Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
FASEB J ; 38(1): e23377, 2024 01.
Article in English | MEDLINE | ID: mdl-38133902

ABSTRACT

The roles of anti-Müllerian hormone (AMH) continue to expand, from its discovery as a critical factor in sex determination, through its identification as a regulator of ovarian folliculogenesis, its use in fertility clinics as a measure of ovarian reserve, and its emerging role in hypothalamic-pituitary function. In light of these actions, AMH is considered an attractive therapeutic target to address diverse reproductive needs, including fertility preservation. Here, we set out to characterize the molecular mechanisms that govern AMH synthesis and activity. First, we enhanced the processing of the AMH precursor to >90% by introducing more efficient proprotein convertase cleavage sites (RKKR or ISSRKKRSVSS [SCUT]). Importantly, enhanced processing corresponded with a dramatic increase in secreted AMH activity. Next, based on species differences across the AMH type II receptor-binding interface, we generated a series of human AMH variants and assessed bioactivity. AMHSCUT potency (EC50 4 ng/mL) was increased 5- or 10-fold by incorporating Gln484 Met/Leu535 Thr (EC50 0.8 ng/mL) or Gln484 Met/Gly533 Ser (EC50 0.4 ng/mL) mutations, respectively. Furthermore, the Gln484 Met/Leu535 Thr double mutant displayed enhanced efficacy, relative to AMHSCUT . Finally, we identified residues within the wrist pre-helix of AMH (Trp494 , Gln496 , Ser497 , and Asp498 ) that likely mediate type I receptor binding. Mutagenesis of these residues generated gain- (Trp494 Phe or Gln496 Leu) or loss- (Ser497 Ala) of function AMH variants. Surprisingly, combining activating type I and type II receptor mutations only led to modest additive increases in AMH potency/efficacy. Our study is the first to characterize AMH residues involved in type I receptor binding and suggests a step-wise receptor-complex assembly mechanism, in which enhancement in the affinity of the ligand for either receptor can increase AMH activity beyond the natural level.


Subject(s)
Anti-Mullerian Hormone , Peptide Hormones , Female , Humans , Anti-Mullerian Hormone/genetics , Ovary , Amino Acid Sequence , Peptide Fragments
2.
Endocrinology ; 163(4)2022 04 01.
Article in English | MEDLINE | ID: mdl-35255139

ABSTRACT

Inhibins are members of the transforming growth factor-ß family, composed of a common α-subunit disulfide-linked to 1 of 2 ß-subunits (ßA in inhibin A or ßB in inhibin B). Gonadal-derived inhibin A and B act in an endocrine manner to suppress the synthesis of follicle-stimulating hormone (FSH) by pituitary gonadotrope cells. Roles for inhibins beyond the pituitary, however, have proven difficult to delineate because deletion of the inhibin α-subunit gene (Inha) results in unconstrained expression of activin A and activin B (homodimers of inhibin ß-subunits), which contribute to gonadal tumorigenesis and lethal cachectic wasting. Here, we generated mice with a single point mutation (Arg233Ala) in Inha that prevents proteolytic processing and the formation of bioactive inhibin. In vitro, this mutation blocked inhibin maturation and bioactivity, without perturbing activin production. Serum FSH levels were elevated 2- to 3-fold in InhaR233A/R233A mice due to the loss of negative feedback from inhibins, but no pathological increase in circulating activins was observed. While inactivation of inhibin A and B had no discernible effect on male reproduction, female InhaR233A/R233A mice had increased FSH-dependent follicle development and enhanced natural ovulation rates. Nevertheless, inhibin inactivation resulted in significant embryo-fetal resorptions and severe subfertility and was associated with disrupted maternal ovarian function. Intriguingly, heterozygous Inha+/R233A females had significantly enhanced fecundity, relative to wild-type littermates. These studies have revealed novel effects of inhibins in the establishment and maintenance of pregnancy and demonstrated that partial inactivation of inhibin A/B is an attractive approach for enhancing female fertility.


Subject(s)
Gonadotrophs , Inhibins , Activins/metabolism , Animals , Female , Follicle Stimulating Hormone/metabolism , Gonadotrophs/metabolism , Inhibins/genetics , Inhibins/metabolism , Male , Mice , Ovary/metabolism , Pituitary Gland/metabolism , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL