomolecules and biological components and species are chiral and therefore recognize and respond differently depending on the enantiomer present. With increasing research into the use of nanomaterials for biomedical purposes, it is essential to understand the role that chirality of nanoparticles plays at the cellular level. Here, the chiral cysteine functionalization of mesoporous silica nanoparticles has been shown to broadly affect its interaction with U87 MG human glioblastoma cell, healthy human fibroblast (GM08680) and methicillin-resistant S. aureus bacteria. We believe that this research is important to further advancement of nano-biotechnology.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/pharmacology , Cysteine/pharmacology , Methicillin-Resistant Staphylococcus aureus/drug effects , Nanoparticles/chemistry , Silicon Dioxide/pharmacology , Anti-Bacterial Agents/chemistry , Antineoplastic Agents/chemistry , Biofilms/drug effects , Cell Survival/drug effects , Cells, Cultured , Cysteine/chemistry , Fluorescent Dyes/chemical synthesis , Fluorescent Dyes/chemistry , Humans , Particle Size , Porosity , Silicon Dioxide/chemistry , Stereoisomerism , Surface Properties
6.
Nanomaterials (Basel) ; 10(8)2020 Jul 24.
Article in English | MEDLINE | ID: mdl-32722023

ABSTRACT

Nanomaterials have unique properties and characteristics derived from their shape and small size that are not present in bulk materials. If size and shape are decisive, the synthesis method used, which determines the above parameters, is equally important. Among the different nanomaterial's synthesis methods, we can find chemical methods (microemulsion, sol-gel, hydrothermal treatments, etc.), physical methods (evaporation-condensation, laser treatment, etc.) and biosynthesis. Among all of them, the use of laser ablation that allows obtaining non-toxic nanomaterials (absence of foreign compounds) with a controlled 3D size, has emerged in recent years as a simple and versatile alternative for the synthesis of a wide variety of nanomaterials with numerous applications. This manuscript reviews the latest advances in the use of laser ablation for the synthesis of silicon-based nanomaterials, highlighting its usefulness in the prevention of bacterial infection.

7.
Acta Biomater ; 96: 547-556, 2019 09 15.
Article in English | MEDLINE | ID: mdl-31279160

ABSTRACT

The ability of bacteria to form biofilms hinders any conventional treatment for chronic infections and has serious socio-economic implications. For this purpose, a nanocarrier capable of overcoming the barrier of the mucopolysaccharide matrix of the biofilm and releasing its loaded-antibiotic within this matrix would be desirable. Herein, we developed a new nanosystem based on levofloxacin (LEVO)-loaded mesoporous silica nanoparticles (MSN) decorated with the lectin concanavalin A (ConA). The presence of ConA promotes the internalization of this nanosystem into the biofilm matrix, which increases the antimicrobial efficacy of the antibiotic hosted within the mesopores. This nanodevice is envisioned as a promising alternative to conventional treatments for infection by improving the antimicrobial efficacy and reducing side effects. STATEMENT OF SIGNIFICANCE: The present study is focused on finding an adequate therapeutic solution for the treatment of bone infection using nanocarriers that are capable of overcoming the biofilm barrier by increasing the therapeutic efficacy of the loaded antibiotic. For this purpose, we present a nanoantibiotic that increases the effectiveness of levofloxacin to destroy the biofilm formed by the model bacterium E. coli. This work opens new lines of research in the treatment of chronic infections based on nanomedicines.


Subject(s)
Concanavalin A , Infections/drug therapy , Levofloxacin , Nanoparticles/chemistry , Silicon Dioxide , Animals , Cell Line , Concanavalin A/chemistry , Concanavalin A/pharmacology , Levofloxacin/chemistry , Levofloxacin/pharmacology , Mice , Porosity , Silicon Dioxide/chemistry , Silicon Dioxide/pharmacology
8.
ACS Nano ; 13(11): 13560-13572, 2019 11 26.
Article in English | MEDLINE | ID: mdl-31697474

ABSTRACT

Chiroptically active fluorescent semiconductor nanocrystals, quantum dots (QDs), are of high interest from a theoretical and technological point of view, because they are promising candidates for a range of potential applications. Optical activity can be induced in QDs by capping them with chiral molecules, resulting in circular dichroism (CD) signals in the range of the QD ultraviolet-visible (UV-vis) absorption. However, the effects of the chiral ligand concentration and binding modes on the chiroptical properties of QDs are still poorly understood. In the present study, we report the strong influence of the concentration of a chiral amino acid (cysteine) on its binding modes upon the surface of CdSe/CdS QDs, resulting in varying QD chiroptical activity and corresponding CD signals. Importantly, we demonstrate that the increase of cysteine concentration is accompanied by the growth of the QD CD intensity, reaching a certain critical point, after which it starts to decrease. The intensity of the CD signal varies by almost an order of magnitude across this range. Nuclear magnetic resonance and Fourier transform infrared data, supported by density functional theory calculations, reveal a change in the binding mode of cysteine molecules from tridentate to bidentate when going from low to high concentrations, which results in a change in the CD intensity. Hence, we conclude that the chiroptical properties of QDs are dependent on the concentration and binding modes of the capping chiral ligands. These findings are very important for understanding chiroptical phenomena at the nanoscale and for the design of advanced optically active nanomaterials.

9.
Nanomaterials (Basel) ; 8(4)2018 Apr 23.
Article in English | MEDLINE | ID: mdl-29690644

ABSTRACT

In the last two decades, zinc oxide (ZnO) semiconductor Quantum dots (QDs) have been shown to have fantastic luminescent properties, which together with their low-cost, low-toxicity and biocompatibility have turned these nanomaterials into one of the main candidates for bio-imaging. The discovery of other desirable traits such as their ability to produce destructive reactive oxygen species (ROS), high catalytic efficiency, strong adsorption capability and high isoelectric point, also make them promising nanomaterials for therapeutic and diagnostic functions. Herein, we review the recent progress on the use of ZnO based nanoplatforms in drug delivery and theranostic in several diseases such as bacterial infection and cancer.

10.
Pharmaceutics ; 10(4)2018 Dec 15.
Article in English | MEDLINE | ID: mdl-30558308

ABSTRACT

Mesoporous silica materials (MSM) have a great surface area and a high pore volume, meaning that they consequently have a large loading capacity, and have been demonstrated to be unique candidates for the treatment of different pathologies, including bacterial infection. In this text, we review the multiple ways of action in which MSM can be used to fight bacterial infection, including early detection, drug release, targeting bacteria or biofilm, antifouling surfaces, and adjuvant capacity. This review focus mainly on those that act as a drug delivery system, and therefore that have an essential characteristic, which is their great loading capacity. Since MSM have advantages in all stages of combatting bacterial infection; its prevention, detection and finally in its treatment, we can venture to talk about them as the "nightmare of bacteria".

11.
Acta Biomater ; 65: 393-404, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29127069

ABSTRACT

A novel multifunctional nanodevice based in doxorubicin (DOX)-loaded mesoporous silica nanoparticles (MSNs) as nanoplatforms for the assembly of different building blocks has been developed for bone cancer treatment. These building blocks consists of: i) a polyacrylic acid (PAA) capping layer grafted to MSNs via an acid-cleavable acetal linker, to minimize premature cargo release and provide the nanosystem of pH-responsive drug delivery ability; and ii) a targeting ligand, the plant lectin concanavalin A (ConA), able to selectively recognize, bind and internalize owing to certain cell-surface glycans, such as sialic acids (SA), overexpressed in given tumor cells. This multifunctional nanosystem exhibits a noticeable higher internalization degree into human osteosarcoma cells (HOS), overexpressing SA, compared to healthy preosteoblast cells (MC3T3-E1). Moreover, the results indicate that small DOX loading (2.5 µg mL-1) leads to almost 100% of osteosarcoma cell death in comparison with healthy bone cells, which significantly preserve their viability. Besides, this nanodevice has a cytotoxicity on tumor cells 8-fold higher than that caused by the free drug. These findings demonstrate that the synergistic combination of different building blocks into a unique nanoplatform increases antitumor effectiveness and decreases toxicity towards normal cells. This line of attack opens up new insights in targeted bone cancer therapy. STATEMENT OF SIGNIFICANCE: The development of highly selective and efficient tumor-targeted smart drug delivery nanodevices remains a great challenge in nanomedicine. This work reports the design and optimization of a multifunctional nanosystem based on mesoporous silica nanoparticles (MSNs) featuring selectivity towards human osteosarcoma cells and pH-responsive antitumor drug delivery capability. The novelty and originality of this manuscript relies on proving that the synergistic assembly of different building blocks into a unique nanoplatform increases antitumor effectiveness and decreases toxicity towards healthy cells, which constitutes a new paradigm in targeted bone cancer therapy.


Subject(s)
Antibiotics, Antineoplastic/therapeutic use , Bone Neoplasms/drug therapy , Doxorubicin/therapeutic use , Drug Carriers , Lectins/chemistry , Nanoparticles/therapeutic use , Silicon Dioxide/chemistry , 3T3 Cells , Animals , Antibiotics, Antineoplastic/administration & dosage , Bone Neoplasms/pathology , Cell Line, Tumor , Concanavalin A/metabolism , Doxorubicin/administration & dosage , Drug Delivery Systems , Humans , Hydrogen-Ion Concentration , Mice , Microscopy, Electron, Transmission , Microscopy, Fluorescence , Nanoparticles/chemistry , Polysaccharides/metabolism , Porosity , Sialic Acids/metabolism , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
12.
Nanomaterials (Basel) ; 5(4): 1906-1937, 2015 Nov 06.
Article in English | MEDLINE | ID: mdl-28347103

ABSTRACT

The use of nanomaterials for the treatment of solid tumours is receiving increasing attention by the scientific community. Among them, mesoporous silica nanoparticles (MSNs) exhibit unique features that make them suitable nanocarriers to host, transport and protect drug molecules until the target is reached. It is possible to incorporate different targeting ligands to the outermost surface of MSNs to selectively drive the drugs to the tumour tissues. To prevent the premature release of the cargo entrapped in the mesopores, it is feasible to cap the pore entrances using stimuli-responsive nanogates. Therefore, upon exposure to internal (pH, enzymes, glutathione, etc.) or external (temperature, light, magnetic field, etc.) stimuli, the pore opening takes place and the release of the entrapped cargo occurs. These smart MSNs are capable of selectively reaching and accumulating at the target tissue and releasing the entrapped drug in a specific and controlled fashion, constituting a promising alternative to conventional chemotherapy, which is typically associated with undesired side effects. In this review, we overview the recent advances reported by the scientific community in developing MSNs for antitumor therapy. We highlight the possibility to design multifunctional nanosystems using different therapeutic approaches aimed at increasing the efficacy of the antitumor treatment.

13.
J Mater Chem B ; 3(28): 5746-5752, 2015 Jul 28.
Article in English | MEDLINE | ID: mdl-32262570

ABSTRACT

A novel phototriggered drug delivery nanocarrier, which exhibits very high tumor cytotoxicity against human tumoral cells, is presented. This device is based on mesoporous silica nanoparticles decorated with a biocompatible protein shell cleavable by light irradiation. The proteins that compose the protein shell (avidin, streptavidin and biotinylated transferrin) act as targeting and capping agents at the same time, avoiding the use of redundant systems. The light responsive behavior is provided by a biotinylated photocleavable cross-linker covalently grafted on the mesoporous surface, which suffers photocleavage by UV radiation (366 nm). Human tumoral cells incubated in the presence of a very low particle concentration enter into the apoptotic stage after a short irradiation time. Thus, the system described here could be applied to the treatment of exposed tumors that affect the skin, oesophagus, and stomach, among others, and are easily accessible for light irradiation.

14.
J Mater Chem B ; 2(34): 5639-5651, 2014 Sep 14.
Article in English | MEDLINE | ID: mdl-32262198

ABSTRACT

A novel zwitterionic SBA-15 type bioceramic with dual antibacterial capability has been synthesized. The co-condensation route has been employed to functionalize SBA-15 with primary and secondary amine groups. The resulting material exhibits textural and nanostructural properties comparable to those of pure silica SBA-15, as confirmed by XRD, HR-TEM and N2 adsorption porosimetry. The presence of -NH3 ⊕/-SiO⊖ and >NH2 ⊕/-SiO⊖zwitterionic pairs on the material surface is evidenced by FTIR and 1H →13C CP/MAS solid state NMR. The homogeneous distribution of this zwitterionic pairs agrees with the results derived from STEM-EDS studies. ζ-Potential measurements indicate that the zwitterionic nature of this material is preserved at the physiological pH of 7.4. In vitro bacterial assays using S. aureus demonstrate that the zwitterionic material is capable of inhibiting 99.9% of the bacterial adhesion compared to pure silica SBA-15. Moreover, cephalexin loading and delivery assays indicate that the zwitterionic sample is capable of releasing antibiotic molecules over long time periods. This dual antibacterial capability, i.e. antibiofouling and bactericidal, opens up promising expectations for the treatment of bone implant infections.

SELECTION OF CITATIONS
SEARCH DETAIL