ABSTRACT
Perceptual sensitivity varies from moment to moment. One potential source of this variability is spontaneous fluctuations in cortical activity that can travel as waves1. Spontaneous travelling waves have been reported during anaesthesia2-7, but it is not known whether they have a role during waking perception. Here, using newly developed analytic techniques to characterize the moment-to-moment dynamics of noisy multielectrode data, we identify spontaneous waves of activity in the extrastriate visual cortex of awake, behaving marmosets (Callithrix jacchus). In monkeys trained to detect faint visual targets, the timing and position of spontaneous travelling waves before target onset predicted the magnitude of target-evoked activity and the likelihood of target detection. By contrast, spatially disorganized fluctuations of neural activity were much less predictive. These results reveal an important role for spontaneous travelling waves in sensory processing through the modulation of neural and perceptual sensitivity.
Subject(s)
Brain Waves , Visual Cortex/physiology , Visual Perception/physiology , Wakefulness/physiology , Action Potentials , Animals , Behavior, Animal , Callithrix/physiology , Electrodes , Evoked Potentials, Visual , Female , Male , Photic Stimulation , Probability , Retina/physiologyABSTRACT
The recent publications of the inter-areal connectomes for mouse, marmoset, and macaque cortex have allowed deeper comparisons across rodent vs. primate cortical organization. In general, these show that the mouse has very widespread, "all-to-all" inter-areal connectivity (i.e. a "highly dense" connectome in a graph theoretical framework), while primates have a more modular organization. In this review, we highlight the relevance of these differences to function, including the example of primary visual cortex (V1) which, in the mouse, is interconnected with all other areas, therefore including other primary sensory and frontal areas. We argue that this dense inter-areal connectivity benefits multimodal associations, at the cost of reduced functional segregation. Conversely, primates have expanded cortices with a modular connectivity structure, where V1 is almost exclusively interconnected with other visual cortices, themselves organized in relatively segregated streams, and hierarchically higher cortical areas such as prefrontal cortex provide top-down regulation for specifying precise information for working memory storage and manipulation. Increased complexity in cytoarchitecture, connectivity, dendritic spine density, and receptor expression additionally reveal a sharper hierarchical organization in primate cortex. Together, we argue that these primate specializations permit separable deconstruction and selective reconstruction of representations, which is essential to higher cognition.
Subject(s)
Callithrix , Cognition , Connectome , Macaca , Animals , Mice , Cognition/physiology , Nerve Net/physiology , Neural Pathways/physiology , Cerebral Cortex/physiologyABSTRACT
Primates use perceptual and mnemonic visuospatial representations to perform everyday functions. Neurons in the lateral prefrontal cortex (LPFC) have been shown to encode both of these representations during tasks where eye movements are strictly controlled and visual stimuli are reduced in complexity. This raises the question of whether perceptual and mnemonic representations encoded by LPFC neurons remain robust during naturalistic vision-in the presence of a rich visual scenery and during eye movements. Here we investigate this issue by training macaque monkeys to perform working memory and perception tasks in a visually complex virtual environment that requires navigation using a joystick and allows for free visual exploration of the scene. We recorded the activity of 3950 neurons in the LPFC (areas 8a and 9/46) of two male rhesus macaques using multielectrode arrays, and measured eye movements using video tracking. We found that navigation trajectories to target locations and eye movement behavior differed between the perception and working memory tasks, suggesting that animals used different behavioral strategies. Single neurons were tuned to target location during cue encoding and working memory delay, and neural ensemble activity was predictive of the behavior of the animals. Neural decoding of the target location was stable throughout the working memory delay epoch. However, neural representations of similar target locations differed between the working memory and perception tasks. These findings indicate that during naturalistic vision, LPFC neurons maintain robust and distinct neural codes for mnemonic and perceptual visuospatial representations.SIGNIFICANCE STATEMENT We show that lateral prefrontal cortex neurons encode working memory and perceptual representations during a naturalistic task set in a virtual environment. We show that despite eye movement and complex visual input, neurons maintain robust working memory representations of space, which are distinct from neuronal representations for perception. We further provide novel insight into the use of virtual environments to construct behavioral tasks for electrophysiological experiments.
Subject(s)
Memory, Short-Term , Prefrontal Cortex , Animals , Male , Memory, Short-Term/physiology , Macaca mulatta , Prefrontal Cortex/physiology , Neurons/physiology , Eye MovementsABSTRACT
In tauopathies such as Alzheimer's disease (AD) and frontotemporal dementia (FTD), the microtubule associated protein tau undergoes conformational and posttranslational modifications in a gradual, staged pathological process. While brain atrophy and cognitive decline are well-established in the advanced stages of tauopathy, it is unclear how the early pathological processes manifest prior to extensive neurodegeneration. For these studies we have applied a transgenic rat model of human-like tauopathy in its heterozygous form, named McGill-R955-hTau. The goal of the present study was to investigate whether lifelong accumulation of mutated human tau could reveal the earliest tau pathological processes in a context of advanced aging, and, at stages before the overt aggregated or fibrillary tau deposition. We characterized the phenotype of heterozygous R955-hTau rats at three endpoints, 10, 18 and 24-26 months of age, focusing on markers of cognitive capabilities, progressive tau pathology, neuronal health, neuroinflammation and brain ultrastructural integrity, using immunohistochemistry and electron microscopy. Heterozygous R955-hTau transgenic rats feature a modest, life-long accumulation of mutated human tau that led to tau hyperphosphorylation and produced deficits in learning and memory tasks after 24 months of age. Such impairments coincided with more extensive tau hyperphosphorylation in the brain at residues pThr231 and with evidence of oligomerization. Importantly, aged R955-hTau rats presented evidence of neuroinflammation, detriments to myelin morphology and detectable hippocampal neuronal loss in the absence of overt neurofibrillary lesions and brain atrophy. The slow-progressing tauopathy of R955-hTau rats should allow to better delineate the temporal progression of tau pathological events and therefore to distinguish early indicators of tauopathy as having the capability to induce degenerative events in the aged CNS.
Subject(s)
Neuroinflammatory Diseases , Tauopathies , Humans , Mice , Rats , Animals , Aged , Mice, Transgenic , Tauopathies/pathology , tau Proteins/genetics , tau Proteins/metabolism , Rats, Transgenic , Atrophy , Disease Models, AnimalABSTRACT
Cells selectively activated by a particular view of an environment have been found in the primate hippocampus (HPC). Whether view cells are present in other brain areas, and how view selectivity interacts with other variables such as object features and place remain unclear. Here, we explore these issues by recording the responses of neurons in the HPC and the lateral prefrontal cortex (LPFC) of rhesus macaques performing a task in which they learn new context-object associations while navigating a virtual environment using a joystick. We measured neuronal responses at different locations in a virtual maze where animals freely directed gaze to different regions of the visual scenes. We show that specific views containing task relevant objects selectively activated a proportion of HPC units, and an even higher proportion of LPFC units. Place selectivity was scarce and generally dependent on view. Many view cells were not affected by changing the object color or the context cue, two task relevant features. However, a small proportion of view cells showed selectivity for these two features. Our results show that during navigation in a virtual environment with complex and dynamic visual stimuli, view cells are found in both the HPC and the LPFC. View cells may have developed as a multiarea specialization in diurnal primates to encode the complexities and layouts of the environment through gaze exploration which ultimately enables building cognitive maps of space that guide navigation.
Subject(s)
Hippocampus , Neurons , Animals , Macaca mulatta , Neurons/physiology , Hippocampus/physiology , Prefrontal Cortex/physiology , LearningABSTRACT
BACKGROUND: Feature-based attention prioritizes the processing of the attended feature while strongly suppressing the processing of nearby ones. This creates a non-linearity or "attentional suppressive surround" predicted by the Selective Tuning model of visual attention. However, previously reported effects of feature-based attention on neuronal responses are linear, e.g., feature-similarity gain. Here, we investigated this apparent contradiction by neurophysiological and psychophysical approaches. RESULTS: Responses of motion direction-selective neurons in area MT/MST of monkeys were recorded during a motion task. When attention was allocated to a stimulus moving in the neurons' preferred direction, response tuning curves showed its minimum for directions 60-90° away from the preferred direction, an attentional suppressive surround. This effect was modeled via the interaction of two Gaussian fields representing excitatory narrowly tuned and inhibitory widely tuned inputs into a neuron, with feature-based attention predominantly increasing the gain of inhibitory inputs. We further showed using a motion repulsion paradigm in humans that feature-based attention produces a similar non-linearity on motion discrimination performance. CONCLUSIONS: Our results link the gain modulation of neuronal inputs and tuning curves examined through the feature-similarity gain lens to the attentional impact on neural population responses predicted by the Selective Tuning model, providing a unified framework for the documented effects of feature-based attention on neuronal responses and behavior.
Subject(s)
Motion Perception , Humans , Motion Perception/physiology , Neurons/physiology , Photic Stimulation/methods , Temporal Lobe/physiologyABSTRACT
Alterations in the structural maturation of the amygdala subnuclei volumes are associated with anxiety behaviors in adults and children with neurodevelopmental and associated disorders. This study investigated the relationship between amygdala subnuclei volumes and anxiety in 233 children and adolescents (mean age = 11.02 years; standard deviation = 3.17) with autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), and children with obsessive compulsive disorder (OCD), as well as typically developing (TD) children. Parents completed the Child Behavior Checklist (CBCL), and the children underwent structural MRI at 3 T. FreeSurfer software was used to automatically segment the amygdala subnuclei. A general linear model revealed that children and adolescents with ASD, ADHD, and OCD had higher anxiety scores compared to TD children (p < .001). A subsequent interaction analysis revealed that children with ASD (B = 0.09, p < .0001) and children with OCD (B = 0.1, p < .0001) who had high anxiety had larger right central nuclei volumes compared with TD children. Similar results were obtained for the right anterior amygdaloid area. Amygdala subnuclei volumes may be key to identifying children with neurodevelopmental disorders or those with OCD who are at high risk for anxiety. Findings may inform the development of targeted behavioral interventions to address anxiety behaviors and to assess the downstream effects of such interventions.
Subject(s)
Anxiety , Attention Deficit Disorder with Hyperactivity , Autism Spectrum Disorder , Obsessive-Compulsive Disorder , Adolescent , Adult , Child , Humans , Amygdala/diagnostic imaging , Attention Deficit Disorder with Hyperactivity/complications , Autism Spectrum Disorder/diagnostic imaging , Comorbidity , Obsessive-Compulsive Disorder/diagnostic imaging , Obsessive-Compulsive Disorder/complicationsABSTRACT
Ketamine is a dissociative anesthetic drug, which has more recently emerged as a rapid-acting antidepressant. When acutely administered at subanesthetic doses, ketamine causes cognitive deficits like those observed in patients with schizophrenia, including impaired working memory. Although these effects have been linked to ketamine's action as an N-methyl-D-aspartate receptor antagonist, it is unclear how synaptic alterations translate into changes in brain microcircuit function that ultimately influence cognition. Here, we administered ketamine to rhesus monkeys during a spatial working memory task set in a naturalistic virtual environment. Ketamine induced transient working memory deficits while sparing perceptual and motor skills. Working memory deficits were accompanied by decreased responses of fast spiking inhibitory interneurons and increased responses of broad spiking excitatory neurons in the lateral prefrontal cortex. This translated into a decrease in neuronal tuning and information encoded by neuronal populations about remembered locations. Our results demonstrate that ketamine differentially affects neuronal types in the neocortex; thus, it perturbs the excitation inhibition balance within prefrontal microcircuits and ultimately leads to selective working memory deficits.
Subject(s)
Ketamine , Anesthetics, Dissociative/pharmacology , Animals , Humans , Ketamine/pharmacology , Macaca mulatta , Memory, Short-Term , Prefrontal CortexABSTRACT
Identifying the features of population responses that are relevant to the amount of information encoded by neuronal populations is a crucial step toward understanding population coding. Statistical features, such as tuning properties, individual and shared response variability, and global activity modulations, could all affect the amount of information encoded and modulate behavioral performance. We show that two features in particular affect information: the modulation of population responses across conditions (population signal) and the inverse population covariability along the modulation axis (projected precision). We demonstrate that fluctuations of these two quantities are correlated with fluctuations of behavioral performance in various tasks and brain regions consistently across 4 monkeys (1 female and 1 male Macaca mulatta; and 2 male Macaca fascicularis). In contrast, fluctuations in mean correlations among neurons and global activity have negligible or inconsistent effects on the amount of information encoded and behavioral performance. We also show that differential correlations reduce the amount of information encoded in finite populations by reducing projected precision. Our results are consistent with predictions of a model that optimally decodes population responses to produce behavior.SIGNIFICANCE STATEMENT The last two or three decades of research have seen hot debates about what features of population tuning and trial-by-trial variability influence the information carried by a population of neurons, with some camps arguing, for instance, that mean pairwise correlations or global fluctuations are important while other camps report opposite results. In this study, we identify the most important features of neural population responses that determine the amount of encoded information and behavioral performance by combining analytic calculations with a novel nonparametric method that allows us to isolate the effects of different statistical features. We tested our hypothesis on 4 macaques, three decision-making tasks, and two brain areas. The predictions of our theory were in agreement with the experimental data.
Subject(s)
Neural Networks, Computer , Neurons/physiology , Prefrontal Cortex/physiology , Psychomotor Performance/physiology , Temporal Lobe/physiology , Animals , Attention/physiology , Behavior, Animal , Discriminant Analysis , Female , Macaca fascicularis , Macaca mulatta , Male , Models, Neurological , Motion Perception/physiology , Visual Perception/physiologyABSTRACT
Neuronal spiking activity encoding working memory (WM) is robust in primate association cortices but weak or absent in early sensory cortices. This may be linked to changes in the proportion of neuronal types across areas that influence circuits' ability to generate recurrent excitation. We recorded neuronal activity from areas middle temporal (MT), medial superior temporal (MST), and the lateral prefrontal cortex (LPFC) of monkeys performing a WM task and classified neurons as narrow (NS) and broad spiking (BS). The ratio NS/BS decreased from MT > MST > LPFC. We analyzed the Allen Institute database of ex vivo mice/human intracellular recordings to interpret our data. Our analysis suggests that NS neurons correspond to parvalbumin (PV) or somatostatin (SST) interneurons while BS neurons are pyramidal (P) cells or vasoactive intestinal peptide (VIP) interneurons. We labeled neurons in monkey tissue sections of MT/MST and LPFC and found that the proportion of PV in cortical layers 2/3 decreased, while the proportion of CR cells increased from MT/MST to LPFC. Assuming that primate CR/CB/PV cells perform similar computations as mice VIP/SST/PV cells, our results suggest that changes in the proportion of CR and PV neurons in layers 2/3 cells may favor the emergence of activity encoding WM in association areas.
Subject(s)
Interneurons/cytology , Interneurons/physiology , Memory, Short-Term/physiology , Neocortex/cytology , Neocortex/physiology , Animals , Macaca mulatta , MaleABSTRACT
KEY POINTS: The hypothalamic-pituitary-adrenal (HPA) axis habituates to repeated stress exposure. We studied hypothalamic corticotropin-releasing hormone (CRH) neurons that form the apex of the HPA axis in a mouse model of stress habituation using repeated restraint. The intrinsic excitability of CRH neurons decreased after repeated stress in a time course that coincided with the development of HPA axis habituation. This intrinsic excitability plasticity co-developed with an expansion of surface membrane area, which increased a passive electric load and dampened membrane depolarization in response to the influx of positive charge. We report a novel structure-function relationship for intrinsic excitability plasticity as a neural correlate for HPA axis habituation. ABSTRACT: Encountering a stressor immediately activates the hypothalamic-pituitary-adrenal (HPA) axis, but this stereotypic stress response also undergoes experience-dependent adaptation. Despite the biological and clinical importance, how the brain adjusts stress responsiveness in the long term remains poorly understood. We studied hypothalamic corticotropin-releasing hormone neurons that form the apex of the HPA axis in a mouse model of stress habituation using repeated restraint. Using patch-clamp electrophysiology in acute slices, we found that the intrinsic excitability of these neurons substantially decreased after daily repeated stress in a time course that coincided with their loss of stress responsiveness in vivo. This intrinsic excitability plasticity co-developed with an expansion of surface membrane area, which increased a passive electric load, and dampened membrane depolarization in response to the influx of positive charge. Multiphoton imaging and electron microscopy revealed that repeated stress augmented ruffling of the plasma membrane, suggesting an ultrastructural plasticity that may efficiently accommodate the membrane area expansion. Overall, we report a novel structure-function relationship for intrinsic excitability plasticity as a neural correlate for adaptation of the neuroendocrine stress response.
Subject(s)
Hypothalamo-Hypophyseal System , Pituitary-Adrenal System , Animals , Corticosterone , Corticotropin-Releasing Hormone/metabolism , Hypertrophy , Hypothalamo-Hypophyseal System/metabolism , Mice , Neurons/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , Pituitary-Adrenal System/metabolism , Stress, Physiological , Stress, PsychologicalABSTRACT
Primates use saccades to gather information about objects and their relative spatial arrangement, a process essential for visual perception and memory. It has been proposed that signals linked to saccades reset the phase of local field potential (LFP) oscillations in the hippocampus, providing a temporal window for visual signals to activate neurons in this region and influence memory formation. We investigated this issue by measuring hippocampal LFPs and spikes in two macaques performing different tasks with unconstrained eye movements. We found that LFP phase clustering (PC) in the alpha/beta (8-16 Hz) frequencies followed foveation onsets, while PC in frequencies lower than 8 Hz followed spontaneous saccades, even on a homogeneous background. Saccades to a solid grey background were not followed by increases in local neuronal firing, whereas saccades toward appearing visual stimuli were. Finally, saccade parameters correlated with LFPs phase and amplitude: saccade direction correlated with delta (≤4 Hz) phase, and saccade amplitude with theta (4-8 Hz) power. Our results suggest that signals linked to saccades reach the hippocampus, producing synchronization of delta/theta LFPs without a general activation of local neurons. Moreover, some visual inputs co-occurring with saccades produce LFP synchronization in the alpha/beta bands and elevated neuronal firing. Our findings support the hypothesis that saccade-related signals enact sensory input-dependent plasticity and therefore memory formation in the primate hippocampus.
Subject(s)
Hippocampus/physiology , Membrane Potentials/physiology , Neurons/physiology , Saccades/physiology , Visual Perception/physiology , Action Potentials/physiology , Animals , Macaca mulatta , MaleABSTRACT
Neurons in the primate lateral prefrontal cortex (LPFC) encode working memory (WM) representations via sustained firing, a phenomenon hypothesized to arise from recurrent dynamics within ensembles of interconnected neurons. Here, we tested this hypothesis by using microelectrode arrays to examine spike count correlations (rsc ) in LPFC neuronal ensembles during a spatial WM task. We found a pattern of pairwise rsc during WM maintenance indicative of stronger coupling between similarly tuned neurons and increased inhibition between dissimilarly tuned neurons. We then used a linear decoder to quantify the effects of the high-dimensional rsc structure on information coding in the neuronal ensembles. We found that the rsc structure could facilitate or impair coding, depending on the size of the ensemble and tuning properties of its constituent neurons. A simple optimization procedure demonstrated that near-maximum decoding performance could be achieved using a relatively small number of neurons. These WM-optimized subensembles were more signal correlation (rsignal )-diverse and anatomically dispersed than predicted by the statistics of the full recorded population of neurons, and they often contained neurons that were poorly WM-selective, yet enhanced coding fidelity by shaping the ensemble's rsc structure. We observed a pattern of rsc between LPFC neurons indicative of recurrent dynamics as a mechanism for WM-related activity and that the rsc structure can increase the fidelity of WM representations. Thus, WM coding in LPFC neuronal ensembles arises from a complex synergy between single neuron coding properties and multidimensional, ensemble-level phenomena.
Subject(s)
Macaca/physiology , Memory, Short-Term , Neurons/physiology , Prefrontal Cortex/physiology , Action Potentials , Animals , Male , Prefrontal Cortex/cytologyABSTRACT
Single neurons in primate dorsolateral prefrontal cortex (dLPFC) are known to encode working memory (WM) representations of visual space. Psychophysical studies have shown that the horizontal and vertical meridians of the visual field can bias spatial information maintained in WM. However, most studies and models have tacitly assumed that dLPFC neurons represent mnemonic space homogenously. The anatomical organization of these representations has also eluded clear parametric description. We investigated these issues by recording from neuronal ensembles in macaque dLPFC with microelectrode arrays while subjects performed an oculomotor delayed-response task. We found that spatial WM representations in macaque dLPFC are biased by the vertical and horizontal meridians of the visual field, dividing mnemonic space into quadrants. This bias is reflected in single neuron firing rates, neuronal ensemble representations, the spike count correlation structure, and eye movement patterns. We also found that dLPFC representations of mnemonic space cluster anatomically in a nonretinotopic manner that partially reflects the organization of visual space. These results provide an explanation for known WM biases, and reveal novel principles of WM representation in prefrontal neuronal ensembles and across the cortical surface, as well as the need to reconceptualize models of WM to accommodate the observed representational biases.
Subject(s)
Action Potentials/physiology , Bias , Memory, Short-Term/physiology , Neurons/physiology , Prefrontal Cortex/cytology , Space Perception/physiology , Animals , Eye Movements , Female , Macaca fascicularis , MaleABSTRACT
The close homology of monkeys and humans has increased the prevalence of non-human-primate models in functional MRI studies of brain connectivity. To improve upon the attainable resolution in functional MRI studies, a commensurate increase in the sensitivity of the radiofrequency receiver coil is required to avoid a reduction in the statistical power of the analysis. Most receive coils are comprised of multiple loops distributed equidistantly over a surface to produce spatially independent sensitivity profiles. A larger number of smaller elements will in turn provide a higher signal-to-noise ratio (SNR) over the same field of view. As the loops become physically smaller, noise originating from the sample is reduced relative to noise originating from the coil. In this coil-noise-dominated regime, coil elements can have overlapping sensitivity profiles, yet still possess only mildly correlated noise. In this manuscript, we demonstrate that inductively decoupled, concentric coil arrays can improve temporal SNR when operating in the coil-noise-dominated regime-in contrast to what is expected for the more ubiquitous sample-noise-dominated array. A small, thin, 7-channel flexible coil is developed and operated in conjunction with an existing whole-head monkey coil. The mean and maximum noise correlation between the two arrays was 5% and 23%, respectively. When the flex coil was placed over the sensorimotor cortex, the temporal SNR improved by up to 2.3-fold in the peripheral cortex and up to 1.3-fold at a 2- to 3-cm depth within the brain. When the flex coil was placed over the frontal eye fields, resting-state maps showed substantially elevated sensitivity to correlations in the prefrontal cortex (54%), supplementary eye fields (39%), and anterior cingulate cortex (41%). The concentric-coil topology provided a pragmatic and robust means to significantly improve local temporal SNR and the statistical power of functional connectivity maps.
Subject(s)
Brain Mapping/instrumentation , Brain/physiology , Magnetic Resonance Imaging/instrumentation , Animals , Haplorhini , Signal-To-Noise RatioABSTRACT
Common trends observed in many visual and oculomotor-related cortical areas include retinotopically organized receptive and movement fields exhibiting a Gaussian shape and increasing size with eccentricity. These trends are demonstrated in the frontal eye fields, many visual areas, and the superior colliculus but have not been thoroughly characterized in prearcuate area 8Ar of the prefrontal cortex. This is important since area 8Ar, located anterior to the frontal eye fields, is more cytoarchitectonically similar to prefrontal areas than premotor areas. Here we recorded the responses of 166 neurons in area 8Ar of two male macaques while the animals made visually guided saccades to a peripheral sine-wave grating stimulus positioned at 1 of 40 possible locations (8 angles along 5 eccentricities). To characterize the neurons' receptive and movement fields, we fit a bivariate Gaussian model to the baseline-subtracted average firing rate during stimulus presentation (early and late visual epochs) and before saccade onset (presaccadic epoch). One hundred twenty-one of one hundred sixty-six neurons showed spatially selective visual and presaccadic responses. Of the visually selective neurons, 76% preferred the contralateral visual hemifield, whereas 24% preferred the ipsilateral hemifield. The angular width of visual and movement-related fields scaled positively with increasing eccentricity. Moreover, responses of neurons with visual receptive fields were modulated by target contrast, exhibiting sigmoid tuning curves that resemble those of visual neurons in upstream areas such as MT and V4. Finally, we found that neurons with receptive fields at similar spatial locations were clustered within the area; however, this organization did not appear retinotopic.NEW & NOTEWORTHY We recorded the responses of neurons in lateral prefrontal area 8Ar of macaques during a visually guided saccade task using multielectrode arrays. Neurons have Gaussian-shaped visual and movement fields in both visual hemifields, with a bias toward the contralateral hemifield. Visual neurons show contrast response functions with sigmoid shapes. Visual neurons tend to cluster at similar locations within the cortical surface; however, this organization does not appear retinotopic.
Subject(s)
Prefrontal Cortex/physiology , Saccades , Visual Perception , Animals , Brain Mapping , Evoked Potentials, Visual , Macaca fascicularis , Male , Neurons/physiologyABSTRACT
Single-cell studies in macaques have shown that attending to one of two stimuli, positioned inside a visual neuron's receptive field (RF), modulates the neuron's response to reflect the features of the attended stimulus. Such a modulation has been described as a 'push-pull' effect relative to a reference response: a neuron's response increases when attention is directed to a preferred stimulus, and decreases when attention is directed to a non-preferred stimulus. It has been further suggested that the response increase when attending to a preferred stimulus is the predominant effect. Here, we show that the observed attentional modulation depends on the reference response. We recorded neuronal responses in motion processing area middle temporal (MT) of macaques to two moving random dot patterns positioned inside neurons' RF. One pattern always moved in the neuron's antipreferred direction (null pattern), while the other moved in one of 12 directions (tuning pattern). At the beginning of a trial, a cue indicated the location and direction of the target. The animal was required to release a lever when a change in the target direction occurred, and to ignore changes in the distracter. Relative to neurons' initial responses to the dual stimuli (when attention was less likely to modulate responses), attending to the tuning pattern did not significantly modulate responses over time. However, attending to the null pattern progressively decreased responses over time. These results were quantitatively described by filter and input gain models, characterising a predominant response suppression relative to a reference response, rather than response enhancement.
Subject(s)
Attention , Motion Perception , Neurons/physiology , Animals , Macaca mulatta , Male , Psychomotor Performance , Temporal Lobe/cytology , Temporal Lobe/physiologyABSTRACT
Virtual environments (VE) allow testing complex behaviors in naturalistic settings by combining highly controlled visual stimuli with spatial navigation and other cognitive tasks. They also allow for the recording of eye movements using high-precision eye tracking techniques, which is important in electrophysiological studies examining the response properties of neurons in visual areas of nonhuman primates. However, during virtual navigation, the pattern of retinal stimulation can be highly dynamic which may influence eye movements. Here we examine whether and how eye movement patterns change as a function of dynamic visual stimulation during virtual navigation tasks, relative to standard oculomotor tasks. We trained two rhesus macaques to use a joystick to navigate in a VE to complete two tasks. To contrast VE behavior with classic measurements, the monkeys also performed a simple Cued Saccade task. We used a robust algorithm for rapid classification of saccades, fixations, and smooth pursuits. We then analyzed the kinematics of saccades during all tasks, and specifically during different phases of the VE tasks. We found that fixation to smooth pursuit ratios were smaller in VE tasks (4:5) compared to the Cued Saccade task (7:1), reflecting a more intensive use of smooth pursuit to foveate targets in VE than in a standard visually guided saccade task or during spontaneous fixations. Saccades made to rewarded targets (exploitation) tended to have increased peak velocities compared to saccades made to unrewarded objects (exploration). VE exploitation saccades were 6% slower than saccades to discrete targets in the Cued Saccade task. Virtual environments represent a technological advance in experimental design for nonhuman primates. Here we provide a framework to study the ways that eye movements change between and within static and dynamic displays.
Subject(s)
Eye Movements/physiology , Macaca mulatta/physiology , Animals , Biomechanical Phenomena , Cues , Feeding Behavior/physiology , Learning/physiology , Male , Photic Stimulation/methods , Pursuit, Smooth/physiology , Saccades/physiologyABSTRACT
Local field potentials (LFPs) are fluctuations of extracellular voltage that may reflect the physiological phenomena occurring within a volume of neural tissue. It is known that the allocation of spatial attention modulates the amplitude of LFPs in visual areas of primates. An issue that remains poorly investigated is whether and how attention modulates LFPs in executive brain areas, such as the lateral prefrontal cortex (LPFC), thought to be involved in the origins of attention. We addressed this issue by recording LFPs from multielectrode arrays implanted in the LPFC of two macaques. We found that the allocation of attention can be reliably decoded on a single-trial basis from ensembles of LFPs with frequencies >60 Hz. Using LFP frequencies <60 Hz, we could not decode the allocation of attention, but we could decode the location of a visual stimulus as well as the endpoint of saccades toward that stimulus. The information contained in the high-frequency LFPs was fully redundant with the information contained in the spiking activity of single neurons recorded from the same electrodes. Moreover, the decoding of attention using γ frequency LFPs was less accurate than using spikes, but it was twice more stable across time. Finally, decorrelating the LFP signals from the different electrodes increased decoding performance in the high frequencies by up to â¼14%. Our findings suggest that LFPs recorded from chronically implanted multielectrode arrays in the LPFC contain information about sensory, cognitive, and motor components of a task in a frequency-dependent manner.