ABSTRACT
Chronic granulomatous disease (CGD) is a primary immunodeficiency characterized by life-threatening infections and inflammatory conditions. Hematopoietic cell transplantation (HCT) is the definitive treatment for CGD, but questions remain regarding patient selection and impact of active disease on transplant outcomes. We performed a multi-institutional retrospective and prospective study of 391 patients with CGD treated either conventionally (non-HCT) enrolled from 2004 to 2018 or with HCT from 1996 to 2018. Median follow-up after HCT was 3.7 years with a 3-year overall survival of 82% and event-free survival of 69%. In a multivariate analysis, a Lansky/Karnofsky score <90 and use of HLA-mismatched donors negatively affected survival. Age, genotype, and oxidase status did not affect outcomes. Before HCT, patients had higher infection density, higher frequency of noninfectious lung and liver diseases, and more steroid use than conventionally treated patients; however, these issues did not adversely affect HCT survival. Presence of pre-HCT inflammatory conditions was associated with chronic graft-versus-host disease. Graft failure or receipt of a second HCT occurred in 17.6% of the patients and was associated with melphalan-based conditioning and/or early mixed chimerism. At 3 to 5 years after HCT, patients had improved growth and nutrition, resolved infections and inflammatory disease, and lower rates of antimicrobial prophylaxis or corticosteroid use compared with both their baseline and those of conventionally treated patients. HCT leads to durable resolution of CGD symptoms and lowers the burden of the disease. Patients with active infection or inflammation are candidates for transplants; HCT should be considered before the development of comorbidities that could affect performance status. This trial was registered at www.clinicaltrials.gov as #NCT02082353.
Subject(s)
Graft vs Host Disease , Granulomatous Disease, Chronic , Hematopoietic Stem Cell Transplantation , Humans , Granulomatous Disease, Chronic/genetics , Granulomatous Disease, Chronic/therapy , Retrospective Studies , Prospective Studies , Transplantation, Homologous , Hematopoietic Stem Cell Transplantation/adverse effects , Genotype , Transplantation Conditioning/adverse effects , Graft vs Host Disease/prevention & controlABSTRACT
BACKGROUND: The Primary Immune Deficiency Treatment Consortium (PIDTC) enrolled children in the United States and Canada onto a retrospective multicenter natural history study of hematopoietic cell transplantation (HCT). OBJECTIVE: We investigated outcomes of HCT for severe combined immunodeficiency (SCID). METHODS: We evaluated the chronic and late effects (CLE) after HCT for SCID in 399 patients transplanted from 1982 to 2012 at 32 PIDTC centers. Eligibility criteria included survival to at least 2 years after HCT without need for subsequent cellular therapy. CLE were defined as either conditions present at any time before 2 years from HCT that remained unresolved (chronic), or new conditions that developed beyond 2 years after HCT (late). RESULTS: The cumulative incidence of CLE was 25% in those alive at 2 years, increasing to 41% at 15 years after HCT. CLE were most prevalent in the neurologic (9%), neurodevelopmental (8%), and dental (8%) categories. Chemotherapy-based conditioning was associated with decreased-height z score at 2 to 5 years after HCT (P < .001), and with endocrine (P < .001) and dental (P = .05) CLE. CD4 count of ≤500 cells/µL and/or continued need for immunoglobulin replacement therapy >2 years after transplantation were associated with lower-height z scores. Continued survival from 2 to 15 years after HCT was 90%. The presence of any CLE was associated with increased risk of late death (hazard ratio, 7.21; 95% confidence interval, 2.71-19.18; P < .001). CONCLUSION: Late morbidity after HCT for SCID was substantial, with an adverse impact on overall survival. This study provides evidence for development of survivorship guidelines based on disease characteristics and treatment exposure for patients after HCT for SCID.
Subject(s)
Hematopoietic Stem Cell Transplantation , Severe Combined Immunodeficiency , Child , Humans , Severe Combined Immunodeficiency/etiology , Hematopoietic Stem Cell Transplantation/adverse effects , Incidence , Canada/epidemiology , Retrospective Studies , Transplantation ConditioningABSTRACT
Severe combined immunodeficiency (SCID) is characterized by a severe deficiency in T cell numbers. We analyzed data collected (n = 307) for PHA-based T cell proliferation from the PIDTC SCID protocol 6901, using either a radioactive or flow cytometry method. In comparing the two groups, a smaller number of the patients tested by flow cytometry had <10% of the lower limit of normal proliferation as compared to the radioactive method (p = 0.02). Further, in patients with CD3+ T cell counts between 51 and 300 cells/µL, there was a higher proliferative response with the PHA flow assay compared to the 3H-T assay (p < 0.0001), suggesting that the method of analysis influences the resolution and interpretation of PHA results. Importantly, we observed many SCID patients with profound T cell lymphopenia having normal T cell proliferation when assessed by flow cytometry. We recommend this test be considered only as supportive in the diagnosis of typical SCID.
Subject(s)
Lymphopenia , Severe Combined Immunodeficiency , Infant, Newborn , Humans , Severe Combined Immunodeficiency/diagnosis , Lymphopenia/diagnosis , Neonatal Screening/methods , T-Lymphocytes , Cell ProliferationABSTRACT
BACKGROUND: Severe combined immunodeficiency (SCID) is fatal unless durable adaptive immunity is established, most commonly through allogeneic haematopoietic cell transplantation (HCT). The Primary Immune Deficiency Treatment Consortium (PIDTC) explored factors affecting the survival of individuals with SCID over almost four decades, focusing on the effects of population-based newborn screening for SCID that was initiated in 2008 and expanded during 2010-18. METHODS: We analysed transplantation-related data from children with SCID treated at 34 PIDTC sites in the USA and Canada, using the calendar time intervals 1982-89, 1990-99, 2000-09, and 2010-18. Categorical variables were compared by χ2 test and continuous outcomes by the Kruskal-Wallis test. Overall survival was estimated by the Kaplan-Meier method. A multivariable analysis using Cox proportional hazards regression models examined risk factors for HCT outcomes, including the variables of time interval of HCT, infection status and age at HCT, trigger for diagnosis, SCID type and genotype, race and ethnicity of the patient, non-HLA-matched sibling donor type, graft type, GVHD prophylaxis, and conditioning intensity. FINDINGS: For 902 children with confirmed SCID, 5-year overall survival remained unchanged at 72%-73% for 28 years until 2010-18, when it increased to 87% (95% CI 82·1-90·6; n=268; p=0·0005). For children identified as having SCID by newborn screening since 2010, 5-year overall survival was 92·5% (95% CI 85·8-96·1), better than that of children identified by clinical illness or family history in the same interval (79·9% [69·5-87·0] and 85·4% [71·8-92·8], respectively [p=0·043]). Multivariable analysis demonstrated that the factors of active infection (hazard ratio [HR] 2·41, 95% CI 1·56-3·72; p<0·0001), age 3·5 months or older at HCT (2·12, 1·38-3·24; p=0·001), Black or African-American race (2·33, 1·56-3·46; p<0·0001), and certain SCID genotypes to be associated with lower overall survival during all time intervals. Moreover, after adjusting for several factors in this multivariable analysis, HCT after 2010 no longer conveyed a survival advantage over earlier time intervals studied (HR 0·73, 95% CI 0·43-1·26; p=0·097). This indicated that younger age and freedom from infections at HCT, both directly driven by newborn screening, were the main drivers for recent improvement in overall survival. INTERPRETATION: Population-based newborn screening has facilitated the identification of infants with SCID early in life, in turn leading to prompt HCT while avoiding infections. Public health programmes worldwide can benefit from this definitive demonstration of the value of newborn screening for SCID. FUNDING: National Institute of Allergy and Infectious Diseases, Office of Rare Diseases Research, and National Center for Advancing Translational Sciences.
Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Severe Combined Immunodeficiency , Humans , Infant, Newborn , Hematopoietic Stem Cell Transplantation/methods , Longitudinal Studies , Neonatal Screening , Proportional Hazards Models , Severe Combined Immunodeficiency/diagnosis , Severe Combined Immunodeficiency/therapy , Severe Combined Immunodeficiency/geneticsABSTRACT
Hematopoietic stem cell transplant (HSCT) is a curative option for patients with high-risk acute lymphoblastic leukemia (ALL), but relapse remains a major cause of treatment failure. To prevent disease relapse, we prepared and infused donor-derived multiple leukemia antigen-specific T cells (mLSTs) targeting PRAME, WT1, and survivin, which are leukemia-associated antigens frequently expressed in B- and T-ALL. Our goal was to maximize the graft-versus-leukemia effect while minimizing the risk of graft-versus-host disease (GVHD). We administered mLSTs (dose range, 0.5 × 107 to 2 × 107 cells per square meter) to 11 patients with ALL (8 pediatric, 3 adult), and observed no dose-limiting toxicity, acute GVHD or cytokine release syndrome. Six of 8 evaluable patients remained in long-term complete remission (median: 46.5 months; range, 9-51). In these individuals we detected an increased frequency of tumor-reactive T cells shortly after infusion, with activity against both targeted and nontargeted, known tumor-associated antigens, indicative of in vivo antigen spreading. By contrast, this in vivo amplification was absent in the 2 patients who experienced relapse. In summary, infusion of donor-derived mLSTs after allogeneic HSCT is feasible and safe and may contribute to disease control, as evidenced by in vivo tumor-directed T-cell expansion. Thus, this approach represents a promising strategy for preventing relapse in patients with ALL.
Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Leukemia , Adult , Child , Graft vs Host Disease/etiology , Graft vs Host Disease/prevention & control , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Leukemia/therapy , Recurrence , Transplantation, Homologous/adverse effectsABSTRACT
Adenosine deaminase (ADA) deficiency causes â¼13% of cases of severe combined immune deficiency (SCID). Treatments include enzyme replacement therapy (ERT), hematopoietic cell transplant (HCT), and gene therapy (GT). We evaluated 131 patients with ADA-SCID diagnosed between 1982 and 2017 who were enrolled in the Primary Immune Deficiency Treatment Consortium SCID studies. Baseline clinical, immunologic, genetic characteristics, and treatment outcomes were analyzed. First definitive cellular therapy (FDCT) included 56 receiving HCT without preceding ERT (HCT); 31 HCT preceded by ERT (ERT-HCT); and 33 GT preceded by ERT (ERT-GT). Five-year event-free survival (EFS, alive, no need for further ERT or cellular therapy) was 49.5% (HCT), 73% (ERT-HCT), and 75.3% (ERT-GT; P < .01). Overall survival (OS) at 5 years after FDCT was 72.5% (HCT), 79.6% (ERT-HCT), and 100% (ERT-GT; P = .01). Five-year OS was superior for patients undergoing HCT at <3.5 months of age (91.6% vs 68% if ≥3.5 months, P = .02). Active infection at the time of HCT (regardless of ERT) decreased 5-year EFS (33.1% vs 68.2%, P < .01) and OS (64.7% vs 82.3%, P = .02). Five-year EFS (90.5%) and OS (100%) were best for matched sibling and matched family donors (MSD/MFD). For patients treated after the year 2000 and without active infection at the time of FDCT, no difference in 5-year EFS or OS was found between HCT using a variety of transplant approaches and ERT-GT. This suggests alternative donor HCT may be considered when MSD/MFD HCT and GT are not available, particularly when newborn screening identifies patients with ADA-SCID soon after birth and before the onset of infections. This trial was registered at www.clinicaltrials.gov as #NCT01186913 and #NCT01346150.
Subject(s)
Agammaglobulinemia , Hematopoietic Stem Cell Transplantation , Severe Combined Immunodeficiency , Adenosine Deaminase , Agammaglobulinemia/genetics , Child, Preschool , Humans , Infant , Infant, Newborn , Severe Combined Immunodeficiency/genetics , Severe Combined Immunodeficiency/therapyABSTRACT
BACKGROUND AIMS: The success of chimeric antigen receptor (CAR) T-cell therapy in treating B-cell malignancies has led to the evaluation of CAR T-cells targeting a variety of other malignancies. Although the efficacy of CAR T-cells is enhanced when administered post-lymphodepleting chemotherapy, this can trigger bone marrow suppression and sustained cytopenia after CD19.CAR T-cell therapy. Additionally, systemic inflammation associated with CAR T-cell activity may contribute to myelosuppression. Cytopenias, such as neutropenia and thrombocytopenia, elevate the risk of severe infections and bleeding, respectively. However, data on the incidence of prolonged cytopenias after immune effector therapy in the solid tumor context remain limited. OBJECTIVE: We compared the incidence of prolonged cytopenias after immune effector therapy including genetically modified T-cells, virus-specific T-cells (VSTs) and NKT-cells, as well non-gene-modified VSTs for leukemia, lymphoma, and solid tumors (ST) to identify associated risk factors. METHODS: A retrospective analysis was conducted of 112 pediatric and adult patients with relapsed and/or refractory cancers who received lymphodepleting chemotherapy followed by immune effector therapy. Patients treated with 13 distinct immune effector cell therapies through 11 single-center clinical trials and 2 commercial products over a 6-year period were categorized into 3 types of malignancies: leukemia, lymphoma and ST. We obtained baseline patient characteristics and adverse events data for each participant, and tracked neutrophil and platelet counts following lymphodepletion. RESULTS: Of 112 patients, 104 (92.9%) experienced cytopenias and 88 (79%) experienced severe cytopenias. Patients with leukemia experienced significantly longer durations of severe neutropenia (median duration of 14 days) compared with patients with lymphoma (7 days) or ST (11 days) (P = 0.002). Patients with leukemia also had a higher incidence of severe thrombocytopenia (74.1%), compared with lymphoma (46%, P = 0.03) and ST (14.3%, P < 0.0001). Prolonged cytopenias were significantly associated with disease type (63% of patients with leukemia, 44% of patients with lymphoma, and 22.9% of patients with ST, P = 0.006), prior hematopoietic stem cell transplant (HSCT) (66.7% with prior HSCT versus 38.3% without prior HSCT, P = 0.039), and development of immune effector cell-associated neurotoxicity syndrome (ICANS) (75% with ICANS versus 38% without ICANS, P = 0.027). There was no significant association between prolonged cytopenias and cytokine release syndrome. CONCLUSIONS: Immune effector recipients often experience significant cytopenias due to marrow suppression following lymphodepletion regardless of disease, but prolonged severe cytopenias are significantly less common after treatment of patients with lymphoma and solid tumors.
Subject(s)
Immunotherapy, Adoptive , Leukemia , Lymphoma , Humans , Male , Female , Adult , Leukemia/therapy , Leukemia/immunology , Leukemia/complications , Child , Middle Aged , Lymphoma/therapy , Lymphoma/immunology , Lymphoma/complications , Immunotherapy, Adoptive/adverse effects , Immunotherapy, Adoptive/methods , Adolescent , Thrombocytopenia/therapy , Thrombocytopenia/etiology , Thrombocytopenia/immunology , Retrospective Studies , Aged , Neutropenia/immunology , Neutropenia/etiology , Neutropenia/therapy , Child, Preschool , Lymphocyte Depletion , Young Adult , Receptors, Chimeric Antigen/immunology , T-Lymphocytes/immunology , CytopeniaABSTRACT
While matched related donor (MRD) allogeneic hematopoietic stem cell transplantation (HSCT) is a curative option for transfusion-dependent beta-thalassemia (TDT), the use of alternative sources has increased, resulting in the exploration of novel transplant-conditioning regimens to reduce the contribution of graft-versus-host disease (GVHD) and graft failure (GF) to transplant-related morbidity and mortality. Alemtuzumab is a CD52 monoclonal antibody that has been successfully incorporated into myeloablative conditioning regimens for other hematologic conditions, yet there have been limited studies regarding the use of alemtuzumab in HSCT for TDT. The purpose of this study was to evaluate engraftment, incidence of GVHD, and transplant related morbidity and mortality in patients with TDT who received alemtuzumab in addition to standard busulfan-based conditioning. The primary endpoint was severe GVHD-free, event-free survival (GEFS). Our cohort included 24 patients with a median age of 6.8 years (range 1.5-14.9). Eleven patients received a 10/10 MRD HSCT, eleven 10/10 unrelated donor (UD), and two mismatched UD. All patients achieved primary engraftment. For all patients, 5-year GEFS was 77.4% and 5-year overall survival (OS) was 91%. The 5-year cumulative incidence of GF (attributed to poor graft function) without loss of donor chimerism was 13.8% (95% CI: 4.5, 35.3). We report low rates of significant acute GVHD grade II-IV (12.5%) and chronic GVHD (4.4%). Younger age and MRD were associated with significantly improved GEFS, OS and EFS. Our results show that the use of alemtuzumab promotes stable engraftment, may reduce rates of severe GVHD, and results in acceptable GEFS, OS, and EFS.
Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , beta-Thalassemia , Humans , Infant , Child, Preschool , Child , Adolescent , Alemtuzumab/therapeutic use , beta-Thalassemia/therapy , beta-Thalassemia/complications , Transplantation, Homologous , Hematopoietic Stem Cell Transplantation/methods , Graft vs Host Disease/etiology , Graft vs Host Disease/prevention & control , Transplantation Conditioning/methods , Retrospective StudiesABSTRACT
BACKGROUND: Shearer et al in 2014 articulated well-defined criteria for the diagnosis and classification of severe combined immunodeficiency (SCID) as part of the Primary Immune Deficiency Treatment Consortium's (PIDTC's) prospective and retrospective studies of SCID. OBJECTIVE: Because of the advent of newborn screening for SCID and expanded availability of genetic sequencing, revision of the PIDTC 2014 Criteria was needed. METHODS: We developed and tested updated PIDTC 2022 SCID Definitions by analyzing 379 patients proposed for prospective enrollment into Protocol 6901, focusing on the ability to distinguish patients with various SCID subtypes. RESULTS: According to PIDTC 2022 Definitions, 18 of 353 patients eligible per 2014 Criteria were considered not to have SCID, whereas 11 of 26 patients ineligible per 2014 Criteria were determined to have SCID. Of note, very low numbers of autologous T cells (<0.05 × 109/L) characterized typical SCID under the 2022 Definitions. Pathogenic variant(s) in SCID-associated genes was identified in 93% of patients, with 7 genes (IL2RG, RAG1, ADA, IL7R, DCLRE1C, JAK3, and RAG2) accounting for 89% of typical SCID. Three genotypes (RAG1, ADA, and RMRP) accounted for 57% of cases of leaky/atypical SCID; there were 13 other rare genotypes. Patients with leaky/atypical SCID were more likely to be diagnosed at more than age 1 year than those with typical SCID lacking maternal T cells: 20% versus 1% (P < .001). Although repeat testing proved important, an initial CD3 T-cell count of less than 0.05 × 109/L differentiated cases of typical SCID lacking maternal cells from leaky/atypical SCID: 97% versus 7% (P < .001). CONCLUSIONS: The PIDTC 2022 Definitions describe SCID and its subtypes more precisely than before, facilitating analyses of SCID characteristics and outcomes.
Subject(s)
Severe Combined Immunodeficiency , Infant, Newborn , Humans , Infant , Severe Combined Immunodeficiency/diagnosis , Severe Combined Immunodeficiency/genetics , Retrospective Studies , Prospective Studies , Homeodomain Proteins/geneticsABSTRACT
Wiskott-Aldrich syndrome (WAS) is an X-linked disease caused by mutations in the WAS gene, leading to thrombocytopenia, eczema, recurrent infections, autoimmune disease, and malignancy. Hematopoietic cell transplantation (HCT) is the primary curative approach, with the goal of correcting the underlying immunodeficiency and thrombocytopenia. HCT outcomes have improved over time, particularly for patients with HLA-matched sibling and unrelated donors. We report the outcomes of 129 patients with WAS who underwent HCT at 29 Primary Immune Deficiency Treatment Consortium centers from 2005 through 2015. Median age at HCT was 1.2 years. Most patients (65%) received myeloablative busulfan-based conditioning. With a median follow-up of 4.5 years, the 5-year overall survival (OS) was 91%. Superior 5-year OS was observed in patients <5 vs ≥5 years of age at the time of HCT (94% vs 66%; overall P = .0008). OS was excellent regardless of donor type, even in cord blood recipients (90%). Conditioning intensity did not affect OS, but was associated with donor T-cell and myeloid engraftment after HCT. Specifically, patients who received fludarabine/melphalan-based reduced-intensity regimens were more likely to have donor myeloid chimerism <50% early after HCT. In addition, higher platelet counts were observed among recipients who achieved full (>95%) vs low-level (5%-49%) donor myeloid engraftment. In summary, HCT outcomes for WAS have improved since 2005, compared with prior reports. HCT at a younger age continues to be associated with superior outcomes supporting the recommendation for early HCT. High-level donor myeloid engraftment is important for platelet reconstitution after either myeloablative or busulfan-containing reduced intensity conditioning. (This trial was registered at www.clinicaltrials.gov as #NCT02064933.).
Subject(s)
Graft vs Host Disease/prevention & control , Hematopoietic Stem Cell Transplantation/mortality , T-Lymphocytes/immunology , Wiskott-Aldrich Syndrome Protein/genetics , Wiskott-Aldrich Syndrome/therapy , Child, Preschool , Humans , Infant , Male , Mutation , Myeloablative Agonists/therapeutic use , Prognosis , Retrospective Studies , Survival Rate , Transplantation Conditioning , Unrelated Donors/statistics & numerical data , Wiskott-Aldrich Syndrome/genetics , Wiskott-Aldrich Syndrome/pathologyABSTRACT
Despite improvements, mortality after allogeneic hematopoietic cell transplantation (HCT) for nonmalignant diseases remains a significant problem. We evaluated whether pre-HCT conditions defined by the HCT Comorbidity Index (HCT-CI) predict probability of posttransplant survival. Using the Center for International Blood and Marrow Transplant Research database, we identified 4083 patients with nonmalignant diseases transplanted between 2007 and 2014. Primary outcome was overall survival (OS) using the Kaplan-Meier method. Hazard ratios (HRs) were estimated by multivariable Cox regression models. Increasing HCT-CI scores translated to decreased 2-year OS of 82.7%, 80.3%, 74%, and 55.8% for patients with HCT-CI scores of 0, 1 to 2, 3 to 4, and ≥5, respectively, regardless of conditioning intensity. HCT-CI scores of 1 to 2 did not differ relative to scores of 0 (HR, 1.12 [95% CI, 0.93-1.34]), but HCT-CI of 3 to 4 and ≥5 posed significantly greater risks of mortality (HR, 1.33 [95% CI, 1.09-1.63]; and HR, 2.31 [95% CI, 1.79-2.96], respectively). The effect of HCT-CI differed by disease indication. Patients with acquired aplastic anemia, primary immune deficiencies, and congenital bone marrow failure syndromes with scores ≥3 had increased risk of death after HCT. However, higher HCT-CI scores among hemoglobinopathy patients did not increase mortality risk. In conclusion, this is the largest study to date reporting on patients with nonmalignant diseases demonstrating HCT-CI scores ≥3 that had inferior survival after HCT, except for patients with hemoglobinopathies. Our findings suggest that using the HCT-CI score, in addition to disease-specific factors, could be useful when developing treatment plans for nonmalignant diseases.
Subject(s)
Anemia, Aplastic/mortality , Autoimmune Diseases/mortality , Bone Marrow Diseases/mortality , Graft vs Host Disease/mortality , Hematopoietic Stem Cell Transplantation/mortality , Hemoglobinuria, Paroxysmal/mortality , Metabolic Diseases/mortality , Adolescent , Adult , Anemia, Aplastic/pathology , Anemia, Aplastic/therapy , Autoimmune Diseases/pathology , Autoimmune Diseases/therapy , Bone Marrow Diseases/pathology , Bone Marrow Diseases/therapy , Bone Marrow Failure Disorders , Child , Child, Preschool , Comorbidity , Female , Follow-Up Studies , Graft vs Host Disease/epidemiology , Hemoglobinuria, Paroxysmal/pathology , Hemoglobinuria, Paroxysmal/therapy , Humans , Infant , Infant, Newborn , Male , Metabolic Diseases/pathology , Metabolic Diseases/therapy , Prognosis , Prospective Studies , Survival Rate , Transplantation Conditioning , Transplantation, Homologous , Young AdultABSTRACT
Serious viral infections, due to delayed immune reconstitution, are a leading cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation (HSCT). Thus, many transplant centers prospectively track cellular immune recovery by evaluating absolute cell numbers and the phenotypic profile of reconstituting T cell subsets to identify individuals who are at highest risk of infection. Conventional assessments, however, fail to measure either the antigen specificity or functional capacity of reconstituting cells-both factors that correlate with endogenous antiviral protection. In this pilot study, we sought to address this limitation by prospectively investigating the tempo of endogenous immune reconstitution in a cohort of 23 pediatric HSCT patients using both quantitative (flow cytometry) and qualitative (IFNγ ELISpot) measures, which we correlated with either the presence or absence of infections associated with cytomegalovirus, adenovirus, Epstein-Barr virus, BK virus, human herpes virus 6, respiratory syncytial virus, parainfluenza, influenza, and human metapneumovirus. We present data spanning 12 months post-transplant demonstrating the influence of conditioning on immune recovery and highlighting the differential impact of active viral replication on the quantity and quality of reconstituting cells. Judicious use of standard (phenotypic) and novel (functional) monitoring strategies can help guide the clinical care and personalized management of allogenic HSCT recipients with infections.
Subject(s)
Epstein-Barr Virus Infections , Hematopoietic Stem Cell Transplantation , Child , Herpesvirus 4, Human , Humans , Monitoring, Immunologic , Pilot Projects , Transplant RecipientsABSTRACT
The original version of this article unfortunately contained the missing author, Caridad Martinez. The authors would like to correct the list. We apologize for any inconvenience that this may have caused. The correct author list is shown above.
ABSTRACT
The HLH-2004 criteria are used to diagnose hemophagocytic lymphohistiocytosis (HLH), yet concern exists for their misapplication, resulting in suboptimal treatment of some patients. We sought to define the genomic spectrum and associated outcomes of a diverse cohort of children who met the HLH-2004 criteria. Genetic testing was performed clinically or through research-based whole-exome sequencing. Clinical metrics were analyzed with respect to genomic results. Of 122 subjects enrolled over the course of 17 years, 101 subjects received genetic testing. Biallelic familial HLH (fHLH) gene defects were identified in only 19 (19%) and correlated with presentation at younger than 1 year of age (P < .0001). Digenic fHLH variants were observed but lacked statistical support for disease association. In 28 (58%) of 48 subjects, research whole-exome sequencing analyses successfully identified likely molecular explanations, including underlying primary immunodeficiency diseases, dysregulated immune activation and proliferation disorders, and potentially novel genetic conditions. Two-thirds of patients identified by the HLH-2004 criteria had underlying etiologies for HLH, including genetic defects, autoimmunity, and malignancy. Overall survival was 45%, and increased mortality correlated with HLH triggered by infection or malignancy (P < .05). Differences in survival did not correlate with genetic profile or extent of therapy. HLH should be conceptualized as a phenotype of critical illness characterized by toxic activation of immune cells from different underlying mechanisms. In most patients with HLH, targeted sequencing of fHLH genes remains insufficient for identifying pathogenic mechanisms. Whole-exome sequencing, however, may identify specific therapeutic opportunities and affect hematopoietic stem cell transplantation options for these patients.
Subject(s)
Genetic Testing , Genome, Human , High-Throughput Nucleotide Sequencing , Lymphohistiocytosis, Hemophagocytic/genetics , Adolescent , Child , Child, Preschool , Cohort Studies , Female , Genome-Wide Association Study , Humans , Infant , Infant, Newborn , Lymphohistiocytosis, Hemophagocytic/pathology , Lymphohistiocytosis, Hemophagocytic/therapy , Male , Multifactorial InheritanceABSTRACT
The Primary Immune Deficiency Treatment Consortium (PIDTC) performed a retrospective analysis of 662 patients with severe combined immunodeficiency (SCID) who received a hematopoietic cell transplantation (HCT) as first-line treatment between 1982 and 2012 in 33 North American institutions. Overall survival was higher after HCT from matched-sibling donors (MSDs). Among recipients of non-MSD HCT, multivariate analysis showed that the SCID genotype strongly influenced survival and immune reconstitution. Overall survival was similar for patients with RAG, IL2RG, or JAK3 defects and was significantly better compared with patients with ADA or DCLRE1C mutations. Patients with RAG or DCLRE1C mutations had poorer immune reconstitution than other genotypes. Although survival did not correlate with the type of conditioning regimen, recipients of reduced-intensity or myeloablative conditioning had a lower incidence of treatment failure and better T- and B-cell reconstitution, but a higher risk for graft-versus-host disease, compared with those receiving no conditioning or immunosuppression only. Infection-free status and younger age at HCT were associated with improved survival. Typical SCID, leaky SCID, and Omenn syndrome had similar outcomes. Landmark analysis identified CD4+ and CD4+CD45RA+ cell counts at 6 and 12 months post-HCT as biomarkers predictive of overall survival and long-term T-cell reconstitution. Our data emphasize the need for patient-tailored treatment strategies depending upon the underlying SCID genotype. The prognostic significance of CD4+ cell counts as early as 6 months after HCT emphasizes the importance of close follow-up of immune reconstitution to identify patients who may need additional intervention to prevent poor long-term outcome.
Subject(s)
CD4-Positive T-Lymphocytes/immunology , Hematopoietic Stem Cell Transplantation , Immune Reconstitution/immunology , Severe Combined Immunodeficiency/genetics , Severe Combined Immunodeficiency/mortality , Severe Combined Immunodeficiency/therapy , Genotype , Humans , Lymphocyte Count , Retrospective StudiesABSTRACT
BACKGROUND: Transplant-associated thrombotic microangiopathy (TA-TMA) occurs after hematopoietic stem cell transplantation (HSCT) and is characterized by microvascular thrombosis and end-organ injury particularly of the kidneys. TA-TMA is challenging to diagnose and treat, which can lead to long-term complications and death in patients with severe disease. Studies have shown that genetic abnormalities of the alternative complement pathway (AP) are associated with TA-TMA. We hypothesized that patients with TA-TMA may generate elevated levels of the AP activation product, Ba, compared with HSCT patients without TA-TMA. PROCEDURE: We longitudinally measured plasma levels of complement activation products C3a, Ba, and C5a in 14 HSCT patients: 7 with TA-TMA and 7 without TA-TMA. We assessed renal function by calculating estimated glomerular filtration rate (eGFR) and correlated the extent of AP activation with renal dysfunction in both patient populations. RESULTS: The median days from HSCT to study enrollment were 154 (39-237) in the TA-TMA group and 84 (39-253) in the HSCT group without TA-TMA. Median Ba levels (ng/mL) at enrollment were 1096.9 (826.5-1562.0) in the TA-TMA group and 725.7 (494.7-818.9) in the HSCT group without TA-TMA (P = 0.007). Over the study duration, Ba levels inversely correlated with eGFR. There were no differences in C3a, C5a, or sC5b9 levels between the two populations at any measured interval. CONCLUSIONS: We conclude in this preliminary study that Ba protein may serve as a marker for TA-TMA, and furthermore, that components generated in the early phase of AP activation may be involved in the pathogenesis of renal endothelial injury in TA-TMA.
Subject(s)
Biomarkers/metabolism , Complement C3b/metabolism , Complement Factor B/metabolism , Complement Pathway, Alternative , Hematopoietic Stem Cell Transplantation/adverse effects , Thrombotic Microangiopathies/diagnosis , Adolescent , Adult , Case-Control Studies , Child , Child, Preschool , Complement Activation , Female , Follow-Up Studies , Humans , Longitudinal Studies , Male , Prognosis , Thrombotic Microangiopathies/etiology , Thrombotic Microangiopathies/metabolism , Young AdultABSTRACT
Transplantation-associated thrombotic microangiopathy (TA-TMA) is a complication of hematopoietic stem cell transplant (HSCT) that causes severe multiorgan injury. The kidneys are almost universally affected. There is no proven therapy, but therapeutic plasma exchange (TPE) is commonly used to treat TA-TMA at Texas Children's Hospital (TCH). To date, there have been no studies assessing the long-term efficacy of TPE in preventing the development of chronic kidney disease (CKD) in TA-TMA patients. In this study we retrospectively analyzed the incidence of CKD in TA-TMA pediatric patients treated with TPE to determine if this treatment modality improves renal morbidity. We reviewed records between January 2007 and June 2017 of pediatric HSCT patients diagnosed with TA-TMA, identified through an internal database maintained at TCH. To be included patients must have completed a course of TPE per the "TPE in TA-TMA" institutional protocol at TCH. CKD was defined as kidney damage for at least 3 months and stratified into stages 1 through 5 according to estimated glomerular filtration rate. Stages 4 and 5 were considered "severe CKD." In the 10-year timeframe 15 patients with TA-TMA completed a course of TPE per our institutional protocol and were subsequently followed for a median of 963 days. Fourteen patients developed CKD, and 5 of these 14 patients developed severe CKD. The cumulative incidence of severe CKD development was 33% (95% confidence interval. 11% to 57%). 6 patients required dialysis, and 2 patients received a renal transplant. 5 patients received eculizumab in addition to TPE. In our patients a TPE course of at least 7 weeks (and up to 25 weeks) was not effective in the prevention of CKD. Our data indicate a need for alternative therapeutic measures to prevent the development of CKD in TA-TMA patients.
Subject(s)
Glomerular Filtration Rate , Hematopoietic Stem Cell Transplantation , Plasma Exchange , Renal Insufficiency, Chronic , Thrombotic Microangiopathies , Adolescent , Child , Child, Preschool , Female , Humans , Infant , Male , Renal Insufficiency, Chronic/etiology , Renal Insufficiency, Chronic/physiopathology , Renal Insufficiency, Chronic/prevention & control , Retrospective Studies , Thrombotic Microangiopathies/etiology , Thrombotic Microangiopathies/physiopathology , Thrombotic Microangiopathies/therapyABSTRACT
Pulmonary complications after hematopoietic cell transplantation (HCT) can lead to significant morbidity and mortality. Limited evaluation of the true incidence of these complications in children and subsequent outcomes of these complications have not been evaluated recently. In April 2018, the National Heart, Lung, and Blood Institute; the Eunice Kennedy Shriver National Institute of Child Health and Human Development; and the National Cancer Institute cosponsored a meeting of experts to describe the status of pulmonary complications in children after HCT, identify critical gaps in knowledge, and explore avenues for research to advance care and optimize outcomes. The Center for International Blood and Marrow Transplant Research was used to evaluate the cumulative incidence of pulmonary complications in children and their respective survival. Of the 5022 children included in this analysis who received allogeneic HCT from 2010 to 2016, 606 developed pulmonary complications within the first year after HCT. Pneumonitis occurred in 388 patients, 125 patients developed pulmonary hemorrhage, and 200 patients had lung graft-versus-host disease (GVHD). For those developing pulmonary complications within 1 year, overall survival 100 days after diagnosis of pulmonary complications was 49% (95% confidence interval [CI], 43% to 54%) for patients with pneumonitis, 23% (95% CI, 16% to 31%) in patients with pulmonary hemorrhage, and 87% (95% CI, 81% to 91%) in patients with pulmonary GVHD. This study demonstrates the approximate incidence of these complications, as well as their significant effects on survival, and can serve as a baseline for future research.
Subject(s)
Hematopoietic Stem Cell Transplantation/adverse effects , Lung/pathology , Transplantation Conditioning/adverse effects , Transplantation, Homologous/adverse effects , Adolescent , Adult , Child , Child, Preschool , Female , Hematopoietic Stem Cell Transplantation/methods , Humans , Infant , Male , Young AdultABSTRACT
The Primary Immune Deficiency Treatment Consortium (PIDTC) is enrolling children with severe combined immunodeficiency (SCID) to a prospective natural history study. We analyzed patients treated with allogeneic hematopoietic cell transplantation (HCT) from 2010 to 2014, including 68 patients with typical SCID and 32 with leaky SCID, Omenn syndrome, or reticular dysgenesis. Most (59%) patients were diagnosed by newborn screening or family history. The 2-year overall survival was 90%, but was 95% for those who were infection-free at HCT vs 81% for those with active infection (P = .009). Other factors, including the diagnosis of typical vs leaky SCID/Omenn syndrome, diagnosis via family history or newborn screening, use of preparative chemotherapy, or the type of donor used, did not impact survival. Although 1-year post-HCT median CD4 counts and freedom from IV immunoglobulin were improved after the use of preparative chemotherapy, other immunologic reconstitution parameters were not affected, and the potential for late sequelae in extremely young infants requires additional evaluation. After a T-cell-replete graft, landmark analysis at day +100 post-HCT revealed that CD3 < 300 cells/µL, CD8 < 50 cells/µL, CD45RA < 10%, or a restricted Vß T-cell receptor repertoire (<13 of 24 families) were associated with the need for a second HCT or death. In the modern era, active infection continues to pose the greatest threat to survival for SCID patients. Although newborn screening has been effective in diagnosing SCID patients early in life, there is an urgent need to identify validated approaches through prospective trials to ensure that patients proceed to HCT infection free. The trial was registered at www.clinicaltrials.gov as #NCT01186913.