Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
Appl Environ Microbiol ; 90(6): e0057124, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38814058

ABSTRACT

Denitrification, a crucial biochemical pathway prevalent among haloarchaea in hypersaline ecosystems, has garnered considerable attention in recent years due to its ecological implications. Nevertheless, the underlying molecular mechanisms and genetic regulation governing this respiration/detoxification process in haloarchaea remain largely unexplored. In this study, RNA-sequencing was used to compare the transcriptomes of the haloarchaeon Haloferax mediterranei under oxic and denitrifying conditions, shedding light on the intricate metabolic alterations occurring within the cell, such as the accurate control of the metal homeostasis. Furthermore, the investigation identifies several genes encoding transcriptional regulators and potential accessory proteins with putative roles in denitrification. Among these are bacterioopsin-like transcriptional activators, proteins harboring a domain of unknown function (DUF2249), and cyanoglobin. In addition, the study delves into the genetic regulation of denitrification, finding a regulatory motif within promoter regions that activates numerous denitrification-related genes. This research serves as a starting point for future molecular biology studies in haloarchaea, offering a promising avenue to unravel the intricate mechanisms governing haloarchaeal denitrification, a pathway of paramount ecological importance.IMPORTANCEDenitrification, a fundamental process within the nitrogen cycle, has been subject to extensive investigation due to its close association with anthropogenic activities, and its contribution to the global warming issue, mainly through the release of N2O emissions. Although our comprehension of denitrification and its implications is generally well established, most studies have been conducted in non-extreme environments with mesophilic microorganisms. Consequently, there is a significant knowledge gap concerning extremophilic denitrifiers, particularly those inhabiting hypersaline environments. The significance of this research was to delve into the process of haloarchaeal denitrification, utilizing the complete denitrifier haloarchaeon Haloferax mediterranei as a model organism. This research led to the analysis of the metabolic state of this microorganism under denitrifying conditions and the identification of regulatory signals and genes encoding proteins potentially involved in this pathway, serving as a valuable resource for future molecular studies.


Subject(s)
Denitrification , Gene Expression Profiling , Transcriptome , Denitrification/genetics , Gene Expression Regulation, Archaeal , Haloferax mediterranei/genetics , Haloferax mediterranei/metabolism , RNA-Seq , Archaeal Proteins/genetics , Archaeal Proteins/metabolism
2.
Appl Microbiol Biotechnol ; 108(1): 401, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951176

ABSTRACT

Haloarchaea are extremophilic microorganisms belonging to the Archaea domain that require high salt concentrations to be alive, thus inhabiting ecosystems like salty ponds, salty marshes, or extremely salty lagoons. They are more abundantly and widely distributed worldwide than initially expected. Most of them are grouped into two families: Halobacteriaceae and Haloferacaceae. The extreme conditions under which haloarchaea survive contribute to their metabolic and molecular adaptations, thus making them good candidates for the design of bioremediation strategies to treat brines, salty water, and saline soils contaminated with toxic compounds such as nitrate, nitrite, oxychlorates such as perchlorate and chlorate, heavy metals, hydrocarbons, and aromatic compounds. New advances in understanding haloarchaea physiology, metabolism, biochemistry, and molecular biology suggest that biochemical pathways related to nitrogen and carbon, metals, hydrocarbons, or aromatic compounds can be used for bioremediation proposals. This review analyses the novelty of the most recent results showing the capability of some haloarchaeal species to assimilate, modify, or degrade toxic compounds for most living beings. Several examples of the role of these microorganisms in the treatment of polluted brine or salty soils are also discussed in connection with circular economy-based processes. KEY POINTS: • Haloarchaea are extremophilic microorganisms showing genuine metabolism • Haloarchaea can metabolise compounds that are highly toxic to most living beings • These metabolic capabilities are useful for designing soil and water bioremediation strategies.


Subject(s)
Biodegradation, Environmental , Archaea/metabolism , Halobacteriaceae/metabolism , Halobacteriaceae/genetics , Metals, Heavy/metabolism , Soil Pollutants/metabolism , Soil Microbiology
3.
Mar Drugs ; 22(4)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38667784

ABSTRACT

Halophilic archaea, also termed haloarchaea, are a group of moderate and extreme halophilic microorganisms that constitute the major microbial populations in hypersaline environments. In these ecosystems, mainly aquatic, haloarchaea are constantly exposed to ionic and oxidative stress due to saturated salt concentrations and high incidences of UV radiation (mainly in summer). To survive under these harsh conditions, haloarchaea have developed molecular adaptations including hyperpigmentation. Regarding pigmentation, haloarchaeal species mainly synthesise the rare C50 carotenoid called bacterioruberin (BR) and its derivatives, monoanhydrobacterioruberin and bisanhydrobacterioruberin. Due to their colours and extraordinary antioxidant properties, BR and its derivatives have been the aim of research in several research groups all over the world during the last decade. This review aims to summarise the most relevant characteristics of BR and its derivatives as well as describe their reported antitumoral, immunomodulatory, and antioxidant biological activities. Based on their biological activities, these carotenoids can be considered promising natural biomolecules that could be used as tools to design new strategies and/or pharmaceutical formulas to fight against cancer, promote immunomodulation, or preserve skin health, among other potential uses.


Subject(s)
Antineoplastic Agents , Antioxidants , Carotenoids , Neoplasms , Antioxidants/pharmacology , Antioxidants/therapeutic use , Humans , Carotenoids/pharmacology , Carotenoids/chemistry , Neoplasms/drug therapy , Antineoplastic Agents/pharmacology , Animals , Archaea/metabolism
4.
Int J Mol Sci ; 25(2)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38279361

ABSTRACT

The advances in molecular biology techniques and omics approaches have made it possible to take giant steps in applied research in life sciences [...].


Subject(s)
Genomics , Proteomics , Genomics/methods , Proteomics/methods , Systems Biology/methods
5.
Mar Drugs ; 21(2)2023 Jan 21.
Article in English | MEDLINE | ID: mdl-36827113

ABSTRACT

Haloferax mediterranei has revealed a high bioremediation potential for several inorganic anions (e.g., nitrates and nitrites) and metals from hypersaline waters and brines. However, it is unclear, to date, whether this microorganism allows Cd (II) bioremediation. Consequently, the main objective of this work was to assess the Cd (II) bioremediation potential of Hfx. mediterranei R4. To this end, Hfx. mediterranei cell growth rate and metal bioaccumulation were investigated using different culture media (complex, CM, and defined medium, DM) containing Cd (II) up to 1 mM. In addition, the elemental profile of the biomass (i.e., Al, Ba, Ca, Co, Cu, Fe, K, Mg, Mn, Na, Ni, Sr and Zn) has also been monitored to gain insight into the metabolic processes that may be taking place at the intracellular level for Cd (II) removal. Because of the formation of CdS precipitate, CM is not a suitable culture media for evaluating Cd bioremediation since metal concentration could not be appropriately controlled. When operating in DM, it was observed that the cell doubling time increases three times in the presence of Cd (II). Hfx. mediterranei can bioaccumulate Cd, showing the highest significant accumulation at concentrations of 0.4 mM (108 ± 12 mg Cd/g dry tissue). Finally, the presence of Cd (II) affects the content of K, Mg, Mn and Zn in the biomass, by increasing K levels up to 27 ± 18% and Mn up to 310 ± 140% and reducing Mg levels up to 55 ± 36% and Zn up to 30 ± 4%. These results suggest that different mechanisms are involved in Cd (II) tolerance by Hfx. mediterranei, resulting in increasing the cell concentration of stress-tolerant elements in the biomass (K and Mn), while lowering the concentration of elements which Cd (II) competes with (Mg and Zn), and that all affects the physiological response of the organism by decreasing its growth rate.


Subject(s)
Cadmium , Haloferax mediterranei , Cadmium/metabolism , Haloferax mediterranei/metabolism , Metals/metabolism , Nitrites/metabolism , Culture Media/metabolism
6.
Int J Mol Sci ; 24(9)2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37175720

ABSTRACT

Climate change, global pollution due to plastics, greenhouse gasses, or heavy metals among other pollutants, as well as limited natural sources due to unsustainable lifestyles and consumption patterns, are revealing the need for more research to understand ecosystems, biodiversity, and global concerns from the microscale to the macroscale [...].


Subject(s)
Environmental Pollutants , Metals, Heavy , Ecosystem , Biodiversity , Environmental Pollutants/analysis , Environmental Pollution , Metals, Heavy/analysis
7.
Curr Microbiol ; 79(9): 266, 2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35881211

ABSTRACT

The biosynthesis of nanoparticles (NPs) has gained an overwhelming interest due to their biological applications. However, NPs synthesis by pigmented extreme halophiles remains underexplored. The NPs synthesis using pigmented halophiles is inexpensive and less toxic than other processes. In this study, pigmented halophilic microorganisms (n = 77) were screened to synthesize silver chloride nanoparticles (AgCl-NPs) with silver nitrate as metal precursors, and their biological applications were assessed. The synthesis of AgCl-NPs was possible using the crude extract from cellular lysis (CECL) of six extreme halophiles. Two of the AgCl-NPs viz. AK2-NPs and MY6-NPs synthesized by the CECL of Haloferax alexandrinus RK_AK2 and Haloferax lucentense RK_MY6, respectively, exhibited antimicrobial, antioxidative, and anti-inflammatory activities. The surface plasmon resonance of the AgCl-NPs was determined with UV spectroscopy. XRD analysis of AK2-NPs and MY6-NPs confirmed the presence of silver in the form of chlorargyrite (silver chloride) having a cubic structure. The crystallite size of AK2-NPs and MY6-NPs, estimated with the Scherrer formula, was 115.81 nm and 137.50 nm. FTIR analysis verified the presence of diverse functional groups. Dynamic light-scattering analysis confirmed that the average size distribution of NPs was 71.02 nm and 117.36 nm for AK2-NPs and MY6-NPs, respectively, with monodisperse nature. The functional group in 1623-1641 cm-1 indicated the presence of protein ß-sheet structure and shifting of amino and hydroxyl groups from the pigmented CECL, which helps in capping and stabilizing nanoparticles. The study provides evidence that CECL of Haloferax species can rapidly synthesize NPs with unique characteristics and biological applications.


Subject(s)
Halobacteriales , Metal Nanoparticles , Anti-Bacterial Agents/metabolism , Chlorides/pharmacology , Halobacteriales/metabolism , Metal Nanoparticles/chemistry , Plant Extracts , Silver Compounds/chemistry , Silver Compounds/metabolism , Spectroscopy, Fourier Transform Infrared
8.
Mar Drugs ; 20(11)2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36354982

ABSTRACT

Haloarchaeal carotenoids have attracted attention lately due to their potential antioxidant activity. This work studies the effect of different concentrations of carbon sources on cell growth and carotenoid production. Carotenoid extract composition was characterized by HPLC-MS. Antioxidant activity of carotenoid extracts obtained from cell cultures grown under different nutritional conditions was determined by 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 1,1-diphenyl-2-picrylhydrazyl (DPPH), Ferric Reducing Ability Power (FRAP) and ß-carotene bleaching assays. The ability of these carotenoid extracts to inhibit α-glucosidase, α-amylase, and lipase enzymes was also assessed to determine if they could be used to reduce blood glucose and lipid absorption. The maximum production of carotenoids (92.2 µg/mL) was observed combining 12.5% inorganic salts and 2.5% of glucose/starch. Antioxidant, hypoglycemic, and antilipidemic studies showed that higher carbon availability in the culture media leads to changes in the extract composition, resulting in more active haloarchaeal carotenoid extracts. Carotenoid extracts obtained from high-carbon-availability cell cultures presented higher proportions of all-trans-bacterioruberin, 5-cis-bacterioruberin, and a double isomeric bacterioruberin, whereas the presence 9-cis-bacterioruberin and 13-cis-bacterioruberin decreased. The production of haloarchaeal carotenoids can be successfully optimized by changing nutritional conditions. Furthermore, carotenoid composition can be altered by modifying carbon source concentration. These natural compounds are very promising in food and nutraceutical industries.


Subject(s)
Antioxidants , Haloferax mediterranei , Antioxidants/pharmacology , Carbon , Carotenoids/pharmacology , Carotenoids/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry
9.
Molecules ; 27(21)2022 Oct 29.
Article in English | MEDLINE | ID: mdl-36364191

ABSTRACT

This work aims to characterize the haloarchaeal diversity of unexplored environmental salty samples from a hypersaline environment on the southern coast of Jeddah, Saudi Arabia, looking for new isolates able to produce polyhydroxyalkanoates (PHAs). Thus, the list of PHA producers has been extended by describing two species of Halolamina; Halolamina sediminis sp. strain NRS_35 and unclassified Halolamina sp. strain NRS_38. The growth and PHA-production were investigated in the presence of different carbon sources, (glucose, sucrose, starch, carboxymethyl cellulose (CMC), and glycerol), pH values, (5-9), temperature ranges (4-65 °C), and NaCl concentrations (100-350 g L-1). Fourier-transform infra-red analysis (FT-IR) and Liquid chromatography-mass spectrometry (LC-MS) were used for qualitative identification of the biopolymer. The highest yield of PHB was 33.4% and 27.29% by NRS_35 and NRS_38, respectively, using starch as a carbon source at 37 °C, pH 7, and 25% NaCl (w/v). The FT-IR pattern indicated sharp peaks formed around 1628.98 and 1629.28 cm-1, which confirmed the presence of the carbonyl group (C=O) on amides and related to proteins, which is typical of PHB. LC-MS/MS analysis displayed peaks at retention times of 5.2, 7.3, and 8.1. This peak range indicates the occurrence of PHB and its synthetic products: Acetoacetyl-CoA and PHB synthase (PhaC). In summary, the two newly isolated Halolamina species showed a high capacity to produce PHB using different sources of carbon. Further research using other low-cost feedstocks is needed to improve both the quality and quantity of PHB production. With these results, the use of haloarchaea as cell factories to produce PHAs is reinforced, and light is shed on the global concern about replacing plastics with biodegradable polymers.


Subject(s)
Polyhydroxyalkanoates , Sodium Chloride , Sodium Chloride/metabolism , Spectroscopy, Fourier Transform Infrared , Chromatography, Liquid , Tandem Mass Spectrometry , Polyhydroxyalkanoates/chemistry , Carbon/metabolism , Starch , Hydroxybutyrates/chemistry
10.
Adv Exp Med Biol ; 1261: 165-174, 2021.
Article in English | MEDLINE | ID: mdl-33783738

ABSTRACT

Haloarchaea are halophilic microorganisms belonging to the Archaea domain that inhabit salty environments (mainly soils and water) all around the world. Most of the genera included in this group are able to produce carotenoids at significant concentrations (even wild-type strains). The major carotenoid produced by the cells is bacterioruberin (and its derivatives), which is only produced by this kind of microbes. Nevertheless, the understanding of carotenoid metabolism in haloarchaea, its regulation, and the roles of carotenoid derivatives in this group of extreme microorganisms remains mostly unrevealed. Besides, potential biotechnological uses of haloarchaeal pigments are poorly explored. This work summarizes what it has been described so far about carotenoid production by haloarchaea, haloarchaeal carotenoid production at large scale, as well as the potential uses of haloarchaeal pigments in biotechnology and biomedicine.


Subject(s)
Archaea , Carotenoids , Archaea/genetics , Biotechnology , Pigmentation
11.
Mar Drugs ; 19(8)2021 Jul 31.
Article in English | MEDLINE | ID: mdl-34436281

ABSTRACT

This study presents a comparative analysis of halophiles from the global open sea and coastal biosystems through shotgun metagenomes (n = 209) retrieved from public repositories. The open sea was significantly enriched with Prochlorococcus and Candidatus pelagibacter. Meanwhile, coastal biosystems were dominated by Marinobacter and Alcanivorax. Halophilic archaea Haloarcula and Haloquandratum, predominant in the coastal biosystem, were significantly (p < 0.05) enriched in coastal biosystems compared to the open sea. Analysis of whole genomes (n = 23,540), retrieved from EzBioCloud, detected crtI in 64.66% of genomes, while cruF was observed in 1.69% Bacteria and 40.75% Archaea. We further confirmed the viability and carotenoid pigment production by pure culture isolation (n = 1351) of extreme halophiles from sediments (n = 410 × 3) sampling at the Arabian coastline of India. All red-pigmented isolates were represented exclusively by Haloferax, resistant to saturated NaCl (6 M), and had >60% G + C content. Multidrug resistance to tetracycline, gentamicin, ampicillin, and chloramphenicol were also observed. Our study showed that coastal biosystems could be more suited for bioprospection of halophiles rather than the open sea.


Subject(s)
Carotenoids/metabolism , Halobacteriales/genetics , Haloferax/genetics , Aquatic Organisms , Halobacteriales/metabolism , Haloferax/metabolism , Humans , India , Oceans and Seas , Phylogeny , Phytotherapy
12.
Mar Drugs ; 19(11)2021 Oct 21.
Article in English | MEDLINE | ID: mdl-34822465

ABSTRACT

Breast cancer is the leading cause of death among women worldwide. Over the years, oxidative stress has been linked to the onset and progression of cancer. In addition to the classical histological classification, breast carcinomas are classified into phenotypes according to hormone receptors (estrogen receptor-RE-/progesterone receptor-PR) and growth factor receptor (human epidermal growth factor receptor-HER2) expression. Luminal tumors (ER/PR-positive/HER2-negative) are present in older patients with a better outcome. However, patients with HER2-positive or triple-negative breast cancer (TNBC) (ER/PR/HER2-negative) subtypes still represent highly aggressive behavior, metastasis, poor prognosis, and drug resistance. Therefore, new alternative therapies have become an urgent clinical need. In recent years, anticancer agents based on natural products have been receiving huge interest. In particular, carotenoids are natural compounds present in fruits and vegetables, but algae, bacteria, and archaea also produce them. The antioxidant properties of carotenoids have been studied during the last years due to their potential in preventing and treating multiple diseases, including cancer. Although the effect of carotenoids on breast cancer during in vitro and in vivo studies is promising, clinical trials are still inconclusive. The haloarchaeal carotenoid bacterioruberin holds great promise to the future of biomedicine due to its particular structure, and antioxidant activity. However, much work remains to be performed to draw firm conclusions. This review summarizes the current knowledge on pre-clinical and clinical analysis on the use of carotenoids as chemopreventive and chemotherapeutic agents in breast cancer, highlighting the most recent results regarding the use of bacterioruberin from haloarchaea.


Subject(s)
Antineoplastic Agents/pharmacology , Aquatic Organisms , Biological Products/pharmacology , Breast Neoplasms/drug therapy , Carotenoids/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Biological Products/chemistry , Biological Products/therapeutic use , Carotenoids/chemistry , Carotenoids/therapeutic use , Female , Humans , Wetlands
13.
Mar Drugs ; 19(2)2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33578828

ABSTRACT

Haloarchaea produce C50 carotenoids such as bacterioruberin, which are of biotechnological in-terest. This study aimed to analyze the effect of different environmental and nutritional conditions on the cellular growth and dynamics of carotenoids accumulation in Haloferax mediterranei. The maximum production of carotenoids (40 µg·mL-1) was obtained during the stationary phase of growth, probably due to nutrient-limiting conditions (one-step culture). By seven days of culture, 1 mL culture produced 22.4 mg of dry weight biomass containing 0.18 % (w/w) of carotenoids. On the other hand, carbon-deficient cultures (low C/N ratio) were observed to be optimum for C50 bacterioruberin production by Hfx. mediterranei, but negatively affected the growth of cells. Thus, a two-steps process was evaluated for optimum carotenoids yield. In the first step, a nutri-ent-repleted culture medium enabled the haloarchaea to produce biomass, while in the second step, the biomass was incubated under osmotic stress and in a carbon-deficient medium. Under the conditions used, the obtained biomass contained 0.27% (w/w) of carotenoids after seven days, which accounts for 58.49 µg·mL-1 of carotenoids for a culture with turbidity 14.0.


Subject(s)
Biotechnology/methods , Carotenoids/metabolism , Haloferax mediterranei/metabolism , Biomass , Carbon/chemistry , Culture Media , Time Factors
14.
Mar Drugs ; 19(3)2021 Mar 18.
Article in English | MEDLINE | ID: mdl-33803653

ABSTRACT

Plastic pollution is a worldwide concern causing the death of animals (mainly aquatic fauna) and environmental deterioration. Plastic recycling is, in most cases, difficult or even impossible. For this reason, new research lines are emerging to identify highly biodegradable bioplastics or plastic formulations that are more environmentally friendly than current ones. In this context, microbes, capable of synthesizing bioplastics, were revealed to be good models to design strategies in which microorganisms can be used as cell factories. Recently, special interest has been paid to haloarchaea due to the capability of some species to produce significant concentrations of polyhydroxyalkanoate (PHA), polyhydroxybutyrate (PHB), and polyhydroxyvalerate (PHV) when growing under a specific nutritional status. The growth of those microorganisms at the pilot or industrial scale offers several advantages compared to that of other microbes that are bioplastic producers. This review summarizes the state of the art of bioplastic production and the most recent findings regarding the production of bioplastics by halophilic microorganisms with special emphasis on haloarchaea. Some protocols to produce/analyze bioplastics are highlighted here to shed light on the potential use of haloarchaea at the industrial scale to produce valuable products, thus minimizing environmental pollution by plastics made from petroleum.


Subject(s)
Archaea/metabolism , Biodegradable Plastics/metabolism , Biopolymers/biosynthesis , Biotechnology , Green Chemistry Technology
15.
Int J Mol Sci ; 21(12)2020 Jun 13.
Article in English | MEDLINE | ID: mdl-32545812

ABSTRACT

Extreme microorganisms (extremophile) are organisms that inhabit environments characterized by inhospitable parameters for most live beings (extreme temperatures and pH values, high or low ionic strength, pressure, or scarcity of nutrients). To grow optimally under these conditions, extremophiles have evolved molecular adaptations affecting their physiology, metabolism, cell signaling, etc. Due to their peculiarities in terms of physiology and metabolism, they have become good models for (i) understanding the limits of life on Earth, (ii) exploring the possible existence of extraterrestrial life (Astrobiology), or (iii) to look for potential applications in biotechnology. Recent research has revealed that extremophilic microbes play key roles in all biogeochemical cycles on Earth. Nitrogen cycle (N-cycle) is one of the most important biogeochemical cycles in nature; thanks to it, nitrogen is converted into multiple chemical forms, which circulate among atmospheric, terrestrial and aquatic ecosystems. This review summarizes recent knowledge on the role of extreme microorganisms in the N-cycle in extremophilic ecosystems, with special emphasis on members of the Archaea domain. Potential implications of these microbes in global warming and nitrogen balance, as well as their biotechnological applications are also discussed.


Subject(s)
Extremophiles/metabolism , Nitrogen Cycle , Extreme Environments , Hydrogen-Ion Concentration
16.
Molecules ; 25(5)2020 Mar 06.
Article in English | MEDLINE | ID: mdl-32155882

ABSTRACT

Bacterioruberin and its derivatives have been described as the major carotenoids produced by haloarchaea (halophilic microbes belonging to the Archaea domain). Recently, different works have revealed that some haloarchaea synthetize other carotenoids at very low concentrations, like lycopene, lycopersene, cis- and trans-phytoene, cis- and trans-phytofluene, neo-ß-carotene, and neo-α-carotene. However, there is still controversy about the nature of the pathways for carotenogenesis in haloarchaea. During the last decade, the number of haloarchaeal genomes fully sequenced and assembled has increased significantly. Although some of these genomes are not fully annotated, and many others are drafts, this information provides a new approach to exploring the capability of haloarchaea to produce carotenoids. This work conducts a deeply bioinformatic analysis to establish a hypothetical metabolic map connecting all the potential pathways involved in carotenogenesis in haloarchaea. Special interest has been focused on the synthesis of bacterioruberin in members of the Haloferax genus. The main finding is that in almost all the genus analyzed, a functioning alternative mevalonic acid (MVA) pathway provides isopentenyl pyrophosphate (IPP) in haloarchaea. Then, the main branch to synthesized carotenoids proceeds up to lycopene from which ß-carotene or bacterioruberin (and its precursors: monoanhydrobacterioriberin, bisanhydrobacterioruberin, dihydrobisanhydrobacteriuberin, isopentenyldehydrorhodopsin, and dihydroisopenthenyldehydrorhodopsin) can be made.


Subject(s)
Carotenoids/metabolism , Euryarchaeota/metabolism , Metabolic Networks and Pathways , Antioxidants/metabolism , Euryarchaeota/classification , Euryarchaeota/genetics , Gene Expression Regulation, Bacterial , Gene Expression Regulation, Enzymologic , Genome, Bacterial , Genomics/methods , Metabolic Networks and Pathways/genetics , Phylogeny , Pigments, Biological/biosynthesis
17.
Environ Microbiol ; 21(1): 427-436, 2019 01.
Article in English | MEDLINE | ID: mdl-30421557

ABSTRACT

Haloarchaea are extremophiles, generally thriving at high temperatures and salt concentrations, thus, with limited access to oxygen. As a strategy to maintain a respiratory metabolism, many halophilic archaea are capable of denitrification. Among them are members of the genus Haloferax, which are abundant in saline/hypersaline environments. Three reported haloarchaeal denitrifiers, Haloferax mediterranei, Haloferax denitrificans and Haloferax volcanii, were characterized with respect to their denitrification phenotype. A semi-automatic incubation system was used to monitor the depletion of electron acceptors and accumulation of gaseous intermediates in batch cultures under a range of conditions. Out of the species tested, only H. mediterranei was able to consistently reduce all available N-oxyanions to N2 , while the other two released significant amounts of NO and N2 O, which affect tropospheric and stratospheric chemistries respectively. The prevalence and magnitude of hypersaline ecosystems are on the rise due to climate change and anthropogenic activity. Thus, the biology of halophilic denitrifiers is inherently interesting, due to their contribution to the global nitrogen cycle, and potential application in bioremediation. This work is the first detailed physiological study of denitrification in haloarchaea, and as such a seed for our understanding of the drivers of nitrogen turnover in hypersaline systems.


Subject(s)
Denitrification/physiology , Haloferax mediterranei/metabolism , Haloferax volcanii/metabolism , Nitrogen Cycle/physiology , Biodegradation, Environmental , Climate Change , Ecosystem , Haloferax mediterranei/genetics , Haloferax volcanii/genetics , Oxidation-Reduction , Phenotype
18.
Mar Drugs ; 17(9)2019 Sep 06.
Article in English | MEDLINE | ID: mdl-31500208

ABSTRACT

Haloarchaea are halophilic microorganisms belonging to the archaea domain that inhabit salty environments (mainly soils and water) all over the world. Most of the genera included in this group can produce carotenoids at significant concentrations (even wild-type strains). The major carotenoid produced by the cells is bacterioruberin (and its derivatives), which is only produced by this kind of microbes and few bacteria, like Micrococcus roseus. Nevertheless, the understanding of carotenoid metabolism in haloarchaea, its regulation, and the roles of carotenoid derivatives in this group of extreme microorganisms remains mostly unrevealed. Besides, potential biotechnological uses of haloarchaeal pigments are poorly explored. This work summarises what it has been described so far about carotenoids from haloarchaea and their production at mid- and large-scale, paying special attention to the most recent findings on the potential uses of haloarchaeal pigments in biomedicine.


Subject(s)
Archaea/metabolism , Carotenoids/metabolism , Animals , Bacteria/metabolism , Biotechnology/methods , Extreme Environments , Humans , Pigmentation/physiology
19.
Int J Mol Sci ; 21(1)2019 Dec 20.
Article in English | MEDLINE | ID: mdl-31877629

ABSTRACT

Haloarchaea (halophilic microbes belonging to the Archaea domain) are microorganisms requiring mid or even high salt concentrations to be alive. The molecular machinery of these organisms is adapted to such conditions, which are stressful for most life forms. Among their molecular adaptations, halophilic proteins are characterized by their high content of acidic amino acids (Aspartate (Asp) and glumate (Glu)), being only stable in solutions containing high salt concentration (between 1 and 4 M total salt concentration). Recent knowledge about haloarchaeal peptides, proteins, and enzymes have revealed that many haloarchaeal species produce proteins of interest due to their potential applications in biotechnology-based industries. Although proteins of interest are usually overproduced in recombinant prokaryotic or eukaryotic expression systems, these procedures do not accurately work for halophilic proteins, mainly if such proteins contain metallocofactors in their structures. This work summarizes the main challenges of heterologous and homologous expression of enzymes from haloarchaea, paying special attention to the metalloenzymes involved in the pathway of denitrification (anaerobic reduction of nitrate to dinitrogen), a pathway with significant implications in wastewater treatment, climate change, and biosensor design.


Subject(s)
Archaeal Proteins/genetics , Halobacteriaceae/genetics , Archaeal Proteins/metabolism , Biotechnology/methods , Denitrification , Gene Expression , Halobacteriaceae/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
20.
Int J Mol Sci ; 20(13)2019 Jul 08.
Article in English | MEDLINE | ID: mdl-31288391

ABSTRACT

Dimethyl sulfoxide reductases (DMSO) are molybdoenzymes widespread in all domains of life. They catalyse not only redox reactions, but also hydroxylation/hydration and oxygen transfer processes. Although literature on DMSO is abundant, the biological significance of these enzymes in anaerobic respiration and the molecular mechanisms beyond the expression of genes coding for them are still scarce. In this review, a deep revision of the literature reported on DMSO as well as the use of bioinformatics tools and free software has been developed in order to highlight the relevance of DMSO reductases on anaerobic processes connected to different biogeochemical cycles. Special emphasis has been addressed to DMSO from extremophilic organisms and their role in nitrogen cycle. Besides, an updated overview of phylogeny of DMSOs as well as potential applications of some DMSO reductases on bioremediation approaches are also described.


Subject(s)
Extremophiles , Iron-Sulfur Proteins/genetics , Iron-Sulfur Proteins/metabolism , Isoenzymes , Multigene Family , Oxidoreductases/genetics , Oxidoreductases/metabolism , Phylogeny , Coenzymes/chemistry , Coenzymes/metabolism , Extremophiles/genetics , Extremophiles/metabolism , Iron-Sulfur Proteins/chemistry , Metabolic Networks and Pathways , Metalloproteins/chemistry , Metalloproteins/metabolism , Molybdenum/chemistry , Molybdenum/metabolism , Molybdenum Cofactors , Nitrogen Cycle , Oxidation-Reduction , Oxidoreductases/chemistry , Pteridines/chemistry , Pteridines/metabolism , Structure-Activity Relationship , Tungsten/chemistry , Tungsten/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL