Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
J Am Soc Hypertens ; 12(8): 605-613, 2018 08.
Article in English | MEDLINE | ID: mdl-29945776

ABSTRACT

Hypertension is one of the chronic side effects of dexamethasone (DEX) treatment; however, almost nothing is known about its acute effects. Therefore, the aim of this study was to investigate the possible mechanisms involved in blood pressure control after acute or short-term DEX treatment in adult animals. Eighty Wistar rats were divided into four groups: C1 and C5, for rats treated with saline for 1 or 5 days, respectively; D1 and D5, for rats treated with DEX for 1 or 5 days, respectively (decadron, 1 mg/kg, i.p.). Heart rate was increased in DEX treatment, but arterial pressure and cardiac muscle mass were not altered. Only few and isolated changes on gene expression and protein level of renin-angiotensin system components were observed. Five days of DEX treatment, but not one day, determined an increase in sympathetic component of spectral analysis (+75.93%, P < .05) and a significant reduction of parasympathetic component (-18.02%, P < .05), which contributed to the autonomic imbalance to the heart (LF/HF, +863.69%). The results of this present study demonstrated, for the first time, that short-term exposure to DEX treatment impairs the autonomic balance to the heart before hypertension, which was independent of renin-angiotensin system.

2.
Steroids ; 107: 30-6, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26730720

ABSTRACT

This study was designed to describe the time-course changes of catabolic proteins following muscle atrophy induced by 10 days of dexamethasone (DEX). Rats underwent DEX treatment for 1, 3, 5, 7 and 10 days. Body weight (BW) and lean mass were obtained using a dual energy X-ray absorptiometry (DEXA) scan. Muscle ringer finger1 (MuRF-1), atrogin-1 and myostatin protein levels were analyzed in the tibialis anterior (TA), flexor hallucis longus (FHL) and soleus muscles. DEX treatment reduced lean mass since day-3 and reduced BW since day-5. Specific muscle weight reductions were observed after day-10 in TA (-23%) and after day-5 in FHL (-16%, -17% and -29%, for days 5, 7 and 10, respectively). In TA, myostatin protein level was 36% higher on day-5 and its values were normalized in comparison with controls on day-10. MuRF-1 protein level was increased in TA muscle from day-7 and in FHL muscle only on day-10. This study suggests that DEX-induced muscle atrophy is a dynamic process which involves important signaling factors over time. As demonstrated by DEXA scan, lean mass declines earlier than BW and this response may involve other catabolic proteins than myostatin and MuRF-1. Specifically for TA and FHL, it seems that myostatin may trigger the catabolic process, and MuRF-1 may contribute to maintain muscle atrophy. This information may support any intervention in order to attenuate the muscle atrophy during long period of treatment.


Subject(s)
Dexamethasone/adverse effects , Muscle Proteins/metabolism , Muscular Atrophy/chemically induced , Muscular Atrophy/metabolism , Animals , Dexamethasone/pharmacology , Male , Muscular Atrophy/pathology , Rats , Rats, Wistar , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL