Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 144
Filter
1.
Plant J ; 118(4): 997-1015, 2024 May.
Article in English | MEDLINE | ID: mdl-38281284

ABSTRACT

Endoreduplication, during which cells increase their DNA content through successive rounds of full genome replication without cell division, is the major source of endopolyploidy in higher plants. Endoreduplication plays pivotal roles in plant growth and development and is associated with the activation of specific transcriptional programmes that are characteristic of each cell type, thereby defining their identity. In plants, endoreduplication is found in numerous organs and cell types, especially in agronomically valuable ones, such as the fleshy fruit (pericarp) of tomato presenting high ploidy levels. We used the tomato pericarp tissue as a model system to explore the transcriptomes associated with endoreduplication progression during fruit growth. We confirmed that expression globally scales with ploidy level and identified sets of differentially expressed genes presenting only developmental-specific, only ploidy-specific expression patterns or profiles resulting from an additive effect of ploidy and development. When comparing ploidy levels at a specific developmental stage, we found that non-endoreduplicated cells are defined by cell division state and cuticle synthesis while endoreduplicated cells are mainly defined by their metabolic activity changing rapidly over time. By combining this dataset with publicly available spatiotemporal pericarp expression data, we proposed a map describing the distribution of ploidy levels within the pericarp. These transcriptome-based predictions were validated by quantifying ploidy levels within the pericarp tissue. This in situ ploidy quantification revealed the dynamic progression of endoreduplication and its cell layer specificity during early fruit development. In summary, the study sheds light on the complex relationship between endoreduplication, cell differentiation and gene expression patterns in the tomato pericarp.


Subject(s)
Endoreduplication , Fruit , Gene Expression Regulation, Plant , Ploidies , Solanum lycopersicum , Transcriptome , Solanum lycopersicum/genetics , Solanum lycopersicum/growth & development , Solanum lycopersicum/metabolism , Fruit/genetics , Fruit/growth & development , Fruit/metabolism , Endoreduplication/genetics , Gene Expression Profiling , Cell Division/genetics
2.
Epilepsia ; 65(4): 1072-1091, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38411286

ABSTRACT

OBJECTIVE: The intricate neuroanatomical structure of the cerebellum is of longstanding interest in epilepsy, but has been poorly characterized within the current corticocentric models of this disease. We quantified cross-sectional regional cerebellar lobule volumes using structural magnetic resonance imaging in 1602 adults with epilepsy and 1022 healthy controls across 22 sites from the global ENIGMA-Epilepsy working group. METHODS: A state-of-the-art deep learning-based approach was employed that parcellates the cerebellum into 28 neuroanatomical subregions. Linear mixed models compared total and regional cerebellar volume in (1) all epilepsies, (2) temporal lobe epilepsy with hippocampal sclerosis (TLE-HS), (3) nonlesional temporal lobe epilepsy, (4) genetic generalized epilepsy, and (5) extratemporal focal epilepsy (ETLE). Relationships were examined for cerebellar volume versus age at seizure onset, duration of epilepsy, phenytoin treatment, and cerebral cortical thickness. RESULTS: Across all epilepsies, reduced total cerebellar volume was observed (d = .42). Maximum volume loss was observed in the corpus medullare (dmax = .49) and posterior lobe gray matter regions, including bilateral lobules VIIB (dmax = .47), crus I/II (dmax = .39), VIIIA (dmax = .45), and VIIIB (dmax = .40). Earlier age at seizure onset ( η ρ max 2 = .05) and longer epilepsy duration ( η ρ max 2 = .06) correlated with reduced volume in these regions. Findings were most pronounced in TLE-HS and ETLE, with distinct neuroanatomical profiles observed in the posterior lobe. Phenytoin treatment was associated with reduced posterior lobe volume. Cerebellum volume correlated with cerebral cortical thinning more strongly in the epilepsy cohort than in controls. SIGNIFICANCE: We provide robust evidence of deep cerebellar and posterior lobe subregional gray matter volume loss in patients with chronic epilepsy. Volume loss was maximal for posterior subregions implicated in nonmotor functions, relative to motor regions of both the anterior and posterior lobe. Associations between cerebral and cerebellar changes, and variability of neuroanatomical profiles across epilepsy syndromes argue for more precise incorporation of cerebellar subregional damage into neurobiological models of epilepsy.


Subject(s)
Epilepsy, Temporal Lobe , Epileptic Syndromes , Adult , Humans , Epilepsy, Temporal Lobe/complications , Phenytoin , Cross-Sectional Studies , Epileptic Syndromes/complications , Cerebellum/diagnostic imaging , Cerebellum/pathology , Seizures/complications , Magnetic Resonance Imaging/methods , Atrophy/pathology
3.
Nano Lett ; 23(11): 4862-4869, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37212527

ABSTRACT

Mimicking and extending the gating properties of biological pores is of paramount interest for the fabrication of membranes that could be used in filtration or drug processing. Here, we build a selective and switchable nanopore for macromolecular cargo transport. Our approach exploits polymer graftings within artificial nanopores to control the translocation of biomolecules. To measure transport at the scale of individual biomolecules, we use fluorescence microscopy with a zero-mode waveguide set up. We show that grafting polymers that exhibit a lower critical solution temperature creates a toggle switch between an open and closed state of the nanopore depending on the temperature. We demonstrate tight control over the transport of DNA and viral capsids with a sharp transition (∼1 °C) and present a simple physical model that predicts key features of this transition. Our approach provides the potential for controllable and responsive nanopores in a range of applications.

4.
Brain ; 145(4): 1285-1298, 2022 05 24.
Article in English | MEDLINE | ID: mdl-35333312

ABSTRACT

Temporal lobe epilepsy, a common drug-resistant epilepsy in adults, is primarily a limbic network disorder associated with predominant unilateral hippocampal pathology. Structural MRI has provided an in vivo window into whole-brain grey matter structural alterations in temporal lobe epilepsy relative to controls, by either mapping (i) atypical inter-hemispheric asymmetry; or (ii) regional atrophy. However, similarities and differences of both atypical asymmetry and regional atrophy measures have not been systematically investigated. Here, we addressed this gap using the multisite ENIGMA-Epilepsy dataset comprising MRI brain morphological measures in 732 temporal lobe epilepsy patients and 1418 healthy controls. We compared spatial distributions of grey matter asymmetry and atrophy in temporal lobe epilepsy, contextualized their topographies relative to spatial gradients in cortical microstructure and functional connectivity calculated using 207 healthy controls obtained from Human Connectome Project and an independent dataset containing 23 temporal lobe epilepsy patients and 53 healthy controls and examined clinical associations using machine learning. We identified a marked divergence in the spatial distribution of atypical inter-hemispheric asymmetry and regional atrophy mapping. The former revealed a temporo-limbic disease signature while the latter showed diffuse and bilateral patterns. Our findings were robust across individual sites and patients. Cortical atrophy was significantly correlated with disease duration and age at seizure onset, while degrees of asymmetry did not show a significant relationship to these clinical variables. Our findings highlight that the mapping of atypical inter-hemispheric asymmetry and regional atrophy tap into two complementary aspects of temporal lobe epilepsy-related pathology, with the former revealing primary substrates in ipsilateral limbic circuits and the latter capturing bilateral disease effects. These findings refine our notion of the neuropathology of temporal lobe epilepsy and may inform future discovery and validation of complementary MRI biomarkers in temporal lobe epilepsy.


Subject(s)
Connectome , Epilepsy, Temporal Lobe , Adult , Atrophy/pathology , Epilepsy, Temporal Lobe/pathology , Hippocampus/pathology , Humans , Magnetic Resonance Imaging
5.
Neuropediatrics ; 54(4): 244-252, 2023 08.
Article in English | MEDLINE | ID: mdl-37054976

ABSTRACT

BACKGROUND: Metachromatic leukodystrophy (MLD) is a lysosomal enzyme deficiency disorder leading to progressive demyelination and, consecutively, to cognitive and motor decline. Brain magnetic resonance imaging (MRI) can detect affected white matter as T2 hyperintense areas but cannot quantify the gradual microstructural process of demyelination more accurately. Our study aimed to investigate the value of routine MR diffusion tensor imaging in assessing disease progression. METHODS: MR diffusion parameters (apparent diffusion coefficient [ADC] and fractional anisotropy [FA]) were in the frontal white matter, central region (CR), and posterior limb of the internal capsule in 111 MR datasets from a natural history study of 83 patients (age: 0.5-39.9 years; 35 late-infantile, 45 juvenile, 3 adult, with clinical diffusion sequences of different scanner manufacturers) as well as 120 controls. Results were correlated with clinical parameters reflecting motor and cognitive function. RESULTS: ADC values increase and FA values decrease depending on disease stage/severity. They show region-specific correlations with clinical parameters of motor and cognitive symptoms, respectively. Higher ADC levels in CR at diagnosis predicted a disease course with more rapid motor deterioration in juvenile MLD patients. In highly organized tissues such as the corticospinal tract, in particular, diffusion MR parameters were highly sensitive to MLD-associated changes and did not correlate with the visual quantification of T2 hyperintensities. CONCLUSION: Our results show that diffusion MRI can deliver valuable, robust, clinically meaningful, and easily obtainable/accessible/available parameters in the assessment of prognosis and progression of MLD. Therefore, it provides additional quantifiable information to established methods such as T2 hyperintensity.


Subject(s)
Diffusion Tensor Imaging , Leukodystrophy, Metachromatic , Adult , Humans , Infant , Child, Preschool , Child , Adolescent , Young Adult , Diffusion Tensor Imaging/methods , Leukodystrophy, Metachromatic/diagnostic imaging , Clinical Relevance , Magnetic Resonance Imaging , Brain/diagnostic imaging , Brain/pathology , Diffusion Magnetic Resonance Imaging
6.
Epilepsia ; 63(8): 2081-2095, 2022 08.
Article in English | MEDLINE | ID: mdl-35656586

ABSTRACT

OBJECTIVE: Recent work has shown that people with common epilepsies have characteristic patterns of cortical thinning, and that these changes may be progressive over time. Leveraging a large multicenter cross-sectional cohort, we investigated whether regional morphometric changes occur in a sequential manner, and whether these changes in people with mesial temporal lobe epilepsy and hippocampal sclerosis (MTLE-HS) correlate with clinical features. METHODS: We extracted regional measures of cortical thickness, surface area, and subcortical brain volumes from T1-weighted (T1W) magnetic resonance imaging (MRI) scans collected by the ENIGMA-Epilepsy consortium, comprising 804 people with MTLE-HS and 1625 healthy controls from 25 centers. Features with a moderate case-control effect size (Cohen d ≥ .5) were used to train an event-based model (EBM), which estimates a sequence of disease-specific biomarker changes from cross-sectional data and assigns a biomarker-based fine-grained disease stage to individual patients. We tested for associations between EBM disease stage and duration of epilepsy, age at onset, and antiseizure medicine (ASM) resistance. RESULTS: In MTLE-HS, decrease in ipsilateral hippocampal volume along with increased asymmetry in hippocampal volume was followed by reduced thickness in neocortical regions, reduction in ipsilateral thalamus volume, and finally, increase in ipsilateral lateral ventricle volume. EBM stage was correlated with duration of illness (Spearman ρ = .293, p = 7.03 × 10-16 ), age at onset (ρ = -.18, p = 9.82 × 10-7 ), and ASM resistance (area under the curve = .59, p = .043, Mann-Whitney U test). However, associations were driven by cases assigned to EBM Stage 0, which represents MTLE-HS with mild or nondetectable abnormality on T1W MRI. SIGNIFICANCE: From cross-sectional MRI, we reconstructed a disease progression model that highlights a sequence of MRI changes that aligns with previous longitudinal studies. This model could be used to stage MTLE-HS subjects in other cohorts and help establish connections between imaging-based progression staging and clinical features.


Subject(s)
Epilepsy, Temporal Lobe , Epilepsy , Atrophy/pathology , Biomarkers , Cross-Sectional Studies , Epilepsy/complications , Epilepsy, Temporal Lobe/pathology , Hippocampus/diagnostic imaging , Hippocampus/pathology , Humans , Magnetic Resonance Imaging/methods , Sclerosis/complications
7.
Mol Cell ; 53(4): 672-81, 2014 Feb 20.
Article in English | MEDLINE | ID: mdl-24486021

ABSTRACT

Eukaryotic chromosomes are partitioned into topologically associating domains (TADs) that are demarcated by distinct insulator-binding proteins (IBPs) in Drosophila. Whether IBPs regulate specific long-range contacts and how this may impact gene expression remains unclear. Here we identify "indirect peaks" of multiple IBPs that represent their distant sites of interactions through long-range contacts. Indirect peaks depend on protein-protein interactions among multiple IBPs and their common cofactors, including CP190, as confirmed by high-resolution analyses of long-range contacts. Mutant IBPs unable to interact with CP190 impair long-range contacts as well as the expression of hundreds of distant genes that are specifically flanked by indirect peaks. Regulation of distant genes strongly correlates with RNAPII pausing, highlighting how this key transcriptional stage may trap insulator-based long-range interactions. Our data illustrate how indirect peaks may decipher gene regulatory networks through specific long-range interactions.


Subject(s)
Chromatin Immunoprecipitation/methods , Gene Expression Regulation , Insulator Elements/physiology , RNA Polymerase II/metabolism , Animals , Binding Sites , CCCTC-Binding Factor , DNA-Binding Proteins/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster , Eye Proteins/metabolism , Gene Regulatory Networks , Mutation , Promoter Regions, Genetic , Protein Binding , Protein Interaction Mapping , RNA Interference , Repressor Proteins/metabolism , Transcription Factors/metabolism
8.
Proc Natl Acad Sci U S A ; 116(30): 14835-14842, 2019 07 23.
Article in English | MEDLINE | ID: mdl-31289230

ABSTRACT

Cytoskeletal filaments assemble into dense parallel, antiparallel, or disordered networks, providing a complex environment for active cargo transport and positioning by molecular motors. The interplay between the network architecture and intrinsic motor properties clearly affects transport properties but remains poorly understood. Here, by using surface micropatterns of actin polymerization, we investigate stochastic transport properties of colloidal beads in antiparallel networks of overlapping actin filaments. We found that 200-nm beads coated with myosin Va motors displayed directed movements toward positions where the net polarity of the actin network vanished, accumulating there. The bead distribution was dictated by the spatial profiles of local bead velocity and diffusion coefficient, indicating that a diffusion-drift process was at work. Remarkably, beads coated with heavy-mero-myosin II motors showed a similar behavior. However, although velocity gradients were steeper with myosin II, the much larger bead diffusion observed with this motor resulted in less precise positioning. Our observations are well described by a 3-state model, in which active beads locally sense the net polarity of the network by frequently detaching from and reattaching to the filaments. A stochastic sequence of processive runs and diffusive searches results in a biased random walk. The precision of bead positioning is set by the gradient of net actin polarity in the network and by the run length of the cargo in an attached state. Our results unveiled physical rules for cargo transport and positioning in networks of mixed polarity.


Subject(s)
Actin Cytoskeleton/chemistry , Actin Cytoskeleton/ultrastructure , Actins/chemistry , Biological Transport , Motion , Myosins/chemistry , Single Molecule Imaging , Stochastic Processes
9.
Nervenarzt ; 93(2): 191-200, 2022 Feb.
Article in German | MEDLINE | ID: mdl-35037967

ABSTRACT

Spinal muscular atrophy (SMA) is an autosomal recessive disease caused by biallelic mutations in the SMN1 (survival motor neuron 1) gene on chromosome 5q13.2, which leads to a progressive degeneration of alpha motor neurons in the spinal cord and in motor nerve nuclei in the caudal brainstem. It is characterized by progressive proximally accentuated muscle weakness with loss of already acquired motor skills, areflexia and, depending on the phenotype, varying degrees of weakness of the respiratory and bulbar muscles, although the facial muscles and eye muscles are not affected. The previously purely symptom-oriented treatment has undergone a significant expansion since 2017 with the approval of three drugs (nusinersen, onasemnogene abeparvovec and risdiplam) that modify the course of the disease at the gene expression level and have led to a change in the natural disease course of SMA. The effect of these new forms of treatment can only be fully assessed in the coming years. New aspects and challenges in this context are discussed in this article.


Subject(s)
Muscular Atrophy, Spinal , Genetic Therapy , Humans , Muscular Atrophy, Spinal/diagnosis , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/therapy , Phenotype
10.
Brain ; 143(8): 2454-2473, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32814957

ABSTRACT

The epilepsies are commonly accompanied by widespread abnormalities in cerebral white matter. ENIGMA-Epilepsy is a large quantitative brain imaging consortium, aggregating data to investigate patterns of neuroimaging abnormalities in common epilepsy syndromes, including temporal lobe epilepsy, extratemporal epilepsy, and genetic generalized epilepsy. Our goal was to rank the most robust white matter microstructural differences across and within syndromes in a multicentre sample of adult epilepsy patients. Diffusion-weighted MRI data were analysed from 1069 healthy controls and 1249 patients: temporal lobe epilepsy with hippocampal sclerosis (n = 599), temporal lobe epilepsy with normal MRI (n = 275), genetic generalized epilepsy (n = 182) and non-lesional extratemporal epilepsy (n = 193). A harmonized protocol using tract-based spatial statistics was used to derive skeletonized maps of fractional anisotropy and mean diffusivity for each participant, and fibre tracts were segmented using a diffusion MRI atlas. Data were harmonized to correct for scanner-specific variations in diffusion measures using a batch-effect correction tool (ComBat). Analyses of covariance, adjusting for age and sex, examined differences between each epilepsy syndrome and controls for each white matter tract (Bonferroni corrected at P < 0.001). Across 'all epilepsies' lower fractional anisotropy was observed in most fibre tracts with small to medium effect sizes, especially in the corpus callosum, cingulum and external capsule. There were also less robust increases in mean diffusivity. Syndrome-specific fractional anisotropy and mean diffusivity differences were most pronounced in patients with hippocampal sclerosis in the ipsilateral parahippocampal cingulum and external capsule, with smaller effects across most other tracts. Individuals with temporal lobe epilepsy and normal MRI showed a similar pattern of greater ipsilateral than contralateral abnormalities, but less marked than those in patients with hippocampal sclerosis. Patients with generalized and extratemporal epilepsies had pronounced reductions in fractional anisotropy in the corpus callosum, corona radiata and external capsule, and increased mean diffusivity of the anterior corona radiata. Earlier age of seizure onset and longer disease duration were associated with a greater extent of diffusion abnormalities in patients with hippocampal sclerosis. We demonstrate microstructural abnormalities across major association, commissural, and projection fibres in a large multicentre study of epilepsy. Overall, patients with epilepsy showed white matter abnormalities in the corpus callosum, cingulum and external capsule, with differing severity across epilepsy syndromes. These data further define the spectrum of white matter abnormalities in common epilepsy syndromes, yielding more detailed insights into pathological substrates that may explain cognitive and psychiatric co-morbidities and be used to guide biomarker studies of treatment outcomes and/or genetic research.


Subject(s)
Brain/pathology , Epileptic Syndromes/pathology , White Matter/pathology , Adult , Diffusion Magnetic Resonance Imaging/methods , Female , Humans , Image Interpretation, Computer-Assisted/methods , Male , Middle Aged
11.
Medicina (Kaunas) ; 57(9)2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34577903

ABSTRACT

BACKGROUND AND OBJECTIVES: Nowadays, various clinical scoring systems are used in the medical care of the elderly to assess the quality of mobility. However, people often tend to under- or overestimate themselves in many aspects. Since this can have serious consequences in their treatment and care, the aim of this study was to identify differences in the self and external assessment of mobility of persons over 65 years of age. MATERIALS AND METHODS: 222 participants over 65 years of age and one external, closely-related relative or professional caregiver were interviewed by a unique study assistant using a standardized questionnaire. Participants were divided into people living in nursing homes and independent people living at home, where either the caregivers or the relatives provided the external assessment of mobility, respectively. The questionnaire included demographics, cognitive abilities (Mini Mental Status Test); fall risk (Hendrich 2 Fall Risk Model); as well as the Parker Mobility Score, Barthel Index, and EQ-5D-5L to measure mobility, activities of daily life and quality of life. In each case, the participant and the external person were asked for their assessment to the participants' mobility situation. Statistical significance of the difference between self and external assessment was calculated with a Wilcoxon rank-sum test and assumed with a p-value of ≤ 0.05. RESULTS: Self-assessment indicated a significantly higher value, when compared to an external assessment for the Parker Mobility Score for females in nursing homes (p ≤ 0.01), as well as for the Barthel Index for females (p ≤ 0.01) and males (p ≤ 0.01) in nursing homes. The EQ-5D-5L received a significantly higher self-assessment value for females (p ≤ 0.01) and males (p ≤ 0.01) living at home and females (p ≤ 0.01) and males (p ≤ 0.05) in nursing homes. CONCLUSIONS: Persons over 65 years of age tend to overestimate their level of mobility, quality of life and activities of daily life. Especially for people living in nursing homes, these scoring systems should be treated with caution due to the differences between the verbal statements. It is important to properly assess the mobility situation of elderly patients to ensure correct medical treatment and prevention of falls.


Subject(s)
Quality of Life , Self-Assessment , Accidental Falls , Aged , Female , Humans , Male , Nursing Homes , Surveys and Questionnaires
12.
Hum Brain Mapp ; 2020 May 29.
Article in English | MEDLINE | ID: mdl-32468614

ABSTRACT

Epilepsy is a common and serious neurological disorder, with many different constituent conditions characterized by their electro clinical, imaging, and genetic features. MRI has been fundamental in advancing our understanding of brain processes in the epilepsies. Smaller-scale studies have identified many interesting imaging phenomena, with implications both for understanding pathophysiology and improving clinical care. Through the infrastructure and concepts now well-established by the ENIGMA Consortium, ENIGMA-Epilepsy was established to strengthen epilepsy neuroscience by greatly increasing sample sizes, leveraging ideas and methods established in other ENIGMA projects, and generating a body of collaborating scientists and clinicians to drive forward robust research. Here we review published, current, and future projects, that include structural MRI, diffusion tensor imaging (DTI), and resting state functional MRI (rsfMRI), and that employ advanced methods including structural covariance, and event-based modeling analysis. We explore age of onset- and duration-related features, as well as phenomena-specific work focusing on particular epilepsy syndromes or phenotypes, multimodal analyses focused on understanding the biology of disease progression, and deep learning approaches. We encourage groups who may be interested in participating to make contact to further grow and develop ENIGMA-Epilepsy.

13.
Toxicol Appl Pharmacol ; 389: 114873, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31881178

ABSTRACT

Fipronil is a phenylpyrazole insecticide used for the control of a variety of pest for domestic, veterinary and agricultural uses. Fipronil exposure is associated to thyroid disruption in the rat. It increases thyroid hormone (TH) hepatic clearance. The effect on thyroxine (T4) clearance is about four fold higher than the effect on T4 plasma concentrations suggesting that the thyroid gland might develop compensatory mechanisms. The aim of this study was to document the potential effects of fipronil treatment on the thyroid transcriptome together with its effects on TSH and TH blood levels under well characterized internal exposure to fipronil and its main metabolite fipronil sulfone. Fipronil (3 mg/kg/d by gavage for 14 days) clearance increased while its half-life decreased (about 10 fold) throughout treatment. Fipronil treatment in adult female rats significantly decreased total T4 and free triiodothyronine (T3) concentrations. Key genes related to thyroid hormone synthesis and/or cellular dynamic were modulated by fipronil exposure. RT-PCR confirmed that thyroglobulin gene expression was upregulated. A trend toward higher Na/I symporter expression was also noted, while sulfotransferase 1a1 gene expression was down-regulated. The expression of genes potentially involved in thyroid cell dynamic were upregulated (e.g. prostaglandin synthase 1, amphiregulin and Rhoa). Our results indicate that both pathways of TH synthesis and thyroid cell dynamics are transcriptional targets of fipronil and/or its main sulfone metabolite. The underlying mechanisms remain to be elucidated.


Subject(s)
Pyrazoles/pharmacology , Thyroid Gland/drug effects , Transcriptome/drug effects , Animals , Female , Insecticides/pharmacology , Rats , Rats, Wistar , Thyroid Function Tests/methods , Thyroid Hormones/metabolism , Thyrotropin/metabolism , Thyroxine/metabolism , Triiodothyronine/metabolism
14.
Hum Brain Mapp ; 40(17): 5042-5055, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31403244

ABSTRACT

We assessed the applicability of MP2RAGE for voxel-based morphometry. To this end, we analyzed its brain tissue segmentation characteristics in healthy subjects and the potential for detecting focal epileptogenic lesions (previously visible and nonvisible). Automated results and expert visual interpretations were compared with conventional VBM variants (i.e., T1 and T1 + FLAIR). Thirty-one healthy controls and 21 patients with focal epilepsy were recruited. 3D T1-, T2-FLAIR, and MP2RAGE images (consisting of INV1, INV2, and MP2 maps) were acquired on a 3T MRI. The effects of brain tissue segmentation and lesion detection rates were analyzed among single- and multispectral VBM variants. MP2-single-contrast gave better delineation of deep, subcortical nuclei but was prone to misclassification of dura/vessels as gray matter, even more than conventional-T1. The addition of multispectral combinations (INV1, INV2, or FLAIR) could markedly reduce such misclassifications. MP2 + INV1 yielded generally clearer gray matter segmentation allowing better differentiation of white matter and neighboring gyri. Different models detected known lesions with a sensitivity between 60 and 100%. In non lesional cases, MP2 + INV1 was found to be best with a concordant rate of 37.5%, specificity of 51.6% and concordant to discordant ratio of 0.60. In summary, we show that multispectral MP2RAGE VBM (e.g., MP2 + INV1, MP2 + INV2) can improve brain tissue segmentation and lesion detection in epilepsy.


Subject(s)
Brain/diagnostic imaging , Epilepsies, Partial/diagnostic imaging , Magnetic Resonance Imaging/methods , Adult , Female , Gray Matter/diagnostic imaging , Humans , Image Processing, Computer-Assisted , Male , White Matter/diagnostic imaging
15.
Langmuir ; 35(47): 15071-15077, 2019 Nov 26.
Article in English | MEDLINE | ID: mdl-31660746

ABSTRACT

In this work, we have combined nanosphere lithography with electrochemical reduction of aryldiazonium salts to elaborate nanostructured mixed layers of organic materials. The strategy consists first in the deposition of a close-packed hexagonal monolayer of microbeads used as a mask for the electroreduction of a first aryldiazonium salt. After removing the beads, an ultrathin organic layer with holes remains. Then, a second aryldiazonium salt is electrochemically reduced selectively inside the holes. The relative thickness of the two deposited materials can be changed, leading to mixed layers of different topographies. Moreover, using diazoniums with complementary redox properties, a modified bifunctional electrode acting as a filter for electron transfer with a low potential gap has been obtained. Such layers are similar to low-band-gap organic semiconductors that can be easily n or p doped. Despite this analogy, the oxidation and reduction of redox probes in solution on such nanostructured surfaces occur on completely separated areas of the mixed layer.

16.
Brain ; 141(2): 391-408, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29365066

ABSTRACT

Progressive functional decline in the epilepsies is largely unexplained. We formed the ENIGMA-Epilepsy consortium to understand factors that influence brain measures in epilepsy, pooling data from 24 research centres in 14 countries across Europe, North and South America, Asia, and Australia. Structural brain measures were extracted from MRI brain scans across 2149 individuals with epilepsy, divided into four epilepsy subgroups including idiopathic generalized epilepsies (n =367), mesial temporal lobe epilepsies with hippocampal sclerosis (MTLE; left, n = 415; right, n = 339), and all other epilepsies in aggregate (n = 1026), and compared to 1727 matched healthy controls. We ranked brain structures in order of greatest differences between patients and controls, by meta-analysing effect sizes across 16 subcortical and 68 cortical brain regions. We also tested effects of duration of disease, age at onset, and age-by-diagnosis interactions on structural measures. We observed widespread patterns of altered subcortical volume and reduced cortical grey matter thickness. Compared to controls, all epilepsy groups showed lower volume in the right thalamus (Cohen's d = -0.24 to -0.73; P < 1.49 × 10-4), and lower thickness in the precentral gyri bilaterally (d = -0.34 to -0.52; P < 4.31 × 10-6). Both MTLE subgroups showed profound volume reduction in the ipsilateral hippocampus (d = -1.73 to -1.91, P < 1.4 × 10-19), and lower thickness in extrahippocampal cortical regions, including the precentral and paracentral gyri, compared to controls (d = -0.36 to -0.52; P < 1.49 × 10-4). Thickness differences of the ipsilateral temporopolar, parahippocampal, entorhinal, and fusiform gyri, contralateral pars triangularis, and bilateral precuneus, superior frontal and caudal middle frontal gyri were observed in left, but not right, MTLE (d = -0.29 to -0.54; P < 1.49 × 10-4). Contrastingly, thickness differences of the ipsilateral pars opercularis, and contralateral transverse temporal gyrus, were observed in right, but not left, MTLE (d = -0.27 to -0.51; P < 1.49 × 10-4). Lower subcortical volume and cortical thickness associated with a longer duration of epilepsy in the all-epilepsies, all-other-epilepsies, and right MTLE groups (beta, b < -0.0018; P < 1.49 × 10-4). In the largest neuroimaging study of epilepsy to date, we provide information on the common epilepsies that could not be realistically acquired in any other way. Our study provides a robust ranking of brain measures that can be further targeted for study in genetic and neuropathological studies. This worldwide initiative identifies patterns of shared grey matter reduction across epilepsy syndromes, and distinctive abnormalities between epilepsy syndromes, which inform our understanding of epilepsy as a network disorder, and indicate that certain epilepsy syndromes involve more widespread structural compromise than previously assumed.


Subject(s)
Brain Mapping , Brain/diagnostic imaging , Epilepsy/pathology , Adult , Brain/pathology , Correlation of Data , Cross-Sectional Studies , Epilepsy/diagnostic imaging , Female , Humans , Image Processing, Computer-Assisted , International Cooperation , Magnetic Resonance Imaging , Male , Meta-Analysis as Topic
17.
Biophys J ; 114(2): 425-436, 2018 01 23.
Article in English | MEDLINE | ID: mdl-29401440

ABSTRACT

Hair cells of the inner ear can power spontaneous oscillations of their mechanosensory hair bundle, resulting in amplification of weak inputs near the characteristic frequency of oscillation. Recently, dynamic force measurements have revealed that delayed gating of the mechanosensitive ion channels responsible for mechanoelectrical transduction produces a friction force on the hair bundle. The significance of this intrinsic source of dissipation for the dynamical process underlying active hair-bundle motility has remained elusive. The aim of this work is to determine the role of friction in spontaneous hair-bundle oscillations. To this end, we characterized key oscillation properties over a large ensemble of individual hair cells and measured how viscosity of the endolymph that bathes the hair bundles affects these properties. We found that hair-bundle movements were too slow to be impeded by viscous drag only. Moreover, the oscillation frequency was only marginally affected by increasing endolymph viscosity by up to 30-fold. Stochastic simulations could capture the observed behaviors by adding a contribution to friction that was 3-8-fold larger than viscous drag. The extra friction could be attributed to delayed changes in tip-link tension as the result of the finite activation kinetics of the transduction channels. We exploited our analysis of hair-bundle dynamics to infer the channel activation time, which was ∼1 ms. This timescale was two orders-of-magnitude shorter than the oscillation period. However, because the channel activation time was significantly longer than the timescale of mechanical relaxation of the hair bundle, channel kinetics affected hair-bundle dynamics. Our results suggest that friction from channel gating affects the waveform of oscillation and that the channel activation time can tune the characteristic frequency of the hair cell. We conclude that the kinetics of transduction channels' gating plays a fundamental role in the dynamic process that shapes spontaneous hair-bundle oscillations.


Subject(s)
Friction , Hair Cells, Auditory/cytology , Mechanotransduction, Cellular , Animals , Kinetics , Models, Biological , Rana catesbeiana , Stochastic Processes , Viscosity
18.
Neuroimage ; 170: 210-221, 2018 04 15.
Article in English | MEDLINE | ID: mdl-28188918

ABSTRACT

Voxel-based morphometry is still mainly based on T1-weighted MRI scans. Misclassification of vessels and dura mater as gray matter has been previously reported. Goal of the present work was to evaluate the effect of multimodal segmentation methods available in SPM12, and their influence on identification of age related atrophy and lesion detection in epilepsy patients. 3D T1-, T2- and FLAIR-images of 77 healthy adults (mean age 35.8 years, 19-66 years, 45 females), 7 patients with malformation of cortical development (MCD) (mean age 28.1 years,19-40 years, 3 females), and 5 patients with left hippocampal sclerosis (LHS) (mean age 49.0 years, 25-67 years, 3 females) from a 3T scanner were evaluated. Segmentation based on T1-only, T1+T2, T1+FLAIR, T2+FLAIR, and T1+T2+FLAIR were compared in the healthy subjects. Clinical VBM results based on the different segmentation approaches for MCD and for LHS were compared. T1-only segmentation overestimated total intracranial volume by about 80ml compared to the other segmentation methods. This was due to misclassification of dura mater and vessels as GM and CSF. Significant differences were found for several anatomical regions: the occipital lobe, the basal ganglia/thalamus, the pre- and postcentral gyrus, the cerebellum, and the brainstem. None of the segmentation methods yielded completely satisfying results for the basal ganglia/thalamus and the brainstem. The best correlation with age could be found for the multimodal T1+T2+FLAIR segmentation. Highest T-scores for identification of LHS were found for T1+T2 segmentation, while highest T-scores for MCD were dependent on lesion and anatomical location. Multimodal segmentation is superior to T1-only segmentation and reduces the misclassification of dura mater and vessels as GM and CSF. Depending on the anatomical region and the pathology of interest (atrophy, lesion detection, etc.), different combinations of T1, T2 and FLAIR yield optimal results.


Subject(s)
Brain/anatomy & histology , Brain/diagnostic imaging , Epilepsies, Partial/diagnostic imaging , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Neuroimaging/methods , Adult , Aged , Atrophy/pathology , Brain/pathology , Cross-Sectional Studies , Epilepsies, Partial/pathology , Epilepsy, Temporal Lobe/diagnostic imaging , Epilepsy, Temporal Lobe/pathology , Female , Hippocampus/diagnostic imaging , Hippocampus/pathology , Humans , Image Processing, Computer-Assisted/standards , Magnetic Resonance Imaging/standards , Male , Malformations of Cortical Development/diagnostic imaging , Malformations of Cortical Development/pathology , Middle Aged , Neuroimaging/standards , Young Adult
19.
Neuroimage ; 177: 117-128, 2018 08 15.
Article in English | MEDLINE | ID: mdl-29729391

ABSTRACT

We explored anatomical details of the superior colliculus (SC) by in vivo magnetic resonance imaging (MRI) at 9.4T. The high signal-to-noise ratio allowed the acquisition of high resolution, multi-modal images with voxel sizes ranging between 176 × 132 × 600 µm and (800)3µm. Quantitative mapping of the longitudinal relaxation rate R1, the effective transverse relaxation rate R2*, and the magnetic susceptibility QSM was performed in 14 healthy volunteers. The images were analyzed in native space as well as after normalization to a common brain space (MNI). The coefficient-of-variation (CoV) across subjects was evaluated in prominent regions of the midbrain, reaching the best reproducibility (CoV of 5%) in the R2* maps of the SC in MNI space, while the CoV in the QSM maps remained high regardless of brain-space. To investigate whether more complex neurobiological architectural features could be detected, depth profiles through the SC layers towards the red nucleus (RN) were evaluated at different levels of the SC along the rostro-caudal axis. This analysis revealed alterations of the quantitative MRI parameters concordant with previous post mortem histology studies of the cyto- and myeloarchitecture of the SC. In general, the R1 maps were hyperintense in areas characterized by the presence of abundant myelinated fibers, and likely enabled detection of the deep white layer VII of the SC adjacent to the periaqueductal gray. While R1 maps failed to reveal finer details, possibly due to the relatively coarse spatial sampling used for this modality, these could be recovered in R2* maps and in QSM. In the central part of the SC along its rostro-caudal axis, increased R2* values and decreased susceptibility values were observed 2 mm below the SC surface, likely reflecting the myelinated fibers in the superficial optic layer (layer III). Towards the deeper layers, a second increase in R2* was paralleled by a paramagnetic shift in QSM suggesting the presence of an iron-rich layer about 3 mm below the surface of the SC, attributed to the intermediate gray layer (IV) composed of multipolar neurons. These results dovetail observations in histological specimens and animal studies and demonstrate that high-resolution multi-modal MRI at 9.4T can reveal several microstructural features of the SC in vivo.


Subject(s)
Magnetic Resonance Imaging/methods , Mesencephalon/anatomy & histology , Superior Colliculi/anatomy & histology , Adult , Female , Humans , Male , Mesencephalon/diagnostic imaging , Superior Colliculi/diagnostic imaging , Young Adult
20.
J Am Chem Soc ; 140(32): 10131-10134, 2018 08 15.
Article in English | MEDLINE | ID: mdl-30059213

ABSTRACT

Thin layers of viologen-based oligomers with thicknesses between 3 and 14 nm were deposited on gold electrodes by electrochemical reduction of a diazonium salt, and then a Ti/Au top contact was applied to complete a solid-state molecular junction (MJ). MJs show symmetric J- V curves and highly efficient long-range transport, with an attenuation factor as small as 0.25 nm-1. This is attributed both to the fact that the viologen LUMO energy lies between the energies of the Fermi levels of the two contacts and to strong electronic coupling between molecules and contacts. As a consequence, resonant tunneling is likely to be the dominant transport mechanism within these MJs, but the temperature dependence of the transport properties suggests that activated redox hopping plays a role at high temperature.

SELECTION OF CITATIONS
SEARCH DETAIL