Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 120
Filter
1.
Microb Ecol ; 85(4): 1463-1472, 2023 May.
Article in English | MEDLINE | ID: mdl-35556154

ABSTRACT

The fertilization of agricultural soil by organic amendment that may contain antibiotics, like manure, can transfer bacterial pathogens and antibiotic-resistant bacteria to soil communities. However, the invasion by manure-borne bacteria in amended soil remains poorly understood. We hypothesized that this kind of process is both influenced by the soil properties (and those of its microbial communities) and by the presence of contaminants such as antibiotics used in veterinary care. To test that, we performed a microcosm experiment in which four different soils were amended or not with manure at an agronomical dose and exposed or not to the antibiotic sulfamethazine (SMZ). After 1 month of incubation, the diversity, structure, and composition of bacterial communities of the soils were assessed by 16S rDNA sequencing. The invasion of manure-borne bacteria was still perceptible 1 month after the soil amendment. The results obtained with the soil already amended in situ with manure 6 months prior to the experiment suggest that some of the bacterial invaders were established in the community over the long term. Even if differences were observed between soils, the invasion was mainly attributable to some of the most abundant OTUs of manure (mainly Firmicutes). SMZ exposure had a limited influence on soil microorganisms but our results suggest that this kind of contaminant can enhance the invasion ability of some manure-borne invaders.


Subject(s)
Anti-Bacterial Agents , Sulfamethazine , Anti-Bacterial Agents/pharmacology , Manure/microbiology , Soil , Soil Microbiology , Bacteria/genetics
2.
Environ Sci Technol ; 55(5): 2919-2928, 2021 03 02.
Article in English | MEDLINE | ID: mdl-33534554

ABSTRACT

Pesticides are applied in large quantities to agroecosystems worldwide. To date, few studies assessed the occurrence of pesticides in organically managed agricultural soils, and it is unresolved whether these pesticide residues affect soil life. We screened 100 fields under organic and conventional management with an analytical method containing 46 pesticides (16 herbicides, 8 herbicide transformation products, 17 fungicides, seven insecticides). Pesticides were found in all sites, including 40 organic fields. The number of pesticide residues was two times and the concentration nine times higher in conventional compared to organic fields. Pesticide number and concentrations significantly decreased with the duration of organic management. Even after 20 years of organic agriculture, up to 16 different pesticide residues were present. Microbial biomass and specifically the abundance of arbuscular mycorrhizal fungi, a widespread group of beneficial plant symbionts, were significantly negatively linked to the amount of pesticide residues in soil. This indicates that pesticide residues, in addition to abiotic factors such as pH, are a key factor determining microbial soil life in agroecosystems. This comprehensive study demonstrates that pesticides are a hidden reality in agricultural soils, and our results suggest that they have harmful effects on beneficial soil life.


Subject(s)
Pesticide Residues , Pesticides , Soil Pollutants , Agriculture , Pesticide Residues/analysis , Pesticides/analysis , Soil , Soil Pollutants/analysis
3.
Ecotoxicol Environ Saf ; 223: 112595, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34390984

ABSTRACT

The implementation of the new Water Reuse regulation in the European Union brings to the forefront the need to evaluate the risks of using wastewater for crop irrigation. Here, a two-tier ecotoxicological risk assessment was performed to evaluate the fate of wastewater-borne micropollutants in soil and their ecotoxicological impact on plants and soil microorganisms. To this end, two successive cultivation campaigns of lettuces were irrigated with wastewater (at agronomical dose (not spiked) and spiked with a mixture of 14 pharmaceuticals at 10 and 100 µg/L each) in a controlled greenhouse experiment. Over the two cultivation campaigns, an accumulation of PPCPs was observed in soil microcosms irrigated with wastewater spiked with 100 µg/L of PPCPs with the highest concentrations detected for clarithromycin, hydrochlorothiazide, citalopram, climbazole and carbamazepine. The abundance of bacterial and fungal communities remained stable over the two cultivation campaigns and was not affected by any of the irrigation regimes applied. Similarly, no changes were observed in the abundance of ammonium oxidizing archaea (AOA) and bacteria (AOB), nor in clade A of commamox no matter the cultivation campaign or the irrigation regime considered. Only a slight increase was detected in clade B of commamox bacteria after the second cultivation campaign. Sulfamethoxazole-resistant and -degrading bacteria were not impacted either. The irrigation regimes had only a limited effect on the bacterial evenness. However, in response to wastewater irrigation the structure of soil bacterial community significantly changed the relative abundance of Acidobacteria, Chloroflexi, Verrucomicrobia, Beta-, Gamma- and Deltaprotebacteria. Twenty-eight operational taxonomic units (OTUs) were identified as responsible for the changes observed within the bacterial communities of soils irrigated with wastewater or with water. Interestingly, the relative abundance of these OTUs was similar in soils irrigated with either spiked or non-spiked irrigation solutions. This indicates that under both agronomical and worst-case scenario the mixture of fourteen PPCPs had no effect on soil bacterial community.


Subject(s)
Soil , Wastewater , Agricultural Irrigation , Lactuca , Risk Assessment , Soil Microbiology , Wastewater/analysis
4.
Appl Environ Microbiol ; 86(14)2020 07 02.
Article in English | MEDLINE | ID: mdl-32414799

ABSTRACT

Biobeds, designed to minimize pesticide point source contamination, rely mainly on biodegradation processes. We studied the interactions of a biobed microbial community with the herbicide isoproturon (IPU) to explore the role of the pdmA gene, encoding the large subunit of an N-demethylase responsible for the initial demethylation of IPU, via quantitative PCR (qPCR) and reverse transcription-PCR (RT-qPCR) and the effect of IPU on the diversity of the total bacterial community and its active fraction through amplicon sequencing of DNA and RNA, respectively. We further investigated the localization and dispersal mechanisms of pdmAB in the biobed packing material by measuring the abundance of the plasmid pSH (harboring pdmAB) of the IPU-degrading Sphingomonas sp. strain SH (previously isolated from the soil used in the biobed) compared with the abundance of the pdmA gene and metagenomic fosmid library screening. pdmA abundance and expression increased concomitantly with IPU mineralization, verifying its major role in IPU transformation in the biobed system. DNA- and RNA-based 16S rRNA gene sequencing analysis showed no effects on bacterial diversity. The pdmAB-harboring plasmid pSH showed a consistently lower abundance than pdmA, suggesting the localization of pdmAB in replicons other than pSH. Metagenomic analysis identified four pdmAB-carrying fosmids. In three of these fosmids, the pdmAB genes were organized in a well-conserved operon carried by sphingomonad plasmids with low synteny with pSH, while the fourth fosmid contained an incomplete pdmAB cassette localized in a genomic fragment of a Rhodanobacter strain. Further analysis suggested a potentially crucial role of IS6 and IS256 in the transposition and activation of the pdmAB operon.IMPORTANCE Our study provides novel insights into the interactions of IPU with the bacterial community of biobed systems, reinforces the assumption of a transposable nature of IPU-degrading genes, and verifies that on-farm biobed systems are hot spots for the evolution of pesticide catabolic traits.


Subject(s)
Gene Transfer, Horizontal , Genes, Bacterial , Herbicides/metabolism , Phenylurea Compounds/metabolism , Sphingomonas/genetics , Biodegradation, Environmental , RNA, Bacterial/analysis , RNA, Ribosomal, 16S/analysis , Sphingomonas/metabolism
5.
Appl Environ Microbiol ; 83(19)2017 Oct 01.
Article in English | MEDLINE | ID: mdl-28733287

ABSTRACT

Nocardioides sp. strain PD653 was the first identified aerobic bacterium capable of mineralizing hexachlorobenzene (HCB). In this study, strain PD653-B2, which was unexpectedly isolated from a subculture of strain PD653, was found to lack the ability to transform HCB or pentachloronitrobenzene into pentachlorophenol. Comparative genome analysis of the two strains revealed that genetic rearrangement had occurred in strain PD653-B2, with a genomic region present in strain PD653 being deleted. In silico analysis allowed three open reading frames within this region to be identified as candidate genes involved in HCB dechlorination. Assays using recombinant Escherichia coli cells revealed that an operon is responsible for both oxidative HCB dechlorination and pentachloronitrobenzene denitration. The metabolite pentachlorophenol was detected in the cultures produced in the E. coli assays. Significantly less HCB-degrading activity occurred in assays under oxygen-limited conditions ([O2] < 0.5 mg liter-1) than under aerobic assays, suggesting that monooxygenase is involved in the reaction. In this operon, hcbA1 was found to encode a monooxygenase involved in HCB dechlorination. This monooxygenase may form a complex with the flavin reductase encoded by hcbA3, increasing the HCB-degrading activity of PD653.IMPORTANCE The organochlorine fungicide HCB is widely distributed in the environment. Bioremediation can effectively remove HCB from contaminated sites, but HCB-degrading microorganisms have been isolated in few studies and the genes involved in HCB degradation have not been identified. In this study, possible genes involved in the initial step of the mineralization of HCB by Nocardioides sp. strain PD653 were identified. The results improve our understanding of the protein families involved in the dechlorination of HCB to give pentachlorophenol.

6.
Appl Microbiol Biotechnol ; 100(2): 903-13, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26403923

ABSTRACT

The Arthrobacter sp. strain AK-YN10 is an s-triazine pesticide degrading bacterium isolated from a sugarcane field in Central India with history of repeated atrazine use. AK-YN10 was shown to degrade 99 % of atrazine in 30 h from media supplemented with 1000 mg L(-1) of the herbicide. Draft genome sequencing revealed similarity to pAO1, TC1, and TC2 catabolic plasmids of the Arthrobacter taxon. Plasmid profiling analyses revealed the presence of four catabolic plasmids. The trzN, atzB, and atzC atrazine-degrading genes were located on a plasmid of approximately 113 kb.The flagellar operon found in the AK-YN10 draft genome suggests motility, an interesting trait for a bioremediation agent, and was homologous to that of Arthrobacter chlorophenolicus. The multiple s-triazines degradation property of this isolate makes it a good candidate for bioremediation of soils contaminated by s-triazine pesticides.


Subject(s)
Arthrobacter/genetics , Arthrobacter/metabolism , Atrazine/metabolism , Biodegradation, Environmental , Herbicides/metabolism , Soil Microbiology , Arthrobacter/drug effects , Arthrobacter/isolation & purification , Atrazine/pharmacology , Base Sequence , Genome, Bacterial , India , Plasmids , Polymerase Chain Reaction , Saccharum/microbiology
7.
Crit Rev Environ Sci Technol ; 45(12): 1277-1377, 2015 Jun 18.
Article in English | MEDLINE | ID: mdl-25866458

ABSTRACT

A comprehensive review of quantitative structure-activity relationships (QSAR) allowing the prediction of the fate of organic compounds in the environment from their molecular properties was done. The considered processes were water dissolution, dissociation, volatilization, retention on soils and sediments (mainly adsorption and desorption), degradation (biotic and abiotic), and absorption by plants. A total of 790 equations involving 686 structural molecular descriptors are reported to estimate 90 environmental parameters related to these processes. A significant number of equations was found for dissociation process (pKa), water dissolution or hydrophobic behavior (especially through the KOW parameter), adsorption to soils and biodegradation. A lack of QSAR was observed to estimate desorption or potential of transfer to water. Among the 686 molecular descriptors, five were found to be dominant in the 790 collected equations and the most generic ones: four quantum-chemical descriptors, the energy of the highest occupied molecular orbital (EHOMO) and the energy of the lowest unoccupied molecular orbital (ELUMO), polarizability (α) and dipole moment (µ), and one constitutional descriptor, the molecular weight. Keeping in mind that the combination of descriptors belonging to different categories (constitutional, topological, quantum-chemical) led to improve QSAR performances, these descriptors should be considered for the development of new QSAR, for further predictions of environmental parameters. This review also allows finding of the relevant QSAR equations to predict the fate of a wide diversity of compounds in the environment.

8.
Biodegradation ; 25(1): 21-30, 2014 Feb.
Article in English | MEDLINE | ID: mdl-23584839

ABSTRACT

Triazine herbicides such as atrazine and simazine which were heavily used in the latter half of the twentieth century constituted a rich new source of nitrogen for soil microbes. An atzA dechlorinase active against both atrazine and simazine was isolated from various soil bacteria from diverse locations in the mid 1990s. We have surveyed the atzA genes from eight triazine-degrading Aminobacter aminovorans strains isolated from French agricultural soils recurrently exposed to triazines in 2000. Six amino acid differences from the original isolate were each found in more than one of the A. aminovorans strains. Three of these in particular (V92L, A170T and A296T) were recovered from a majority of the isolates and from locations separated by up to 900 km, so may reflect ongoing selection for the new function. Two of the latter (A170T and A296T) were indeed found to confer higher specificity for simazine, albeit not atrazine, and greater affinity for a metal ion required for activity, than did the original variant. In contrast, we found that ongoing maintenance of the original atzA-containing isolate in laboratory culture for 12 years in a medium containing high concentrations of atrazine has led to the fixation of another amino acid substitution that substantially reduces activity for the triazines. The high concentrations of atrazine in the medium may have relaxed the selection for a highly efficient triazine dechlorinase activity, and that there is some, as yet uncharacterised, counter selection against the activity of this enzyme under these conditions.


Subject(s)
Atrazine/metabolism , Bacterial Proteins/genetics , Herbicides/metabolism , Hydrolases/genetics , Pseudomonas/genetics , Simazine/metabolism , Soil Microbiology , Amino Acid Substitution , Bacterial Proteins/isolation & purification , Bacterial Proteins/metabolism , Biodegradation, Environmental , Culture Media , Evolution, Molecular , Hydrolases/isolation & purification , Hydrolases/metabolism , Kinetics , Models, Molecular , Mutation , Pseudomonas/enzymology , Pseudomonas/isolation & purification , Structure-Activity Relationship , Substrate Specificity
9.
Chemosphere ; 352: 141488, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38368960

ABSTRACT

By assessing the changes in stable isotope compositions within individual pesticide molecules, Compound Specific Isotope Analysis (CSIA) holds the potential to identify and differentiate sources and quantify pesticide degradation in the environment. However, the environmental application of pesticide CSIA is limited by the general lack of knowledge regarding the initial isotopic composition of active substances in commercially available formulations used by farmers. To address this limitation, we established a database aimed at cataloguing and disseminating isotopic signatures in commercial formulations to expand the use of pesticide CSIA. Our study involved the collection of 25 analytical standards and 120 commercial pesticide formulations from 23 manufacturers. Subsequently, 59 commercial formulations and 25 standards were extracted, and each of their active substance was analyzed for both δ13C (n = 84) and δ15N CSIA (n = 43). The extraction of pesticides did not cause significant isotope fractionation (Δ13C and Δ15N < 1‰). Incorporating existing literature data, stable carbon and nitrogen isotope signatures varied in a relatively narrow range among pesticide formulations for different pesticides (Δ13C and Δ15N < 10‰) and within different formulations for a single substance (Δ13C and Δ15N < 2‰). Overall, this suggests that pesticide CSIA is more suited for identifying pesticide transformation processes rather than differentiating pesticide sources. Moreover, an inter-laboratory comparison showed similar δ13C (Δ13C ≤ 1.2 ‰) for the targeted substances albeit varying GC-IRMS instruments. Insignificant carbon isotopic fractionation (Δ13C < 0.5‰) was observed after 4 years of storing the same pesticide formulations, confirming their viability for long-term storage at 4 °C and future inter-laboratory comparison exercises. Altogether, the ISOTOPEST database, in open access for public use and additional contributions, marks a significant advancement in establishing an environmentally relevant pesticide CSIA approach.


Subject(s)
Pesticides , Pesticides/analysis , Carbon Isotopes/analysis , Nitrogen Isotopes/analysis , Chemical Fractionation
10.
J Hazard Mater ; 471: 134454, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38688223

ABSTRACT

Parallel to the important use of pesticides in conventional agriculture there is a growing interest for green technologies to clear contaminated soil from pesticides and their degradation products. Bioaugmentation i. e. the inoculation of degrading micro-organisms in polluted soil, is a promising method still in needs of further developments. Specifically, improvements in the understanding of how degrading microorganisms must overcome abiotic filters and interact with the autochthonous microbial communities are needed in order to efficiently design bioremediation strategies. Here we designed a protocol aiming at studying the degradation of two herbicides, glyphosate (GLY) and isoproturon (IPU), via experimental modifications of two source bacterial communities. We used statistical methods stemming from genomic prediction to link community composition to herbicides degradation potentials. Our approach proved to be efficient with correlation estimates over 0.8 - between model predictions and measured pesticide degradation values. Multi-degrading bacterial communities were obtained by coalescing bacterial communities with high GLY or IPU degradation ability based on their community-level properties. Finally, we evaluated the efficiency of constructed multi-degrading communities to remove pesticide contamination in a different soil. While results are less clear in the case of GLY, we showed an efficient transfer of degrading capacities towards the receiving soil even at relatively low inoculation levels in the case of IPU. Altogether, we developed an innovative protocol for building multi-degrading simplified bacterial communities with the help of genomic prediction tools and coalescence, and proved their efficiency in a contaminated soil.


Subject(s)
Bacteria , Biodegradation, Environmental , Glycine , Glyphosate , Herbicides , Soil Microbiology , Soil Pollutants , Soil Pollutants/metabolism , Glycine/analogs & derivatives , Glycine/metabolism , Bacteria/metabolism , Bacteria/genetics , Herbicides/metabolism , Herbicides/chemistry , Phenylurea Compounds/metabolism , Pesticide Residues/metabolism
11.
Article in English | MEDLINE | ID: mdl-38630402

ABSTRACT

Biocontrol solutions (macroorganisms, microorganisms, natural substances, semiochemicals) are presented as potential alternatives to conventional plant protection products (PPPs) because they are supposed to have lower impacts on ecosystems and human health. However, to ensure the sustainability of biocontrol solutions, it is necessary to document the unintended effects of their use. Thus, the objectives of this work were to review (1) the available biocontrol solutions and their regulation, (2) the contamination of the environment (soil, water, air) by biocontrol solutions, (3) the fate of biocontrol solutions in the environment, (4) their ecotoxicological impacts on biodiversity, and (5) the impacts of biocontrol solutions compared to those of conventional PPPs. Very few studies concern the presence of biocontrol solutions in the environment, their fate, and their impacts on biodiversity. The most important number of results were found for the organisms that have been used the longest, and most often from the angle of their interactions with other biocontrol agents. However, the use of living organisms (microorganisms and macroorganisms) in biocontrol brings a specific dimension compared to conventional PPPs because they can survive, multiply, move, and colonize other environments. The questioning of regulation stems from this specific dimension of the use of living organisms. Concerning natural substances, the few existing results indicate that while most of them have low ecotoxicity, others have a toxicity equivalent to or greater than that of the conventional PPPs. There are almost no result regarding semiochemicals. Knowledge of the unintended effects of biocontrol solutions has proved to be very incomplete. Research remains necessary to ensure their sustainability.

12.
Article in English | MEDLINE | ID: mdl-38324154

ABSTRACT

Copper-based plant protection products (PPPs) are widely used in both conventional and organic farming, and to a lesser extent for non-agricultural maintenance of gardens, greenspaces, and infrastructures. The use of copper PPPs adds to environmental contamination by this trace element. This paper aims to review the contribution of these PPPs to the contamination of soils and waters by copper in the context of France (which can be extrapolated to most of the European countries), and the resulting impacts on terrestrial and aquatic biodiversity, as well as on ecosystem functions. It was produced in the framework of a collective scientific assessment on the impacts of PPPs on biodiversity and ecosystem services in France. Current science shows that copper, which persists in soils, can partially transfer to adjacent aquatic environments (surface water and sediment) and ultimately to the marine environment. This widespread contamination impacts biodiversity and ecosystem functions, chiefly through its effects on phototrophic and heterotrophic microbial communities, and terrestrial and aquatic invertebrates. Its effects on other biological groups and biotic interactions remain relatively under-documented.

14.
Appl Microbiol Biotechnol ; 97(4): 1661-8, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22854895

ABSTRACT

A real-time quantitative PCR method was developed to detect and quantify phenlylurea hydrolase genes' (puhA and puhB) sequences from environmental DNA samples to assess diuron-degrading genetic potential in some soil and sediment microbial communities. In the soil communities, mineralization rates (determined with [ring-¹4C]-labeled diuron) were linked to diuron-degrading genetic potentials estimated from puhB number copies, which increased following repeated diuron treatments. In the sediment communities, mineralization potential did not depend solely on the quantity of puhB copies, underlining the need to assess gene expression. In the sediment samples, both puhB copy numbers and mineralization capacities were highly conditioned by whether or not diuron-treated soil was added. This points to transfers of degradative potential from soils to sediments. No puhA gene was detected in soil and sediment DNA extracts. Moreover, some sediments exhibited high diuron mineralization potential even though puhB genes were not detected, suggesting the existence of alternative diuron degradation pathways.


Subject(s)
Amidohydrolases/genetics , Bacteria/enzymology , Bacterial Proteins/genetics , Diuron/metabolism , Herbicides/metabolism , Real-Time Polymerase Chain Reaction/methods , Soil Pollutants/metabolism , Amidohydrolases/metabolism , Amino Acid Sequence , Bacteria/genetics , Bacterial Proteins/metabolism , Biodegradation, Environmental , Molecular Sequence Data , Sequence Alignment , Soil Microbiology
15.
Biodegradation ; 24(2): 203-13, 2013 Apr.
Article in English | MEDLINE | ID: mdl-22991035

ABSTRACT

Assessing in situ microbial abilities of soils to degrade pesticides is of great interest giving insight in soil filtering capability, which is a key ecosystem function limiting pollution of groundwater. Quantification of pesticide-degrading gene expression by reverse transcription quantitative PCR (RT-qPCR) was tested as a suitable indicator to monitor pesticide biodegradation performances in soil. RNA extraction protocol was optimized to enhance the yield and quality of RNA recovered from soil samples to perform RT-qPCR assays. As a model, the activity of atrazine-degrading communities was monitored using RT-qPCRs to estimate the level of expression of atzD in five agricultural soils showing different atrazine mineralization abilities. Interestingly, the relative abundance of atzD mRNA copy numbers was positively correlated to the maximum rate and to the maximal amount of atrazine mineralized. Our findings indicate that the quantification of pesticide-degrading gene expression may be suitable to assess biodegradation performance in soil and monitor natural attenuation of pesticide.


Subject(s)
Pesticides/metabolism , Atrazine/metabolism , Biodegradation, Environmental , Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Soil Microbiology
16.
J Environ Qual ; 42(1): 173-8, 2013.
Article in English | MEDLINE | ID: mdl-23673752

ABSTRACT

The World Health Organization has identified antibiotic resistance as one of the top three threats to global health. There is concern that the use of antibiotics as growth promoting agents in livestock production contributes to the increasingly problematic development of antibiotic resistance. Many antibiotics are excreted at high rates, and the land application of animal manures represents a significant source of environmental exposure to these agents. To evaluate the long-term effects of antibiotic exposure on soil microbial populations, a series of field plots were established in 1999 that have since received annual applications of a mixture of sulfamethazine (SMZ), tylosin (TYL), and chlortetracycline (CTC). During the first 6 yr (1999-2004) soils were treated at concentrations of 0, 0.01 0.1, and 1.0 mg kg soil, in subsequent years at concentrations of 0, 0.1, 1.0, and 10 mg kg soil. The lower end of this concentration range is within that which would result from an annual application of manure from medicated swine. Following ten annual applications, the fate of the drugs in the soil was evaluated. Residues of SMZ and TYL, but not CTC were removed much more rapidly in soil with a history of exposure to 10 mg/kg drugs than in untreated control soil. Residues of C-SMZ were rapidly and thoroughly mineralized to CO in the historically treated soils, but not in the untreated soil. A SMZ-degrading sp. was isolated from the treated soil. Overall, these results indicate that soil bacteria adapt to long-term exposure to some veterinary antibiotics resulting in sharply reduced persistence. Accelerated biodegradation of antibiotics in matrices exposed to agricultural, wastewater, or pharmaceutical manufacturing effluents would attenuate environmental exposure to antibiotics, and merits investigation in the context of assessing potential risks of antibiotic resistance development in environmental matrices.


Subject(s)
Soil , Sulfamethazine , Animals , Anti-Bacterial Agents/chemistry , Manure/microbiology , Soil Pollutants , Sulfamethazine/metabolism , Tylosin
17.
Front Plant Sci ; 14: 1206047, 2023.
Article in English | MEDLINE | ID: mdl-37636112

ABSTRACT

Under agroforestry practices, inter-specific facilitation between tree rows and cultivated alleys occurs when plants increase the growth of their neighbors especially under nutrient limitation. Owing to a coarse root architecture limiting soil inorganic phosphate (Pi) uptake, walnut trees (Juglans spp.) exhibit dependency on soil-borne symbiotic arbuscular mycorrhizal fungi that extend extra-radical hyphae beyond the root Pi depletion zone. To investigate the benefits of mycorrhizal walnuts in alley cropping, we experimentally simulated an agroforestry system in which walnut rootstocks RX1 (J. regia x J. microcarpa) were connected or not by a common mycelial network (CMN) to maize plants grown under two contrasting Pi levels. Mycorrhizal colonization parameters showed that the inoculum reservoir formed by inoculated walnut donor saplings allowed the mycorrhization of maize recipient roots. Relative to non-mycorrhizal plants and whatever the Pi supply, CMN enabled walnut saplings to access maize Pi fertilization residues according to significant increases in biomass, stem diameter, and expression of JrPHT1;1 and JrPHT1;2, two mycorrhiza-inducible phosphate transporter candidates here identified by phylogenic inference of orthologs. In the lowest Pi supply, stem height, leaf Pi concentration, and biomass of RX1 were significantly higher than in non-mycorrhizal controls, showing that mycorrhizal connections between walnut and maize roots alleviated Pi deficiency in the mycorrhizal RX1 donor plant. Under Pi limitation, maize recipient plants also benefited from mycorrhization relative to controls, as inferred from larger stem diameter and height, biomass, leaf number, N content, and Pi concentration. Mycorrhization-induced Pi uptake generated a higher carbon cost for donor walnut plants than for maize plants by increasing walnut plant photosynthesis to provide the AM fungus with carbon assimilate. Here, we show that CMN alleviates Pi deficiency in co-cultivated walnut and maize plants, and may therefore contribute to limit the use of chemical P fertilizers in agroforestry systems.

18.
Environ Sci Pollut Res Int ; 30(4): 9932-9944, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36068455

ABSTRACT

4-hydroxyphenylpyruvate dioxygenase (HPPD) is the molecular target of ß-triketone herbicides in plants. This enzyme, involved in the tyrosine pathway, is also present in a wide range of living organisms, including microorganisms. Previous studies, focusing on a few strains and using high herbicide concentrations, showed that ß-triketones are able to inhibit microbial HPPD. Here, we measured the effect of agronomical doses of ß-triketone herbicides on soil bacterial strains. The HPPD activity of six bacterial strains was tested with 1× or 10× the recommended field dose of the herbicide sulcotrione. The selected strains were tested with 0.01× to 15× the recommended field dose of sulcotrione, mesotrione, and tembotrione. Molecular docking was also used to measure and model the binding mode of the three herbicides with the different bacterial HPPD. Our results show that responses to herbicides are strain-dependent with Pseudomonas fluorescens F113 HPPD activity not inhibited by any of the herbicide tested, when all three ß-triketone herbicides inhibited HPPD in Bacillus cereus ATCC14579 and Shewanella oneidensis MR-1. These responses are also molecule-dependent with tembotrione harboring the strongest inhibitory effect. Molecular docking also reveals different binding potentials. This is the first time that the inhibitory effect of ß-triketone herbicides is tested on environmental strains at agronomical doses, showing a potential effect of these molecules on the HPPD enzymatic activity of non-target microorganisms. The whole-cell assay developed in this study, coupled with molecular docking analysis, appears as an interesting way to have a first idea of the effect of herbicides on microbial communities, prior to setting up microcosm or even field experiments. This methodology could then largely be applied to other family of pesticides also targeting an enzyme present in microorganisms.


Subject(s)
4-Hydroxyphenylpyruvate Dioxygenase , Dioxygenases , Herbicides , Herbicides/pharmacology , Herbicides/chemistry , Molecular Docking Simulation , 4-Hydroxyphenylpyruvate Dioxygenase/chemistry , 4-Hydroxyphenylpyruvate Dioxygenase/metabolism , Bacteria/metabolism , Enzyme Inhibitors
19.
FEMS Microbiol Ecol ; 99(7)2023 06 16.
Article in English | MEDLINE | ID: mdl-37309049

ABSTRACT

Microbacterium sp. C448, isolated from a soil regularly exposed to sulfamethazine (SMZ), can use various sulphonamide antibiotics as the sole carbon source for growth. The basis for the regulation of genes encoding the sulphonamide metabolism pathway, the dihydropteroate synthase sulphonamide target (folP), and the sulphonamide resistance (sul1) genes is unknown in this organism. In the present study, the response of the transcriptome and proteome of Microbacterium sp. C448 following exposure to subtherapeutic (33 µM) or therapeutic (832 µM) SMZ concentrations was evaluated. Therapeutic concentration induced the highest sad expression and Sad production, consistent with the activity of SMZ degradation observed in cellulo. Following complete SMZ degradation, Sad production tended to return to the basal level observed prior to SMZ exposure. Transcriptomic and proteomic kinetics were concomitant for the resistance genes and proteins. The abundance of Sul1 protein, 100-fold more abundant than FolP protein, did not change in response to SMZ exposure. Moreover, non-targeted analyses highlighted the increase of a deaminase RidA and a putative sulphate exporter expression and production. These two novel factors involved in the 4-aminophenol metabolite degradation and the export of sulphate residues formed during SMZ degradation, respectively, provided new insights into the Microbacterium sp. C448 SMZ detoxification process.


Subject(s)
Anti-Infective Agents , Biodegradation, Environmental , Microbacterium , Sulfamethazine , Microbacterium/genetics , Microbacterium/metabolism , Sulfamethazine/metabolism , Soil Microbiology , Kinetics , Transcriptome , Proteome , Sulfonamides/metabolism , Drug Resistance, Bacterial , Anti-Infective Agents/metabolism , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Dihydropteroate Synthase/genetics , Dihydropteroate Synthase/metabolism
20.
Sci Total Environ ; 893: 164817, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37329912

ABSTRACT

The application of manures leads to the contamination of agricultural soils with veterinary antibiotics (VAs). These might exert toxicity on the soil microbiota and threaten environmental quality, and public health. We obtained mechanistic insights about the impact of three VAs, namely, sulfamethoxazole (SMX), tiamulin (TIA) and tilmicosin (TLM), on the abundance of key soil microbial groups, antibiotic resistance genes (ARGs) and class I integron integrases (intl1). In a microcosm study, we repeatedly treated two soils (differing in pH and VA dissipation capacity) with the studied VAs, either directly or via fortified manure. This application scheme resulted in accelerated dissipation of TIA, but not of SMX, and accumulation of TLM. Potential nitrification rates (PNR), and the abundance of ammonia-oxidizing microorganism (AOM) were reduced by SMX and TIA, but not by TLM. VAs strongly impacted the total prokaryotic and AOM communities, whereas manure addition was the main determinant of the fungal and protist communities. SMX stimulated sulfonamide resistance, while manure stimulated ARGs and horizontal gene transfer. Correlations identified opportunistic pathogens like Clostridia, Burkholderia-Caballeronia-Paraburkholderia, and Nocardioides as potential ARG reservoirs in soil. Our results provide unprecedented evidence about the effects of understudied VAs on soil microbiota and highlight risks posed by VA-contaminated manures. ENVIRONMENTAL IMPLICATION: The dispersal of veterinary antibiotics (VAs) through soil manuring enhances antimicrobial resistance (AMR) development and poses a threat to the environment and the public health. We provide insights about the impact of selected VAs on their: (i) microbially-mediated dissipation in soil; (ii) ecotoxicity on the soil microbial communities; (iii) capacity to stimulate AMR. Our results (i) demonstrate the effects of VAs and their application-mode on the bacterial, fungal, and protistan communities, and on the soil ammonia oxidizers; (ii) describe natural attenuation processes against VA dispersal, (iii) depict potential soil microbial AMR reservoirs, essential for the development of risk assessment strategies.


Subject(s)
Anti-Bacterial Agents , Soil , Soil/chemistry , Anti-Bacterial Agents/pharmacology , Sulfamethoxazole/chemistry , Manure/microbiology , Soil Microbiology , Ammonia/pharmacology , Genes, Bacterial , Drug Resistance, Bacterial/genetics
SELECTION OF CITATIONS
SEARCH DETAIL